❶ 初中数学的难点有哪些
下面,就初中数学的重难点谈一下自己的一己之见,也是指一般的看法:
1、
一次函数、反比例函数、二次函数是重中之重,也是难点,特别是函数图像的平移、旋转、对称等。往往中考最后的压轴题是函数结合圆/相似形/三角形/四边形出综合题。而面对压轴题,要鼓励学生敢于做,千万不能空着。这样的题一般会分层次有几个小题,往往前面的小题并不是很难得分的。
2、
数、式、统计图表、三角形、四边形、圆、列方程(组)或不等式(组)、解应用题是重点。其中后两个内容综合性较强,也是难点。这些内容在中考中往往以大题的形式出现。就数而言,有一个关于数的计算题,涉及到绝对值、根式、负指数、零指数、特殊三角函数值等。就式而言,分式、根式的化简求解出现的可能性多一些,平时应注重定义、运算顺序、运算律的教学,培养学生准确迅速的运算能力。压轴题以外的解答题要鼓励学生稳拿分。
3、
作为小题,考查的有些知识也要重点掌握。比如,科学记数法、幂的运算、统计初步中的平均数、中位数、众数、方差等。轴对称、中心对称、概率、平移、旋转、因式分解、三视图、解直角三角形,这些题作为小题考查的可能性大一些,且这些知识点必考,要告诫学生不能忽视小题而只注重大题,往往注重小题的正确率还更划算些。
4、
对于中考试题的结构、类型,一般分选择题、填空题和解答题。中考题数一般为25道左右,基础题18道左右,解答题7道左右。选择题、填空题是基础题,占总分的50%弱一些。解答题是拔高题,占总分的50%强一些。选择题、填空题每题的分值是3分。解答题所考查的知识范围一般有:1)数的计算
2)式的化简求值
3)统计图表或概率
4)四边形、圆
5)列方程(组)或不等式(组)解应用题
6)作图题
7)综合性压轴题。
有需要再联系哦\(^o^)/~
❷ 初中数学重点难点归纳总结
初中的数学重点知识点很多,难点也多,为了帮助同学们更好的学好初中数学,以下是我分享给大家的初中数学重点难点归纳,希望可以帮到你!
初中数学重点难点归纳
点线角定理:
点的定理:过两点有且只有一条直线
点的定理:两点之间线段最短
角的定理:同角或等角的补角相等
角的定理:同角或等角的余角相等
直线定理:过一点有且只有一条直线和已知直线垂直
直线定理:直线外一点与直线上各点连接的所有线段中,垂线段最短
平行定理:
经过直线外一点,有且只有一条直线与这条直线平行
推论:如果两条直线都和第三条直线平行,这两条直线也互相平行
平行性质:
1、同位角相等,两直线平行
2、内错角相等,两直线平行
3、同旁内角互补,两直线平行
平行推论:
1、两直线平行,同位角相等
2、两直线平行,内错角相等
3、两直线平行,同旁内角互补
三角形内角定理:
定理:三角形两边的和大于第三边
推论:三角形两边的差小于第三边
三角形内角和定理:三角形三个内角的和等于180°
推论1:直角三角形的两个锐角互余
推论2:三角形的一个外角等于和它不相邻的两个内角的和
推论3:三角形的一个外角大于任何一个和它不相邻的内角
全等三角形判定定理:
定理:全等三角形的对应边、对应角相等
边角边定理(SAS):有两边和它们的夹角对应相等的两个三角形全等
角边角定理(ASA):有两角和它们的夹边对应相等的两个三角形全等
推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等
边边边定理(SSS):有三边对应相等的两个三角形全等
斜边、直角边定理(HL):有斜边和一条直角边对应相等的两个直角三角形全等
角的平分线定理:
定理1:在角的平分线上的点到这个角的两边的距离相等
定理2:到一个角的两边的距离相同的点,在这个角的平分线上
角的平分线是到角的两边距离相等的所有点的集合
等腰三角形的性质定理:
等腰三角形的两个底角相等(即等边对等角)
推论1:等腰三角形顶角的平分线平分底边并且垂直于底边
等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
推论3:等边三角形的各角都相等,并且每一个角都等于60°
等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等 角对等边)
推论1:三个角都相等的三角形是等边三角形
推论2:有一个角等于60°的等腰三角形是等边三角形
对称定理
定理:线段垂直平分线上的点和这条线段两个端点的距离相等
逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
定理1:关于某条直线对称的两个图形是全等形
定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
直角三角形定理:
定理:在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
判定定理:直角三角形斜边上的中线等于斜边上的一半
勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方,即a²+b²=c²。
勾股定理的逆定理:如果三角形的三边长a、b、c有关系a²+b²=c²,那么这个三角形是直角三角形。
初中数学学习技巧
一、数学概念学习方法。
数学中有许多概念,如何正确地掌握概念,应该知道学习概念需要怎样的一个过程,应达到什么程度。一个数学概念需要记住名称,叙述出本质属性,体会出所涉及的范围,并应用概念准确进行判断。这些问题老师没有要求,不给出学习方法,学生将很难有规律地进行学习。
数学概念的学习方法是:
1、阅读概念,记住名称或符号。
2、背诵定义,掌握特性。
3、举出正反实例,体会概念反映的范围。
4、进行练习,准确地判断。
二、学公式的学习方法
公式具有抽象性,公式中的字母代表一定范围内的无穷多个数。有的学生在学习公式时,可以在短时间内掌握,而有的学生却要反来复去地体会,才能跳出千变万化的数字关系的泥堆里。教师应明确告诉学生学习公式过程需要的步骤,使学生能够迅速顺利地掌握公式。
数学公式的学习方法是:
1、书写公式,记住公式中字母间的关系。
2、懂得公式的来龙去脉,掌握推导过程。
3、用数字验算公式,在公式具体化过程中体会公式中反映的规律。
4、将公式进行各种变换,了解其不同的变化形式。
5、将公式中的字母想象成抽象的框架,达到自如地应用公式。
三、数学定理的学习方法。
一个定理包含条件和结论两部分,定理必须进行证明,证明过程是连接条件和结论的桥梁,而学习定理是为了更好地应用它解决各种问题。
数学定理的学习方法是:
1、背诵定理。
2、分清定理的条件和结论。
3、理解定理的证明过程。
4、应用定理证明有关问题。
5、体会定理与有关定理和概念的内在关系。
有的定理包含公式,如韦达定理、勾股定理、正弦定理,它们的学习还应该同数公式的学习方法结合起来进行。
四、初学几何证明的学习方法。
在七年级第二学期,八年级立体几何学习的开始,学生总感到难以入门,以下的方法是许多老教师十分认同的,无论是上课还是自学,均可以开展。
1、看题画图。(看,写)
2、审题找思路(听老师讲解)
3、阅读书中证明过程。
4、回忆并书写证明过程。
五、提高几何证明能力的化归法。
在掌握了几何证明的基本知识和方法以后,在能够较顺利和准确地表述证明过程的基础上,如何提高几何证明能力?这就需要积累各种几何题型的证明思路,需要懂得若干证明技巧。这样我们可以通过老师集中讲解,或者通过集中阅读若干几何证明题,而达到上述目的。化归法是将未知化归为已知的方法,当我们遇到一个新的几何证明题时,我们需要注意其题型,找到关键步骤,将它化归为已知题型时就可结束。此时最重要的是记住化归步骤及证题思路即可,不再重视祥细的表述过程。
几何证明能力的化归法:
1、审题,弄清已知条件和求证结论。
2、画图,作辅助线,寻找证题途径。
3、记录证题途径的各个关键步骤。
4、总结证明思路,使证题过程在大脑中形成清晰的印象。
初中数学学习建议
1.突出一个“勤”字(克服一个“惰”字)
数学家华罗庚曾经说过:“聪明在于学习,天才在于勤奋”
“勤能补拙是良训,一分辛劳一分才:
我们在学习的时候要突出一个勤字,克服一个“懒”字,怎么突出“勤”字
“聪”:怎么个勤法,从这个字面上来看,要做到五勤:“耳勤”“眼勤”(耳朵听,眼睛看,接受信息)
“口勤”(讨论,回答问题,而不是讲话,消化信息)“脑勤”(善于思考问题,积极思考问题——吸收、储存信息) 那是不是做到以上四点就行了呢?不是。这个字还有缺陷,在聪下面加上“手”
“手勤”(动手多实践,不仅光做题,做课件,做模型)
这样的人聪明不聪明?
最大的提高学习效率,首先要做到—— 上课认真听讲(这是根本)回家先复习再做题如果课听不好,就别想消化知识
2.学好初中数学还有两个要点,要狠抓两个要点:
学好数学,一要(动手),二要(动脑)。
动脑就是要学会观察分析问题,学会思考,不要拿到题就做,找到已知和未知想象之间有什么联系,多问几个为什么
动手就是多实践,多做题,要“拳不离手”(武术)“曲不离口”(唱歌)
同学就是“题不离手”,这两个要点大家要记住。
“动脑又动手,才能最大地发挥大脑的效率”
3.做到“三个一遍”
大家听过“失败是成功之母”听过“重复是学习之母”吗?
培根(18-19世纪英国的哲学家)——“知识就是力量”
“重复是学习之母”
如何重复,我给你们解释一下:
“上课要认真听一遍,动手推一遍,想一遍”
“下课 看 ”
“考试前 ”
4.重视“四个依据”
读好一本教科书——它是教学、中考的主要依据;
记好一本笔记 ——它是教师多年经验的结晶;
做好做净一本习题集——它是使知识拓宽;
记好一本心得笔记,最好每人自己准备一本错题集
猜你喜欢:
1. 初中数学学习方法的六大要点
2. 初一数学知识归纳总结有哪些
3. 初中数学知识点归纳
4. 初中数学学习方法总结
5. 初一数学上册期末备考重难点归纳
❸ 初中数学重难点
构建完整的知识框架
1.构建完整的知识框架是我们解决问题的基础,想要学好数学必须重视基础概念,必须加深对知识点的理解,然后会运用知识点解决问题,遇到问题自己学会反思及多维度的思考,最后形成自己的思路和方法。但有很多初中学生不重视书本的概念,对某些概念一知半解,对知识点没有吃透,知识体系不完整,就会出现成绩飘忽不定的现象。(五角场新王牌教育)
2.正确理解和掌握数学的一些基本概念、法则、公式、定理,把握他们之间的内在联系。由于数学是一门知识的连贯性和逻辑性都很强的学科,正确掌握学过的每一个概念、法则、公式、定理可以为以后的学习打下良好的基础,如果在学习某一内容或解某一题时碰到了困难,那么很有可能就是因为与其有关的、以前的一些基本知识没有掌握好所造成的,因此要经常查缺补漏,找到问题并及时解决之,努力做到发现一个问题及时解决一个问题。只有基础扎实,解决问题才能得心应手,成绩才会提高(四平路2158号富庆国定大厦13楼丰收日酒店楼上)。
初中数学中考知识重难点分析
1.函数(一次函数、反比例函数、二次函数)中考占总分的15%左右。
特别是二次函数是中考的重点,也是中考的难点,在填空、选择、解答题中均会出现,且知识点多,题型多变。
而且一道解答题一般会在试卷最后两题中出现,一般二次函数的应用和二次函数的图像、性质及三角形、四边形综合题难度较大。有一定难度。
如果在这一环节掌握不好,将会直接影响代数的基础,会对中考的分数会造成很大的影响。
2.整式、分式、二次根式的化简运算
整式的运算、因式分解、二次根式、科学计数法及分式化简等都是初中学习的重点,它贯穿于整个初中数学的知识,是我们进行数学运算的基础,其中因式分解及理解因式分解和整式乘法运算的关系、分式的运算是难点。
中考一般以选择、填空形式出现,但却是解答题完整解答的基础。运算能力的熟练程度和答题的正确率有直接的关系,掌握不好,答题正确率就不会很高,进而后面的的方程、不等式、函数也无法学好。
3.应用题,中考中占总分的30%左右
包括方程(组)应用,一元一次不等式(组)应用,函数应用,解三角形应用,概率与统计应用几种题型。
一般会出现二至三道解答题(30分左右)及2—3道选择、填空题(10分—15分),占中考总分的30%左右。
❹ 初中数学的难点有哪些
下面,就初中数学的重难点谈一下自己的一己之见,也是指一般的看法:
1、 一次函数、反比例函数、二次函数是重中之重,也是难点,特别是函数图像的平移、旋转、对称等。往往中考最后的压轴题是函数结合圆/相似形/三角形/四边形出综合题。而面对压轴题,要鼓励学生敢于做,千万不能空着。这样的题一般会分层次有几个小题,往往前面的小题并不是很难得分的。
2、 数、式、统计图表、三角形、四边形、圆、列方程(组)或不等式(组)、解应用题是重点。其中后两个内容综合性较强,也是难点。这些内容在中考中往往以大题的形式出现。就数而言,有一个关于数的计算题,涉及到绝对值、根式、负指数、零指数、特殊三角函数值等。就式而言,分式、根式的化简求解出现的可能性多一些,平时应注重定义、运算顺序、运算律的教学,培养学生准确迅速的运算能力。压轴题以外的解答题要鼓励学生稳拿分。
3、 作为小题,考查的有些知识也要重点掌握。比如,科学记数法、幂的运算、统计初步中的平均数、中位数、众数、方差等。轴对称、中心对称、概率、平移、旋转、因式分解、三视图、解直角三角形,这些题作为小题考查的可能性大一些,且这些知识点必考,要告诫学生不能忽视小题而只注重大题,往往注重小题的正确率还更划算些。
4、 对于中考试题的结构、类型,一般分选择题、填空题和解答题。中考题数一般为25道左右,基础题18道左右,解答题7道左右。选择题、填空题是基础题,占总分的50%弱一些。解答题是拔高题,占总分的50%强一些。选择题、填空题每题的分值是3分。解答题所考查的知识范围一般有:1)数的计算 2)式的化简求值 3)统计图表或概率 4)四边形、圆 5)列方程(组)或不等式(组)解应用题 6)作图题 7)综合性压轴题。
有需要再联系哦\(^o^)/~
❺ 初中数学重难点归纳
几何最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积等)的最大值或最小值。在中考中常以填空选择及解答题形式出现,难易程度多为难题、压轴题。务必掌握求几何最值的基本方法:
(1)特殊位置及极端位置法:先考虑特殊位置或极端位置,确定最值的具体数据,再进行一般情况下的推理证明(2)几何定理(公理)法:应用几何中的不等量性质、定理。常见几何性质有:两点之间线段最短;点到直线垂线段最短;三角形两边之和大于第三边;斜边大于直角边(3)数形结合法:分析问题变动元素的代数关系,构造二次函数等。
代数最值问题一般以应用题形式出现,常见题型为求一个花费最低、消耗最少、产值最高、获利最大的方案。作为各地中考必考题之一,难度以中档为主,是所有学生必拿之分。解这类题目的关键点在于合理建立函数模型,理解题意的基础上,合理设出未知量,分析题中等量关系,列出函数解析式或方程,求解、讨论结果意义并以“答:……”做结尾。特别注意如果所列方程为分式方程,需检验增根!
具体例题题型如下:
❻ 如何确定教学内容的重点和难点
教学重、难点的确定是教师进行教学设计时必须面对和进行的工作,
而能否正确的确定教学的重、
难点是高效率数学教学的前提,
是提高
数学课堂教学质量的重要保障和关键。
但我们发现,
在日常教学设计
时往往有许多教师不能正确地确定教学的重、
难点,
究其原因主要是
对教学重难点的意义和特征把握不准,
缺乏一些确定重难点的方法所
致。为此,本文就教学重难点的含义、特征以及确定方法作些讨论。
一、教学重、难点的含义
1.
教学重点的含义、类型与特点
教学重点(简称重点)是指教学中的重点内容,是课堂教学中需
要解决的主要矛盾,
是教学的重心所在。
教学重点是针对教材中的学
科知识系统、文化教育功能和学生的学习需要而言的。因此,它包含
重点知识和具有深刻教育性的学科内容。
重点的形成主要有以下三个
方面:从学科知识系统而言,重点是指那些与前面知识联系紧密,对
后续学习具有重大影响的知识、
技能,
即重点是指在学科知识体系中
具有重要地位和作用的学科知识、技能。从文化教育功能而言,重点
是指那些对学生有深远教育意义和功能的内容,
主要是指对学生终身
受益的学科思想、精神和方法;从学生的学习需要而言,重点是指学
生学习遇到困难需要及时得到帮助解决的疑难问题。
相对于形成重点的三个方面,
重点可分为知识重点、
育人重点和
问题重点。
而按重点的地位和作用又可把重点分为全书重点、
章节重
点(或单元重点),还有课时重点。全书重点一般是贯穿于整个中学
数学重要的数学思想、
方法和起核心作用的数学知识与技能,
它是重
点的最高层次,如
“
函数与方程的思想
”
和
“
函数
”
就是初中数学的重
点,这是由于
“
函数与方程的思想
”
和
“
函数
”
贯穿于整个初中数学学习
之中,
是初中数学的重要数学思想和支撑初中数学的主干知识;
章节
重点或单元重点是贯穿于全章节或单元的主干知识、
技能与方法,
它
的地位和作用不如全书重点大,
属于中等层次;
课时重点是指课堂教
学时的重点。
课时重点可以是章节重点或单元重点,
也可以不是。
如,
对于学生学习中普遍存在的疑难问题,
教师教学时就会专门拿一节补
救课(或称为纠错课)来解决。这时如何消除学生存在的疑难问题就
成为了教学的重点,即课时重点,但问题解决后,若它在后面的学习
中又不起支撑和奠基作用,
则它就不再是重点了。
对这类只限于该节
课的重点(一旦该节课学习结束后它就不再是重点了),我们称其为
“
暂时重点
”
。
数学教学重点(简称为
“
数学重点
”
)是由其在数学知识体系和
数学育人系统
(又可称为数学德育系统或数学文化教育系统)
在学生
学习中的地位和作用以及学生的疑难问题决定的。
它是数学教材中最
重要的基础知识、基本技能、基本的数学思想、精神和方法以及学生
数学学习中遇到的疑难问题。
“
数学重点
”
对学生进一步学习其它内容和数学素养的形成起着
主导和关键作用,具有应用的广泛性、后继学习的基础性和育人性
❼ 初二数学难点在哪三角形那章应该注意什么
其实初二下的数学很明显就比初一提升了至少一个level,至少在知识量和计算量两个方面。内容增多了,难度也增大了。
真正要说难点,几何方面就是三角形和平行四边形(每个版本不一样,北师大版中平行四边形属于初三的内容,但是绝大部分的学校都会在初二学期末的时候将这个部分讲完了)。
在三角形中,除了要熟练掌握之前所学的三角形全等的方法以及勾股定理之外,要熟练掌握的就是等腰三角形的性质与判定,特殊直角三角形的一些结论以及中垂线和角平分线性质与判定。说起来三角形的部分就只有这些,但是这个部分考试时是全部结合起来的,因此需要熟练掌握。
三角形全等的判定是需要掌握的,在之前的基础上,又增加了直角三角形判定的方法(HL):
三角形的性质及判定(这个是重难点) ,其中“ 三线合一” 的表述要能够理解并进行熟练运用,很多题目中都会用到,另外还有等边三角形的性质以及判定:
直角三角形的性质,在此前所学的勾股定理及其逆定理之外,又新增了其它的一些性质,尤其是 特殊三角形的性质 ,在做题时要熟练使用,可以使问题简化很多:
这是一般直角三角形所具有的性质:
45度角和30度角的特殊直角三角形的性质 ,这个完全没什么可说的,要熟练到看到相关的数字就会条件反射一样的想到它们:
垂直平分线(中垂线)的性质及角平分线的性质:
注意在这个地方会有尺规作图,即作出线段的垂直平分线和一个角的角平分线。同时还有一个延伸的知识点,即三角形三条边的中垂线的交点到三角顶点的距离都相等,这个交点叫做三角形的外心,是三角形外接圆的圆心,三角形三个角的角平分线的交点到三边的距离都相等,这个交点叫做三角形的内心,是三角形内切圆的圆心。
上面就是三角形的部分,要说注意的地方,这些知识点都是注意的地方,很多题目的考点都是其中几个知识点的结合,单独考查某一个知识点的比较少。
而至于代数的部分,就是一元一次不等式和分式的乘除了。在一元一次不等式中,解法不是难点,只要会解一元一次方程,基本都不会有太大问题,重点在于解集的理解。
这一部分的重难点落在了分式的乘除部分,综合起来就是分式的化简了。这里面的因式分解是一个重难点,另外一个重点难就是分式的计算,中间涉及到因式分解,二次根式,约分通分,幂的运算,同时计算量比较大,要求计算能力过关,同时还需要细心和耐心,还要掌握一些常规的解题方法。
其实没必要纠结什么重难点,你要学得要,自然哪个部分都不怕,要是学得不好,整本书都是重难点。所以你只需要脚踏实地地做好每天的学习任务就好了。如果目前成绩不如意,那就自己再努点力就好,不要好高骛远。
初二数学相比初一,内容增多了,难度也增大不少。几何方面会重点学习三角形、全等三角形,等腰三角形,等边三角形,下册还会学习勾股定理,平行四边形的知识;代数方面会学习整式的乘法与因式分解,分式,二次根式,一次函数等知识。每一部分都是知识点众多,可以说占据了初中数学的半壁江山,学好初二数学的重要性由此可见一斑。
难点主要有这么几块,几何部分:1用全等的思想证明线段和角相等,一次不行两次全等;2全等条件判定的灵活使用,要善于发现题中隐含条件;3等腰三角形的性质(等边对等角,三线合一)与判定的结合全等三角形的几何题;4两条重要线(角平分线和垂直平分线)的性质与判定在几何题中的运用;5平行四边形及特殊平行四边形(矩形,菱形,正方形)性质与判定的综合运用;6直角三角形有关重要定理(30 角所对直角边等于斜边一半;斜边中线等于斜边一半,勾股定理及逆定理)的运用。
代数部分:1整式的乘法公式较多,包括(同底数幂的乘法、幂的乘方、积的乘方,平方差公式、完全平方公式)的准确识别与熟练运用;2对因式分解的准确理解与使用最佳方法进行因式分解;3分式的约分、通分以及分式加减乘除混合运算与化简是难点;4零指数幂和负指数幂的理解和运算;5分式方程的解法及最后检验以及正确列分式方程解应用题;6对最简二次根式的理解与化简;7对函数概念的理解以及一次函数图像与性质的准确记忆和待定系数法求一次函数解析式8从实际问题中抽象出一次函数模型并用相关知识解决问题。
以上就是我总结出来的初二数学重难点知识,望同学们重点掌握。
三角形那章只要理解三角形三边关系,角平分线,中线,高的定义,内角、外角定理,直角三角形两锐角互余,多边形内角和公式即可,内容简单。
希望我的回答对你有帮助。
欢迎来到初中数学乐园!
这个问题有些笼统,因为现在的版本不同,学的内容不同,自然重难点也就不同。现以八年级华师版来说一下,一共学10章内容:数的开方、整式的乘除、全等三角形、勾股定理、数据的收集和整理、分式、函数及其图像(一次函数反比例函数)、平行四边形、数据的整理和初步处理。
在这些内容中就是一次函数和反比例函数有些难,平行四边形的几何证明有难的。其他都是基础性的内容,记忆、理解、应用做题就是了。
对于三角形哪章,就是三角形的全等,四种判定方法,直角三角形有一种特殊的判定方法,从一开始按照课本的要求和进度,一种一种的学习,一种一种的练习,基础问题,记忆--理解---练习,就完全没有问题,在全等的证明中注意两个三角形的对应情况,要写在对应的位置,否则会不对应,就搞乱了。
总之,这样说一句两句也说不清楚,在具体的内容中才可以,详细的说明注意事项的。
一点拙见,欢迎批评指正。
#教育#
初二数学相比初一,知识内容有明显增加,在学生渐渐适应初中的学习基本模式上,代数部分的数学符号语言更多、内容更抽象。几何部分的逻辑推理证明要求更高、内容更广更多。概括地说初二学习的难点主要有两个:其一,数学知识的记忆储存,如何形成大脑中的知识体系?大凡觉得初二数学难的学生,都有一个共同点‘对所学过的知识,刚学完的印象清楚,之前学完的章节模模糊糊,在数学测验中一些评估双基的试题都觉得解答不了’。故首难就是记忆知识!许多人以为记忆知识很简单,记忆是人的天生能力,多看看书多做做题就能搞定。其实不然,每个人的记忆天赋有差异,就算你天赋最高,记忆信息的长度能达到8个字符以上,在面对海量的不断推陈出新的数学知识,也只能望洋兴叹!该怎么办呢?数学知识间有其内在的逻辑联系,这决定了学习者需要去找到这些逻辑联系。比如一元一次方程与一元二次方程之间的联系,你有思考过吗?后者因式分解后可以得到两个一元一次方程。又如一一元一次不等式、一元一次方程及一次函数,这三者之间的联系你考虑过吗?我称这类思考活动为知识的加工处理,更可以形象地称作:打上自己的烙印。在神话世界里,别人的法宝或法器要能为自己所用,必须要打上自己的烙印。在数学世界里也是如此,海量的数学知识是人类的公共财富,要想成为你自己的,须打上自己的烙印。在我所接触的初中生中普遍存在‘重视刷题,忽视知识的加工整理’现象。忽视或缺少知识的加工整理,感觉数学知识难记、记不住、记不准,这就不足为奇!其二,解题难。体现在练习题量大,解题速度慢。感觉数学难得初中生往往解题速度慢,出错率较高。事实上我们的学习过程分为新知学习、复习巩固、综合测验三个环节,数学的任何一章节都是这种循序渐进的学习模式。新知学习时学生往往翻书做题,练习题大都能做对,到了复习巩固阶段往往会出现新旧知识相结合的习题,学生的出错率会递增,最后到了综合测验,辐射的知识章节更多,完全可能出现一道综合题涉及到三个及以上章节的知识 ,需要准确调用这些知识方能得到解答。我对初二学生平时做练习的建议如下:不要为了做题而做题,要知道做题的真正目的——巩固知识、综合知识!有了这个认识,接下来就会去设计自己的练习策略。我的策略分享如下:耐心地先把所有作业练习题目都阅读一遍,将这些练习题分类‘基础知识基础能力类,简单综合类,复杂综合类’,基础类坚持不翻书闭卷做,综合类若已想不起所涉及的知识须停下来耐心地去查阅记忆。以上两难正是学生获得数学素养与数学能力的练兵场,解决两难的办法是有了,可功夫还得学生们自己去下!希望我的这两点见解能对您有所帮助!
1.将知识串联起来,把基础打牢,定理公式多记忆
2.三个点,三条边,三个角。再加上几个特殊三角形。其实就这些东西
你不会的,就是难点;写在书上的,都是你要注意的。
作为大一的数学系学生,提及初二在脑海里已经是遥远的事情了。
总体来说,我那时的初中数学还算是比较简单的,它对于学生们的数学素养的要求还没有那么的高,更看重的应该是学生们对知识的接受能力和运用其去解决简单的问题。
但毕竟一切都会有所变化,我也了解到现在的初中数学也很灵活,角度也刁钻了许多。要说现在的初二数学难点在哪,我想更多方面是涉及一些抽象,不具体的知识点,那是的学生只有13.14岁,也没有过高的能力去解答难题。初二更多的还是要上课好好听讲,下课好好做题,中考不是很困难的。
而对于三角形这一章节的内容,更多的还是全等三角形和相似三角形以及三角形内特殊的点,如重心,中心,垂心等。能够利用判别三角形全等(相似)的判定定理来进行证明,然后得出一些角或边的关系,进一步解决题目。
总之,三角形要说难难就难在有它的一些心的性质以及在具体题目里有多个三角形公用角或边,从而给学生们解题带来很大的困扰,标记角和边都很乱,这就需要学生们仔细认真。就比如我当年中考压轴题,我记得很清楚是一道三角形的题目,许多三角形的那个角和边都在一个图形里,找着找着就乱完了,因此这是三角形里最容易困扰学生们的了。
最后,祝你学习进步,中考好好加油,只要你努力学习,难点终会被攻破的,加油!
要灵活撑握全等相似三角形符合条件,也就是证明论证时的满足条件。
判断全等相似的条件,要和实际联系起来。
❽ 初中数学的重难点在哪里啊
主要还是二次函数,相似三角形和圆、弧那些东西,不过要看你是在什么地方中考的,考纲都是不一样的
❾ 如何选择初中数学重难点,掌握分析重难点的方法
如何选择初中数学重难点,掌握分析重难点的方法?
答:一、认真备课,吃透教材,抓住教材的重难点是突破重难点的前提。
二、以旧知识为生长点,突破重点和难点。
三,依据教材内容的重点和难点选择板书内容,并以板书设计为突破口。
总之,初中数学就是要学好函数和几何,然后多做题,熟能生巧,就会学得很好。所谓教学重点,就是学生必须掌握的基本技能。比如:意义、性质、法则、计算等等。
❿ 初中数学的重难点是什么
初中数学是整个数学的基础
重难点是代数、平面几何、函数等等。
有些人觉得代数难学,有些人觉得平面几何难学,又有人觉得函数难学,反正各人对数学的感觉不同。
主要是上课认真听课,弄懂弄通那些定理、定义,按时独立完成作业,不懂的要多向老师请教,多做题目的练习,多思考,谢谢数学就会觉得没有什么困难了。