1. 数学期望值是什么
在概率和统计学中,一个随机变量的期望值(英文:expected value)(或期待值)是变量的输出值乘以其机率的总和,换句话说,期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。 例如,美国赌场中经常用的轮盘上有38个数字,每一个数字被选中的几率都是相等的。赌注一般压在其中某一个数字上,如果轮盘的输出值和这个数字相等,那么下赌者可以将相当于赌注35倍的奖金和原赌注拿回(总共是原赌注的36倍),若输出值和下压数字不同,则赌注就输掉了。因此,如果赌注是1美元的话,这场赌博的期望值是:( -1 × 37/38 ) + ( 36 × 1/38 ), 结果是 -0.0263。也就是说,平均起来每赌一次就会输掉2.6美分。
编辑本段数学定义
如果X是在机率空间(Ω, P)中的一个随机变量,那么它的期望值 E(X) 的定义是: E(X)=∫ΩXdp 并不是每一个随机变量都有期望值的,因为有的时候这个积分不存在。如果两个随机变量的分布相同,则它们的期望值也相同。 如果 X 是一个离散的随机变量,输出值为 x1, x2, ..., 和输出值相应的机率为p1, p2, ... (机率和为1), 那么期望值 E(X) 是一个无限数列的和。 上面赌博的例子就是用这种方法求出期望值的。 如果X的机率分布存在一个相应的机率密度函数 f(x),那么 X 的期望值可以计算为: 这种算法是针对于连续的随机变量的,与离散随机变量的期望值的算法同出一辙,由于输出值是连续的,所以把求和改成了积分。
编辑本段特性
期望值 E 是一个线形函数 X 和 Y 为在同一机率空间的两个随机变量,a 和 b 为任意实数。 一般的说,一个随机变量的函数的期望值并不等于这个随机变量的期望值的函数。 在一般情况下,两个随机变量的积的期望值不等于这两个随机变量的期望值的积。特殊情况是当这两个随机变量是相互独立的时候(也就是说一个随机变量的输出不会影响另一个随机变量的输出)。
编辑本段期望值的运用
在统计学中,当估算一个变量的期望值时,一个经常用到的方法是重复测量此变量的值,然后用所得数据的平均值来作为此变量的期望值的估计。 在概率分布中,期望值和方差或标准差是一种分布的重要特征。 在经典力学中,物体重心的算法与期望值的算法十分近似。
编辑本段什么是期望值
期望值在工具书中的解释
期望值指一个人对某目标能够实现的概率估计, 即:一个人对目标估计可以实现, 这时概率为最大(P=1); 反之, 估计完全不可能实现,这时概率为最小(p=0)。因此, 期望(值),也可以叫做期望概率。一个人对目标实现可能性估计的依据是过去的经验, 以判断一定行为能够导致某种结果或满足某种需要的概率。
期望值在学术文献中的解释
1、期望值是指人们对所实现的目标主观上的一种估计 2、期望值是指人们对自己的行为和努力能否导致所企求之结果的主观估计,即根据个体经验判断实现其目标可能性的大小 3、期望值是指对某种激励效能的预测. 4.期望值是指社会大众对处在某一社会地位、角色的个人或阶层所应当具有的道德水准和人生观、价值观的全部内涵的一种主观愿望
编辑本段期望值的设定
(1)设定期望值的目的
设定客户期望值就是要告诉你的客户,哪些是他可以得到的,哪些是他根本无法得到的。最终一个目就是为了能够跟客户达成协议,这个协议应该是建立在双赢的基础上。 如果你为客户设定的期望值和客户所要求的期望值之间差距太大,就算运用再多的技巧,恐怕客户也不会接受,因为客户的期望值对客户自身来说是最重要的。因此,如果服务代表能有效地设定对客户来说最为重要的期望值,告诉客户什么是他可以得到的,什么是他根本不可能得到的,那么最终协议的达成就要容易得多了。
(2)降低期望值的方法
当服务代表无法去满足一位客户的期望值时,他就只剩下一个技巧,那就是怎样去降低客户的期望值。 通过提问了解客户的期望值 通过提问可以了解大量的客户信息,帮助服务代表准确的掌握客户的期望值中最为重要的期望值。 对客户的期望值进行有效地排序 服务代表应该帮助客户认清哪些是最重要的。当然人与人之间的期望值是不一样的,这对服务代表也是一个挑战。
2. 期望值指的是什么
在概率论和统计学中,期望值是指在一个离散性随机变量试验中每次可能结果的概率乘以其结果的总和。换句话说,期望值是随机试验在同样的机会下重复多次的结果计算出的等同“期望”的平均值。
需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。(换句话说,期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。)期望值特性
期望值E是一个线形函数。X和Y为在同一机率空间的两个随机变量,a和b为任意实数。
一般的说,一个随机变量的函数的期望值并不等于这个随机变量的期望值的函数。在一般情况下,两个随机变量的积的期望值不等于这两个随机变量的期望值的积。特殊情况是当这两个随机变量是相互独立的时候(也就是说一个随机变量的输出不会影响另一个随机变量的输出)。
3. 数学期望值是什么
在概率和统计学中,一个随机变量的期望值(或期待值)是变量的输出值乘以其机率的总和,换句话说,期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。
例如,美国赌场中经常用的轮盘上有38个数字,每一个数字被选中的几率都是相等的。赌注一般压在其中某一个数字上,如果轮盘的输出值和这个数字相等,那么下赌者可以将相当于赌注35倍的奖金和原赌注拿回(总共是原赌注的36倍),若输出值和下压数字不同,则赌注就输掉了。因此,如果赌注是1美元的话,这场赌博的期望值是:( -1 × 37/38 ) + ( 35 × 1/38 ), 结果是 -0.0526。也就是说,平均起来每赌一次就会输掉5美分。
数学定义
如果X是在机率空间(Ω, P)中的一个随机变量,那么它的期望值 E(X) 的定义是:
E(X)=∫ΩXdp
并不是每一个随机变量都有期望值的,因为有的时候这个积分不存在。如果两个随机变量的分布相同,则它们的期望值也相同。
如果 X 是一个离散的随机变量,输出值为 x1, x2, ..., 和输出值相应的机率为p1, p2, ... (机率和为1), 那么期望值 E(X) 是一个无限数列的和。
上面赌博的例子就是用这种方法求出期望值的。
如果X的机率分布存在一个相应的机率密度函数 f(x),那幺 X 的期望值可以计算为:
这种算法是针对于连续的随机变量的,与离散随机变量的期望值的算法同出一辙,由于输出值是连续的,所以把求和改成了积分。
特性
期望值 E 是一个线形函数
X 和 Y 为在同一机率空间的两个随机变量,a 和 b 为任意实数。
一般的说,一个随机变量的函数的期望值并不等于这个随机变量的期望值的函数。
在一般情况下,两个随机变量的积的期望值不等于这两个随机变量的期望值的积。特殊情况是当这两个随机变量是相互独立的时候(也就是说一个随机变量的输出不会影响另一个随机变量的输出)。
期望值的运用
在统计学中,当估算一个变量的期望值时,一个经常用到的方法是重复测量此变量的值,然后用所得数据的平均值来作为此变量的期望值的估计。
在概率分布中,期望值和方差或标准差是一种分布的重要特征。
在经典力学中,物体重心的算法与期望值的算法十分近似。
在网络里查就有这样一段话
4. 数学里面期望值是什么怎么算
在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。
期望值计算:
(4)数学期望值怎么读扩展阅读:
期望值学术解释:
1.期望值是指人们对所实现的目标主观上的一种估计;
2.期望值是指人们对自己的行为和努力能否导致所企求之结果的主观估计,即根据个体经验判断实现其目标可能性的大小;
3.期望值是指对某种激励效能的预测;
4.期望值是指社会大众对处在某一社会地位、角色的个人或阶层所应当具有的道德水准和人生观、价值观的全部内涵的一种主观愿望。
期望的来源:
在17世纪,有一个赌徒向法国着名数学家帕斯卡挑战,给他出了一道题目:甲乙两个人赌博,他们两人获胜的机率相等,比赛规则是先胜三局者为赢家,一共进行五局,赢家可以获得100法郎的奖励。当比赛进行到第四局的时候,甲胜了两局,乙胜了一局,这时由于某些原因中止了比赛,分配这100法郎:
用概率论的知识,不难得知,甲获胜的可能性大,乙获胜的可能性小。因为甲输掉后两局的可能性只有(1/2)×(1/2)=1/4,也就是说甲赢得后两局的概率为1-(1/4)=3/4,甲有75%的期望获得100法郎;而乙期望赢得100法郎就得在后两局均击败甲,乙连续赢得后两局的概率为(1/2)*(1/2)=1/4,即乙有25%的期望获得100法郎奖金。
可见,虽然不能再进行比赛,但依据上述可能性推断,甲乙双方最终胜利的客观期望分别为75%和25%,因此甲应分得奖金的100*75%=75(法郎),乙应分得奖金的的100×25%=25(法郎)。这个故事里出现了“期望”这个词,数学期望由此而来。
5. 什么是数学期望如何计算
数学期望是试验中每次可能结果的概率乘以其结果的总和。
计算公式:
1、离散型:
离散型随机变量X的取值为X1、X2、X3……Xn,p(X1)、p(X2)、p(X3)……p(Xn)、为X对应取值的概率,可理解为数据X1、X2、X3……Xn出现的频率高f(Xi),则:
6. 期望值公式
离散型随机变量X的取值为
(6)数学期望值怎么读扩展阅读:
数学期望的来历:
在17世纪,有一个赌徒向法国着名数学家帕斯卡挑战,给他出了一道题目:甲乙两个人赌博,他们两人获胜的机率相等,比赛规则是先胜三局者为赢家,一共进行五局,赢家可以获得100法郎的奖励。
当比赛进行到第四局的时候,甲胜了两局,乙胜了一局,这时由于某些原因中止了比赛,那么如何分配这100法郎才比较公平?用概率论的知识,不难得知,甲获胜的可能性大,乙获胜的可能性小。
因为甲输掉后两局的可能性只有(1/2)×(1/2)=1/4,也就是说甲赢得后两局的概率为1-(1/4)=3/4,甲有75%的期望获得100法郎;而乙期望赢得100法郎就得在后两局均击败甲,乙连续赢得后两局的概率为(1/2)*(1/2)=1/4,即乙有25%的期望获得100法郎奖金。
可见,虽然不能再进行比赛,但依据上述可能性推断,甲乙双方最终胜利的客观期望分别为75%和25%,因此甲应分得奖金的100*75%=75(法郎),乙应分得奖金的的100×25%=25(法郎)。这个故事里出现了“期望”这个词,数学期望由此而来。