⑴ 拿到一个数学建模题目要怎么去分析啊有那些具体的方法
数学建模全国大赛历年题目分析以及参赛成功方法数学建模竞赛的赛题分析。
1.了解问题的实际背景,明确建模目的,收集掌握必要的数据资料。
2.在明确建模目的,掌握必要资料的基础上,通过对资料的分析计算,
找出起主要作用的因素,经必要的精炼、简化,提出若干符合客观实际的假设。
3.在所作假设的基础上,利用适当的数学工具去刻划各变量之间的关系,建立相应的数学结构
--即建立数学模型。
4.模型求解。
5.模型的分析与检验。
⑵ 2021数学建模国赛A题怎么做,有详细的解题思路吗
解题思路:
首先是已知有个方向的点或者信号源需要观察,那么为了更好的观测,你需要对整个下拉索进行调节且只能调节高度。
然后通过你的调节使得整个反射面很优秀 反射的信号很多能够被吸收。基本过程就是这样,那么在做题之前你还需要搞明白几个事情。
你能控制的变量:那些反射板三个顶点的位置 x y z 在附录1中题目给的参数你控制的方式:通过拉索进行调节高度 附录6描述的-0.6到+0.6就是h的范围。
你控制得好坏:怎么评价你的这个曲面很优秀或怎么证明;后面说你可以自己思考。
做法:
CS线与基准球面相角的点所对应的促动器是向内收缩的,以该点为中心散开方向的促动器基本都是不同程度的伸张,这样才能重新构成一个半径比基准球半径更小的圆,照明以外的促动器可以视为不动。
照明区如何确定,以SC线与基准球面交点为中心,照明区半径为最近的边界点到SC直线的距离;这里我们寻优,我们可以观察照明中心的位置,再结合边界,边界处促动器最大伸缩是0.6米,就看能够成多小半径的球面,这样可以求得一个半径范围作为自变量。
然后反过来去推算照明区域内个促动器的伸缩量,怎么计算,两个大小不等的圆半径,去同样长的幅度,上面的去相应的点,就可以计算出伸缩量了。
⑶ 数学建模竞赛试题如何做相关的数学应用软件该怎样学习
我给你的建议是:
1、努力学习数学知识,完善自己的知识体系,尤其是与数学相关的知识体系,比如高等数学、工程数学和应用数学的相关知识;扩充自己的知识面,你可以看到很多赛题都是很现实的社会热点问题,相关的背景知识是非常必要的;
2、多看一些案例分析的教程,在学习案例分析时的注意点是:如何考虑现实问题中的各个因素,综合运用所学知识,建立适当的模型;如何进行模型的优化;如何求解模型;如何解释模型的解。
还要逐步去理解数学建模中最难的三个问题,a、如何用学到的数学思想来表述所面对的问题,所谓的建模。b、应用学到的数学知识解刚刚建立的数学模型,并进行优化。c、将刚刚得到的数学上的解解释为现实问题中的现象或者是方法。这三个过程体现了一个“现实——>数学——>现实”的一个过程。这其实就是最难的地方。这需要你首先了解面临的实际问题,然后从现实中转入数学,再从数学中跳出来回到现实。
3、说到matlab,我建议你借一本matlab手册做参考书就行了!毕竟matlab只是实现你数学模型的基础,这不是说matlab不重要,其实matlab也很重要!
⑷ 2018年高教杯全国大学生数学建模竞赛C题解题思路。
(一)要进行调查收集数据,确定以下问题:(1)其中公猪母猪的比例因配种方式而异,确定公猪母猪的比例,比如是1:100;(2)确定出售肉猪的平均单个肉猪的重量,比如是100 kg;(3)确定生产100kg肉猪所要消耗的饲料数量与价格,肉猪生产成本元/kg;(4)种猪的生成期天数,种猪的平均体重,所要消耗的饲料数量与价格,种猪生产成本元/kg。(二)在确定上述数据后,可解问题1和2。(三)问题3的解题思路(1)最佳经营策略是避免在D3.3.22—D3.9.2期间肉猪价低时有肉猪成长后出售,为此需在D2.6.22—D2.12.2期间内不配种或减少配种;(2)分时期计算变通表格形式内的相关内容,计算总量和平均值,计算三年内的平均利润。(3)按(三,2)计算的结果可绘制出母猪及肉猪的存栏数曲线。以上给出的是建模思路,是一种模型(式),不可能是完备的数模。
⑸ 数学建模做题技巧
一. 数学的重要性:
学了这么多年的书,感觉最有用的就是数学课了,相信还是有很多人和我一样的想法的
。 大家回想一下:有什么课自始至终都用到?我想了一下只有数学了,当然还有英语。
特别到了大学,学信号处理和通信方面的课时,更是感到了数学课的重要性。计算机:
数据结构,编程算法....哪个不需要数学知识和思想。有这样的说法,数学系的人学计
算机才是最牛的。信号与系统:这个变换那个变换的。通信:此编码彼编码的。数字图
像与模式识别:这个概率论和数理统计到处都是。线性代数和矩阵论也是经常出现。
二. 数学的学习方法:
最重要的是遇到问题首先不畏惧,然后知道类似的问题别人是如何处理,我们是否可以
借鉴,然后再比较我们的问题和已有的问题有何异同,已有的方法有什么不足,我们应
从哪里着手考虑新方法。思考路线比具体推导更重要。数学并非说得越玄乎越显水平。
真正的理解在于抓住实质,"如果你还觉得某个东西很难、很繁、很难记住,说明你还沉
迷于细节,没有抓住实质,抓住了实质,一切都是简单的。"这是概率之父Kolmogorov的
名言。我们平时在学习数学时,也时刻问自己,能不能向一个外行讲清楚这是怎么回事
,如果不能,说明我们自己还没有真正理解。数学推导的功夫应该是在课下通过大量的
练习得到的,在课下花的时间要远大于课上的时间。
三. 数学软件介绍:
在当今30多个数学类(为区别于文字处理和作图类而加的修饰词)科技应用软件中,就
软件数学处理的原始内核而言,可分为两大类。一类是数值计算(Number Crunching)
)型软件,如Matlab, Xmath,MLAB等。这类软件对大批数据具有较强的管理、计算和
可视化能力,运行效率高。另一类是数学分析(Math Analysis)型软件,如Mathemati
ca、Maple,Macsyma等。它们以符号计算见长,并可得到解析符号解和任意精度解,但
处理大量量数据时运行效率较低。经过多年的国际竞争,MATLAB已经占据了数值型软件
市场的主导地位,处于其后的是Xmath;而Maple,Mathematica,Macsyma位居符号软件的
前三名(见IEEE Spectrum)。 在国际流行的科技应用软件中,Mathcad 别具特色。该
软件的开发商Mathsoft公司一开始就把面向教学和办公作为Mathcad的市场目标。在对待
数值计算、符号分析、文字处理、图形能力的开发商,不以专业水准为追求,而尽力集
各种功能于一体。MathWorks公司顺应多功能需求之潮流,在其卓越数值计算和图视能力
的基础商,又率先在专业水平上开拓其符号计算,文字处理,可视化建模仿真和实时控
制能力,精心营造适合多学科、多部门要求的新一代科技应用软件MATLAB。
对电子系同学最常用的软件而且基本上唯一使用的数学软件就是matlab了。Matlab 5.3
版本(最新版本6.0版)完全安装,包括帮助、以及各种工具箱一共竟需要1G多硬盘空间
。当然,这一个G的容量并不是被各种垃圾文件所充斥,相反的,它是由无数在Matlab系
统上运行的函数文件所占据。由此可以看出Matlab的功能是多么的全面。1984年,计算
数学家Steve Bangert、Steve Kleiman、John Little、Cleve Morer在原来 FORTRAN程
序的基础上开发了一个解决线性系统计算问题的C语言程序,他们给它起了个响亮的名字
Matlab(Matrix Laboratory)。从此以后,Matlab系统便一发而不可收拾,成千上万的软
件工程师、计算科学家、和各种应用领域的科技工作人员加入了Matlab的开发者的行列
。他们把各自科研、应用领域中的常用算法用Matlab系统提供的编程语言做成程序集,
于是就产生了Matlab的特色之一:"工具箱系统"(Toolbox)。在Matlab5.3 中大约有几十
个工具箱,其中包括通信,信号系统分析、离散信号分析、优化、偏微分方程、小波变
换、地图、财经、电力系统、神经网络,数值计算等等。工具箱中每一个函数都是采用
了该领域中最先进的高效算法,无数这样的函数文本文件组成了Matlab这个巨无霸,由
此可见,Matlab对于解决工程问题是极其具有优越性的。是我们电子系学生的最爱。上
面介绍了Matlab的主要特色之一:工具箱。下面来谈谈它的另一个特色,就是与其他语
言和编译器之间的接口。这个问题一直是关于Matlab的最热门的话题。原因很简单,1.
Matlab如此全面高效的算法和功能都是建立在Matlab提供的平台上才能运行,这样限制
了这些程序的使用范围,即如果想应用这些程序,你首先必需在你的计算机上安装一个
多达几百兆的Matlab,给使用带来了不便。另外,由于Matlab采用的是逐行解释的方式
来执行代码,因此运行速度比编译为exe 的二进制文件要慢,因此,利用编译器,把m文
件变为二进制的exe或dll文件,会大大缩短计算时间. 尽管Matlab是一个完善的系统,
但毕竟术业有专攻,各种语言的可视化编程环境(如VC,C++Builder,Delphi等)在用户
界面设计和其他系统功能方面具有Matlab不能比拟的快捷和高效,因此,如何把Matlab
强大的数值计算功能与可视编程集成环境IDE结合起来,开发用户操作方便、计算功能完
备、运行快捷的应用程序便成为程序开发者的最大愿望。Matlab中包含了大量的矩阵运
算、数值运算函数、图形操作函数、用户图形界面函数等等,用他可以象C语言一样书写
函数流程,而且开发WIN图形界面的用户程序。Matlab强大的功能、方便的操作给它赢得
了世界上最流行的数学软件的桂冠。难怪在网上大家奔走相告"出国前一定要把Matlab学
好"。
四. 其他数学软件简介(也算开开眼界尽管基本上不用(除了第一个外)):
1. Matcom:Matcom是MathTools开发的一个m文件解释器(即将Matlab中的编程语
言解
释为C语言),不仅可以把m文件编译为可以独立执行的exe或dll文件,而且可以自动产
生C源代码,供其他高级语言编译器使用。Matcom所实现的在C语言中直接书写类似于ma
tlab语句的功能,带来了以下几个明显的优点:一,是利用Matcom编制的程序可以在任
何不安装 Matlab系统的计算机上运行; 二是运行速度比m文件快了数倍;三是实现了Ma
tlab强大的计算功能与各种C编译器界面设计 的完美组合。我现在最喜欢用的就是在vc
上作界面来方便用户操作,用Matcom库实现算法计算,这样相得益彰,用这种方法编成
的程序,操作方便简洁,计算图形功能强大,速度快。
2. Mathmatica:最令人着迷的是它的完美的符号运算功能。所谓符号运算是指它
所处
理的对象不仅仅是常见的数字(如12或3.14),而是一些带有代数符号的表达式,我们
在代数中曾经学过运用代数的运算规则,对一个含有符号的表达式进行恒等变换,一个
函数就是一种规则或者说映射,比如定义如下一个规则,我们就可以运用这法则将下式
变换。而Mathematica正是具有这种类似人类思维的功能,它能不断学会并记忆各种变化
规则,并把这些各式各样的变化应用到各种表达式上,无论形式多么复杂,总能得到我
们想得到的带有代数符号的结果。而在C语言或其他编程语言中,对于一个符号,必须先
声明,然后赋值才能使用。因此它所表达的含意是有限的,而Mathematica完全抛开了这
种限制,一个符号可以表示任意对象,没有类型限制,真正实现了"代数"中的"代"字。
Mathematica象一个不知疲倦的公式推导家,它能在一秒钟之内将一个复杂的函数关系复
合上万次,它能在各种复杂表达式形式中找到最简单的。Mathematica对于大一、大二的
同学可能是一个福音,对于大家在高等数学、线性代数中常碰到的对表达式求极限、微
分、定积分、不定积分、级数、向量代数等内容在Mathematica都有内部函数来直接计算
结果。当然,希望大家还是自己动手练一练公式推导的基本功,把Mathematica当作一个
检验工具是无可厚非。Mathematica4.0中, 系统函数涵盖了微积分、线性代数、概率、
几何、图论、组合数学、数论数学、特殊函数等绝大多数常用数学分支。
3. Mathcad 8.0,Maple 5: 着名的符号运算数学软件,与Mathematica 类似,内
存管
理较好,SAS 6.12 统计学专业软件,压缩文件100多M(最权威的统计软件)。
4. 其他:SPSS 8.0 社会科学统计软件包;Lindo/Lingo 50线性、非线性规划软件
;A
nsys 5.4 权威的有限元法(FEM)计算软件,安装文件约200~300M ;Algo 有限元法软
件包;Statistics 统计软件 ;Datafit 数值拟合专业软件 ;Origin 6.0 微软的数据
分析绘图软件,可以与Excel数据库通讯;Netlib 网络并行计算库 ;Isoft 电磁仿真软
件 ;Auto 非线性动力系统计算软件 ;Flexpde 2.10 求解偏微分方程的数值软件;Te
cplot 8.0流速与值线流体力学 ;RATS 数值分析软件。
一、是数学建模竞赛
数学建模竞赛就是这样。它名曰数学,当然要用到数学知识,但却与以往所说的那种数
学竞赛(那种纯数学竞赛)不同。它要用到计算机,甚至离不开计算机,但却不是纯粹的
计算机竞赛,它涉及物理,化学,生物,电子,农业,管理等各学科,各领域的知识,
但也不是这些学科领域里的纯知识竞赛。它涉及各学科,各领域,但又不受任何一个具
体的学科,领域的局限。它要用到各方面的综合的知识,但还不限此。选手们不只是要
有各方面的知识,还要有驾域这些知识,应用这些知识处理实际问题的能力。知识是无
止境的,你还必须有善于获得新的知识的能力。总之,数学建模竞赛,即要比赛各方面
的综合知识,也比赛各方面的综合能力。它的特点就是综合,它的优点也是综合。在这
个意义上看,它与任何一个学科领域内的知识竞赛都不相同的特点就是不纯,它的优点
也就是不纯,综合就是不纯。纯数学竞赛,如中学生的国际数学奥林匹克竞赛,或美国
大学生的普特南数学竞赛,已经有很长的历史,也为大家所熟悉。特别是近若干年来我
国选手在国际数学奥林匹克竞赛中年年取得好成绩,更使这项竞赛在我国有很高的知名
度,在全国各地的质量教高的中学中广泛开展。纯数学竞赛主要考核选手对数学基础知
识的掌握情况逻辑推理及证明的能力和技巧思维是否敏捷,计算能力的强弱等。试题都
是纯数学问题,考试方式是闭卷考试。参赛学生在规定的时间(一般每次为三小时)内独
立做题,不准交头接耳相互讨论,不准看任何书籍和参考资料,不准用计算机(器) 。考
题都有标准答案。当然,选手的解答方法可以与标准答案不同,但其解答方法的正确与
否也是绝对的,特别是计算题的得数一定要与标准答案相同。考试结果,对每个选手的
答案给出分数,按分数高低来判定优劣。 尽管也要对参赛的团体(代表一个国家,地区
或学校)计算团体总分,但这个团体总分也是将每个团体的选手得分加起来得到的,在比
赛过程中同一团体的选手们绝对不能互相帮助。因此,这样的竞赛从本质上说是个人赛
而不相帮助。因此,这样的竞赛从本质上说是个人赛而不是团体赛。团体要获胜主要靠
每名选手个自的水平高低而不存在互相配合的问题(当然在训练过程中可以互相帮助)。
这样的竞赛,对于吸引青年人热爱数学从而走上数学研究的道路,对于培养数学家和数
学专门人才,起了很大的作用。
随着社会的发展,数学在社会各领域中的应用越来越广泛,作用越来越大,不但运用于
自然科学各个领域,各学科,而且渗透到经济,军事,管理以至于社会科学和社会活动
的各个领域。但是,社会对数学的需求并不只是需要在各部门中从事实际工作的人善于
运用数学知识及数学大思维放法来解决他们每天面临的大量的实际问题,取得经济效益
和社会效益。他们不是为了应用数学知识而寻找实际问题(就象在学校里做数学应用题)
,而是为了解决实际问题而需要用到数学。而且不止是要用到数学,很可能还要用到别
的学科,领域的知识,要用到工作经验和常识。特别是在现代社会,要真正解决一个实
际问题几乎都离不开计算机。可以这样说,在实际工作中遇到的问题,完全纯粹的只用
现成的数学知识就能解决的问题几乎是没有的。你所能遇到的都是数学和其他东西混杂
在一起的问题,不是"干净的"数学,而是"脏"的数学。其中的数学奥妙不是明摆在那里
等着你去解决,而是暗藏在深处等着你去发现。也就是说,你要对复杂的问题进行分析
,发现其中的可用数学语来描述的关系或规律,把这个实际问题化成一个数学问题,这
就称为数学模型,建立数学模型的这个过程就称为数学建模。模型这个词对我们来说并
不陌生,它可以说是对某种事物的一种仿制品。比如飞机模型,就是模仿飞机造出来的
。既然是仿造,就不是真的,只能是"假冒",但不能是"伪劣",必须真实地反映所模仿
的对象的某一方面的属性。如果只是模仿飞机的模样,这样的飞机模型只要看起像飞机
就行了,可以摆在展览馆供人参观,照相,但不能飞。如果要模仿飞机的飞行原理,就
得造一个能飞起来的飞机模型,比如航空模型比赛的作品,它在空气中的飞行原理与飞
机有相同之处。但当然不像飞机那样靠烧燃料来飞行,外观上也不必那么像飞机,可见
,模型所模仿的都只是真实事物的某一方面的属性。而数学模型,就是用数学语言(可能
包括数学公式)去描述和模仿实际问题中的数量关系,空间形式等。这种模仿当然是近似
的,但又要尽可能的逼真。实际问题中的许多因素,在建立数学模型时你不可能,也没
有必要把它们毫无遗漏地全部加以考虑,只能考虑其中的最主要的因素,舍弃其中的次
要因素,数学模型建立起来后,实际问题化成数学问题,就可以用数学工具,数学方法
去解答。如果有现成的数学工具当然好。如果没有现成的数学工具,就促使数学家们(也
包括建立数学模型的人)寻找和发展出新的数学工具去解决它,这又推动了数学本身的发
展。例如,开普勒由行星运动的观测数据总结出开普勒三定理(这就是行星运行的数学模
型),牛顿试图用自己发现的力学定理去解释它,但当时的数学工具是不够用的,这使了
微积分的发明。求解数学模型,除了用到数学推理以外,通常还要处理大量数据,进行
大量计算。这在电子计算机发明之前是很难实现的。因此,很多数学模型,尽管从数学
理论上解决了,但由于计算量太大而没法得到有用的结果,还是只有束之高阁。而计算
机的出现和迅速发展,给用数学模型解决实际问题打开了广阔的道路。而在现在,要真
正解决一个实际问题,离了计算机几乎是不行的。数学模型建立起来了,也用数学方法
或数据方法求出了解答,是不是就万事大吉了呢?不是。既然数学模型只能近似地反映实
际问题中的关系和规律,到底反应的好不好,还需要接受检验。如果数学模型建立的不
好,如果没有正确地描述所给的实际问题,数学解答再正确也是没有用的。因此,在得
出数学解答之后还要让所得的结论接受实际的考察,看它是否合理,是否可行。如果不
符合实际,还应设法找出原因,修改原来的模型,重新求解和检验,直到比较合理可行
,才算是得到一个解答,可以先付诸实施,但是,十全十美的答案是没有的,已得到的
答案一定还有改进的余地,还可以根据实际情况,或者继续研究和改进;或者暂停告一段
落,待将来有新的情况和要求后再作该进。
上面所说的建立数学模型来解决问题的过程,是各行各业各个领域大量需要的,也是我
们的学生在走上工作单位后常常要做的工作。做这样的事情,所需要的远不只是数学知
识和解数学题的能力,而需要多方面的综合能力。社会对具备这种能力的人的需求,比
对数学专门人才的需求要多的多。因此,在学校里就应当努力陪养和提高学生在这方面
的能力。当然有多种形式来达到这个目的。比如开设数学模型方面的课程;让学生多接触
实际工作,得到锻炼,获得知识及其他各方面的能力)去参与解决问题的全过程。这些实
际问题并不限于某一方面,可以涉及非常广泛的,并不固定的范围。这样来促进应用人
才的培养。
二、数学模型的基础
1. 数学模型的定义
现在数学模型还没有一个统一的准确的定义,因为站在不同: 的角度可以有不同的定义
。不过我们可以给出如下定义。: "数学模型是关于部分现实世界和为一种特殊目的而作
的一个抽象的、简化的结构。" : 具体来说,数学模型就是为了某种目的,用字母、数
学及其它:数学符号建立起来的等式或不等式以及图表、图象、框图等描述客观事物的特
征及其内在联系的数学结构表达式。
2.建立数学模型的方法和步骤
第一、 模型准备 (问题的提出与分析)
首先要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特
征。
第二、 模型假设与符号说明
根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设
,是建模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法
欠佳的行为,: 所以高超的建模者能充分发挥想象力、洞察力和判断力 ,善于辨别主次
,而且为了使处理方法简单,应尽量使问题线性化、均匀化。
第三、 模型的建立与求解
通过对问题的分析和模型假设后建立数学模型(模型运用数学符号和数学语言来描述)
,并过设计算法、运用计算机实现等途径(根据模型的特征和要求确定)求解模型!此
过程是整:个数模过程的最重要部分,需慎重对待!
第四、 型的检验
即通过问题所提供的数据或相对于实际生活中的情况对模型的合理性、准确性等进行判
别模型的优劣!可通过计算机模拟等手段来完成!
第五、 模型的完善与推广
此步骤可根据建模时具体情况而定!
关于建模的步骤并不一定必须按照以上几步进行,有兴趣的同仁可参考建模的相关书籍
。
三、数学建模参考资料:
1、《数学模型基础》 王树禾 中国科学技术大学出版社 1996
2、《数学模型》 谭永基,俞文 复旦大学出版社 1997
3、《数学建模竞赛教程》 李尚志 江苏教育出版社 1996
这些书均可在图书馆借到或在九章书店买到。其他方面的书也很多,有足够时间可以去
翻翻。全国大学生数学建模竞赛的有关信息,可在Internet上中国工业与应用数学学业
会 (CSIAM)的主页内浏览,网址为:http://www.csiam.e.cn/。数学建模比赛每年
的9月下旬举行,每年6月份报名,三人组成一个参赛队。欲参加比赛的同学应该到数学
系旁听数学模型课或者选修公共选修课"数学模型"。
《吉米多维奇数学分析习题集》
本书只适合超级大牛同学做。图书馆有借和海淀图书城的九章数学书店有售。
《数学分析中的典型问题与方法》
裴礼文着,高教出版社。本书可谓宝典级的圣书。适合一般牛的同学。图书馆不多,九
章书店有售。
《大学生数学竞赛试题解析选编》
第二版,李心灿等编,高教出版社。凡是科协课外小组的同学要求人手一本。里面收集
了北京市大学生数学竞赛的历年真题,比较好,对于水平中等及中等以上的同学均有意
义。九章数学书店有售。
《高等数学复习题解与指导》
陈文灯着,上下两本,北京理工大学出版社:该书讲解十分详尽,对于各类水平的同学
均有很大的帮助。呕血推荐!!!九章书店有售。
《数学复习指南》
理工类,陈文灯等着。该书高数内容与上本书基本一致。但该书还有线性代数,概率论
等部分,非常全面。图书馆有借。各大书店均有售。适合所有水平的同学。
《高等数学解题过程的分析和研究》
钱昌本着。该书主要介绍高等数学的思维方法。例题很有启发性。图书馆有借。九章书
店有售。
从常微分方程开始,数学课就变成没底的东西,每一个标题做下去都是数学研究里面庞
大的一块。对于一门基本课程应该讲些什么也始终讨论不断。下面开始说参考书,毫无
疑问,我们还是得从我们强大的北方邻国说起。
《常微分方程讲义》
彼得罗夫斯基。在20世纪数学史上,这位前莫斯科大学校长占据着一个非常特殊的地位
。从学术上说,他在偏微那一块有非常好的工作,五十年代谷先生去苏联读学位的时候
还参加过他主持的讨论班。他从三十年代末开始就转向行政工作。在他早年的学生里面
有许多后来苏联的高官,所以他就利用和这些昔日学生的关系为苏联数学界构筑了一个
保护伞,他这本书在相当长的时期里是标准教材。
《常微分方程》
庞特里亚金。庞特里亚金院士十四岁时因化学实验事故双目失明,在母亲的鼓励和帮助
下,他以惊人的毅力走上了数学道路,别的不说,光看看他给后人留下的"连续群","最
佳过程的数学理论",你就不得不对他佩服得五体投地,有六体也投 下来了。他的这本
课本就是李迅经先生他们翻译的。此书影响过很多我们的老师辈的人物。
⑹ 2020年全国大学生数学建模竞赛ABC题怎么分析
A题是热力学仿真方向的题目,其本质是优化问题,B题也可以看作是优化的题目,至少第一问是这样,后面的题目涉及到博弈心理方面的知识,C题是常见的信贷决策类大数据分析题目。
依据开放性由大到小进行排序:C>B>A。C题最终的目标是给出合理的信贷策略,这个策略是依据数据分析结果合理给出的即可。
B题除第一问要求玩家最佳策略及最终结果外,之后的每一问只要求给出最佳策略和具体讨论,这里的讨论就有很大的发挥空间。A题延续了以往优化题目的有合理答案区间的特点,故而开放性最小。
规模与数据
全国大学生数学建模竞赛是全国高校规模最大的课外科技活动之一。该竞赛每年9月(一般在上旬某个周末的星期五至下周星期一共3天,72小时)举行,竞赛面向全国大专院校的学生,不分专业(但竞赛分本科、专科两组。
本科组竞赛所有大学生均可参加,专科组竞赛只有专科生(包括高职、高专生)可以参加)。同学可以向该校教务部门咨询,如有必要也可直接与全国竞赛组委会或各省(市、自治区)赛区组委会联系。
全国大学生数学建模竞赛创办于1992年,每年一届,成为全国高校规模最大的基础性学科竞赛,也是世界上规模最大的数学建模竞赛。
2014年,来自全国33个省/市/自治区(包括香港和澳门特区)及新加坡、美国的1338所院校、25347个队(其中本科组22233队、专科组3114队)、7万多名大学生报名参加本项竞赛。
⑺ 数学建模竞赛时应该按什么步骤去做
我们国家的大学生数学建模比赛大约在每年的9月份的第二个周末进行,为期三天。需要三个同学组成一个队,在三天的比赛期限内,选择一个题目进行做答。最后的解答以论文形式上交所在省的数学建模委员会评审,然后在参加国家的评审。
按照我带队的经验,以下是时间分配,仅供参考!
1th day:上午:分析题目,查找资料,最好分头查找,有去图书馆查找纸质资料的,有在网络上查找电子资料的,另外有一个人主控;中午之前汇总所有的信息,再分析;
下午:确定题目,三个人完全开放的交流,所有的问题都放到桌面上来,最晚晚饭前确定题目;
晚上:将所确定题目的所有难点和关键点都找出来;分析所确定题目应该分几步,确定每一步的关键;确定所需要的参考文献的大概范围;也可以画出流程图;
2th day:上午:建立第一步的数学模型,即初步模型,力求没有瑕疵,把所有问题和疑点消灭在一开始,初步模型是整个过程最重要的,一旦发生错误将会面临推倒重来的尴尬局面;
下午:求解初步模型,主要是计算机实现;注意结果的解释、优化及模型的推广;
晚上:根据结果对初步模型进行修改,同时,有一个同学开始写论文,输入公式等等;
3th day:上午:完成所有步骤的数学模型的建立、检验等;给出所有步骤的结果,检验结果的正确性和可靠性;
下午:按照初步拟定的流程图检查所有的过程是否有遗漏;完成论文;
晚上:撰写摘要,修改论文及摘要;
4th day:早晨8:00上交论文。
这只是一个初步的安排计划,另外会随着题目的繁简程度和难易程度进行微调,希望你能参加数学建模比赛,并取得好成绩!
⑻ 2021年“高教社杯”全国大学生数学建模竞赛ABC题怎么分析
2021年“高教社杯”全国大学生数学建模竞赛ABC题的分析:
A题疫苗生产问题思路。
第一问确定答案,其他题思路新冠肺炎肆虐全球,给世界带来了深重的灾难。各国为控制疫情纷纷研发新冠疫苗。假定疫苗生产需要经过CJ1工位、CJ2工位、CJ3工位以及 CJ4工位等4个工艺流程。
每个工艺流程一次性均能处理100剂疫苗,这100剂疫苗装进一个加工箱一起送进工位的设备进行处理。而且,只有按照CJ1-CJ2-CJ3-CJ4的顺序在4个工位都进行了加工以后,才算完成生产。
为防止疫苗包装出现混乱,某疫苗生产公司生产部门规定,每个工位不能同时生产不同类型的疫苗,疫苗生产不允许插队。
即进入第一个工位安排的每类疫苗的生产顺序一旦确定就要一直保持不变,而且前一种类型的疫苗离开某个工位后,后一种类型的疫苗才能进入这个工位。
B题消防救援问题赛题思路。
赛题描述
随着我国经济的高速发展,城市空间环境复杂性急剧上升,各种事故灾害频发,安全风险不断增大,消防救援队承担的任务也呈现多样化、复杂化的趋势。对于每一起出警事件,消防救援队都会对其进行详细的记录。
问题1:
将每天分为三个时间段(0:00-8:00为时段Ⅰ,8:00-16:00为时段Ⅱ,16:00-24:00为时段Ⅲ),每个时间段安排不少于5人值班。
假设消防队每天有30人可安排值班,请根据附件数据,建立数学模型确定消防队在每年2月、5月、8月、11月中第一天的三个时间段各应安排多少人值班。
问题2:
以该地2016年1月1日至2019年12月31日的数据为基础,以月份为单位,建立消防救援出警次数的预测模型。
以2020年1月1日至2020年12月31日的数据作为模型的验证数据集,评价模型的准确性和稳定性,并对2021年各月份的消防救援出警次数进行预测。
问题3:
依据7种类别事件的发生时间,建立各类事件发生次数与月份关系的多种数学模型,以拟合度最优为评价标准,确定每类事件发生次数的最优模型。
问题4:
请建立数学模型,分析该地区2016-2020年各类事件密度在空间上的相关性,并且给出不同区域相关性最强的事件类别(事件密度指每周每平方公里内的事件发生次数)。
问题5:
请建立数学模型,分析该地各类事件密度与人口密度之间的关系(人口密度指每平方公里内的人口数量)。
问题6:
目前该地有两个消防站,分别位于区域J和区域N,综合考虑各种因素,建立数学模型,确定如果新建1个消防站,应该建在哪个区域?
如果在2021-2029年每隔3年新建1个消防站,则应依次建在哪些区域?
思路:
基本和国赛的消防救援题差不多,还简单一点,属于路径优化问题。
C题数据驱动的异常检测与预警问题赛题思路。
题目描述
推动生产企业高质量发展,最根本的底线是保证安全、防范风险,而生产过程中产生的数据能够实时反映潜在的风险。
某生产企业某日00:00:00-22:59:59由生产区域的仪器设备记录的时间序列数据(已经进行数据脱敏),本题未给出数据的具体名称,这些数据可能是温度、浓度、压力等与安全密切相关的数据。
建立数学模型,完成以下问题:
问题1:
给出的数据都可能存在波动,且所有波动都在安全值范围内。有些波动可能是正常性波动,例如随着外界温度或者产量变化的波动,或者可能是传感器误报。
这些波动具有规律性、独立性、偶发性等特点,并不能产生安全风险,我们视为非风险性异常,不需要人为干预;有些波动具有持续性、联动性等特点。
这些异常性波动的出现是生产过程中的不稳定因素造成的,预示着可能存在安全隐患,我们视为风险性异常,需要人为干预、分析和评定风险等级。
请建立数学模型,给出判定非风险性异常数据和风险性异常数据的方法。
问题2:
结合问题1的结果,建立数学模型,给出风险性异常数据异常程度的量化评价方法,要求使用百分制(0-100分)对每个时刻数据异常程度进行评价(分值越高表示异常程度越高)。
应用所建立的模型和附件1的数据,找到数据中异常分值最高的5个时刻及这5个时刻对应的异常传感器编号,每个时刻只填写5个异常程度最高的传感器编号,异常传感器不足5个则无需填满。
如果得分为0,可以不用填写异常传感器编号,并给出数学模型对所得结果进行评价。
思路:
经典的异常分析问题,异常数据一般可以用机器学习的方法做,常用的聚类。
kmeans、dbscan、决策树、孤立深林、LSTM,以上模型都可以套用进来。
⑼ 如何分析数学建模题目
足球比赛的排名
问题(CMCM-93B)给出我国12支足球队在比赛中的成绩,要求:
(1)设计一个依据这些成绩排出各队名次的算法,并给出结果。
(2)把算法推广到任意N个队。
(3)讨论这些数据应有什么条件才能用你的方法排名
从表中给出的比赛成绩看,数据不整齐,两队间可能有三,二,一场,甚至没有比赛。
一合理的假设
1排名仅根据现有比赛结果,不考虑其它因素。
2每场比赛的重要程度一样,有相同的可信度,不同比赛独立。
3比赛数据不整齐,是由比赛安排造成的,而不是由于比赛中的胜负造成。
4比赛按照3分制进行。
二分析
排名排什么:胜负?实力?联赛,总积分。数据不整齐,总积分无能无力。且考虑胜弱队与强队的不同。
目标:针对不同规则的比赛数据提出一种算法,尽可能合理地反映各队的真实水平。
三模型
1总积分法
2平均积分法
3考虑对手的强弱:
胜强队得分多一些,胜弱队得分少一些。Ti对Tj的平均得分,Tj的强弱系数,则Ti对Tj的得分,Ti的总得分
矩阵表示为
Y=AXX:强弱系数Y:排名A:得分矩阵。
X,Y未知,同样反映各队的实力,所以应成比例,即AX=X,A为非负不可约矩阵。
四分析结果
给出排名:
模型的检验:给出强弱系数X,由计算机模拟比赛,产生比赛成绩,得到得分矩阵,进行排名。将结果与X比较,计算偏差
数学建模
实际问题——数学模型——求数学解——实际解
一个完整的模型
1建立模型(从实际到数学):
了解背景(调研),分析问题,提出建模依据
合理假设:简化问题;模型所用数学方法必须的前提条件。
采用适当的方法建立模型
2模型的求解(从数学到数学)
3模型的分析与检验:
结果分析
模型检验
稳定性与与敏感性分析
新旧模型比较
误差分析
一从实际到数学
1了解背景和前人的工作
2全面考虑各因素:
列举各因素
选择主要因素计入模型
考虑次要因素修正模型
3分析数学本质
系统优化设计
微分方程模型
统计模型
插值与拟合模型
计算机模拟
4合理的假设
抓住主要因素,突出问题的本质
对实际问题进行理想化近似,使之满足模型所需条件
二从数学到实际
1从实际的角度分析结果
2误差分析
3稳定性分析与敏感性分析
4模型的比较
5模型的检验,计算机模拟
⑽ 数学建模题怎么做
第一次回答可获2分,答案被采纳可获得悬赏分和额外20分奖励。数学符号在这儿太难输了,见谅