㈠ 数学中的集合是什么意思
定义
非正式的,一个集合就是将几个对象适当归类而作为一个整体。一般来说,集合为具有某种属性的事物的全体,或是一些确定对象的汇合。构成集合的事物或对象称作元素或成员。集合的元素可以是任何东西:数字,人,字母,别的集合,等等。[编辑]
符号
集合通常表示为大写字母
A,
B,
C……。而元素通常表示为小写字母a,b,c……。元素a属于集合A,记作aA。假如元素a不属于A,则记作aA。如果两个集合
A
和
B
它们各自所包含的元素完全一样,则二者相等,写作
A
=
B。[编辑]
集合的特点
无序性
在同一个集合里面的每一个元素的地位都是相同的,所以元素的排列是没有顺序的。
互异性
在同一个集合里面每一个元素只能出现一次,不能重复出现。
确定性
定制集合的标准是确定的而不是含糊的,如全国全体较高的男生,这里的较高没有标准是含糊的。
[编辑]
集合的表示
集合可以用文字或数学符号描述,称为描述法,比如:
A
=
大于零的前三个自然数
B
=
红色、白色、蓝色和绿色
集合的另一种表示方法是在大括号中列出其元素,称为列举法,比如:
C
=
{1,
2,
3}
D
=
{红色,白色,蓝色,绿色}
尽管两个集合有不同的表示,它们仍可能是相同的。比如:上述集合中,A
=
C
而
B
=
D,因为它们正好有相同的元素。元素列出的顺序不同,或者元素列表中有重复,都没有关系。比如:这三个集合
{2,
4},{4,
2}
和
{2,
2,
4,
2}
是相同的,同样因为它们有相同的元素。集合在不严格的意义下也可以通过草图来表示,更多信息,请见文氏图。
[编辑]
集合的元素个数
上述每一个集合都有确定的元素个数;比如:集合
A
有三个元素,而集合
B
有四个。一个集合中元素的数目称为该集合的基数。集合可以没有元素。这样的集合叫做空集,用符号
表示。比如:在2004年,集合
A
是所有住在月球上的人,它没有元素,则
A
=
。就像数字零,看上去微不足道,而在数学上,空集非常重要。更多信息请看空集。如果集合含有有限个元素,那么这个集合可以称为有限集。集合也可以有无穷多个元素。比如:自然数的集合是无穷大的。关于无穷大和集合的大小的更多信息请见集合的势。[编辑]
子集
主条目:子集如果集合
A
的所有元素同时都是集合
B
的元素,则
A
称作是
B
的子集,写作
A
⊆
B。
若
A
是
B
的子集,且
A
不等于
B,则
A
称作是
B
的真子集,写作
A
⊂
B。B
的子集
A
举例:所有男人的集合是所有人的集合的真子集。
所有自然数的集合是所有整数的集合的真子集。
{1,
3}
⊂
{1,
2,
3,
4}
{1,
2,
3,
4}
⊆
{1,
2,
3,
4}
空集是所有集合的子集,而所有集合都是其本身的子集:⊆
A
A
⊆
A
[编辑]
并集
主条目:并集有多种方法通过现有集合来构造新的集合。两个集合可以相"加"。A
和
B
的并集(联集),写作
A
∪
B,是或属于
A
的、或属于
B
的所有元素组成的集合。A
和
B
的并集
举例:{1,
2}
∪
{红色,
白色}
=
{1,
2,
红色,
白色}
{1,
2,
绿色}
∪
{红色,
白色,
绿色}
=
{1,
2,
红色,
白色,
绿色}
{1,
2}
∪
{1,
2}
=
{1,
2}
并集的一些基本性质A
∪
B
=
B
∪
A
A
⊆
A
∪
B
A
∪
A
=
A
A
∪
=
A
[编辑]
交集
主条目:交集一个新的集合也可以通过两个集合"共"有的元素来构造。A
和
B
的交集,写作
A
∩
B,是既属于
A
的、又属于
B
的所有元素组成的集合。若
A
∩
B
=
,则
A
和
B
称作不相交。A
和
B
的交集
举例:{1,
2}
∩
{红色,
白色}
=
{1,
2,
绿色}
∩
{红色,
白色,
绿色}
=
{绿色}
{1,
2}
∩
{1,
2}
=
{1,
2}
交集的一些基本性质A
∩
B
=
B
∩
A
A
∩
B
⊆
A
A
∩
A
=
A
A
∩
=
[编辑]
补集
主条目:补集两个集合也可以相"减"。A
在
B
中的相对补集,写作
B
−
A,是属于
B
的、但不属于
A
的所有元素组成的集合。在特定情况下,所讨论的所有集合是一个给定的全集
U
的子集。这样,
U
−
A
称作
A
的绝对补集,或简称补集(馀集),写作
A′或CUA。相对补集
A
-
B
补集可以看作两个集合相减,有时也称作差集。举例:{1,
2}
−
{红色,
白色}
=
{1,
2}
{1,
2,
绿色}
−
{红色,
白色,
绿色}
=
{1,
2}
{1,
2}
−
{1,
2}
=
若
U
是整数集,则奇数的补集是偶数
补集的基本性质:A
∪
A′
=
U
A
∩
A′
=
(A′)′
=
A
A
−
B
=
A
∩
B′
[编辑]
对称差
见对称差。[编辑]
集合的其它名称
在数学交流当中为了方便,集合会有一些别名。比如:族、系通常指它的元素也是一些集合。
[编辑]
公理集合论
把集合看作“一堆东西”会得出所谓罗素悖论。为解决罗素悖论,数学家提出公理化集合论。在公理集合论中,集合是一个不加定义的概念。[编辑]
类
在更深层的公理化数学中,集合仅仅是一种特殊的类,是“良性类”,是能够成为其它类的元素的类。类区分为两种:一种是可以顺利进行类运算的“良性类”,我们把这种“良性类”称为集合;另一种是要限制运算的“本性类”,对于本性类,类运算是并不都能进行的。定义
类A如果满足条件“”,则称类A为一个集合(简称为集),记为Set(A)。否则称为本性类。这说明,一个集合可以作为其它类的元素,但一个本性类却不能成为其它类的元素。因此可以理解为“本性类是最高层次的类”。
㈡ 数学中什么是集合
集合一般是在高中一年级的基础数学章节。是高中数学函数的基础哦~~
关于集合的概念:
点、线、面等概念都是几何中原始的、不加定义的概念,集合则是集合论中原始的、不加定义的概念.
初中代数中曾经了解“正数的集合”、“不等式解的集合”;初中几何中也知道中垂线是“到两定点距离相等的点的集合”等等.在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识.教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集.”这句话,只是对集合概念的描述性说明.
我们可以举出很多生活中的实际例子来进一步说明这个概念,从而阐明集合概念如同其他数学概念一样,不是人们凭空想象出来的,而是来自现实世界.
总之,集合:某些指定的对象集在一起就形成一个集合。
集合的表示方法
1、列举法:把集合中的元素一一列举出来,写在大括号内表示集合的方法。
例如,由方程
的所有解组成的集合,可以表示为{-1,1}.
注:(1)有些集合亦可如下表示:
从51到100的所有整数组成的集合:{51,52,53,…,100}
所有正奇数组成的集合:{1,3,5,7,…}
(2)a与{a}不同:a表示一个元素,{a}表示一个集合,该集合只有一个元素。
描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括号内表示集合的方法。
格式:{x∈A|
P(x)}
含义:在集合A中满足条件P(x)的x的集合。
例如,不等式
的解集可以表示为:
或
所有直角三角形的集合可以表示为:
注:(1)在不致混淆的情况下,可以省去竖线及左边部分。
如:{直角三角形};{大于104的实数}
(2)错误表示法:{实数集};{全体实数}
3、文氏图:用一条封闭的曲线的内部来表示一个集合的方法。
注:何时用列举法?何时用描述法?
(1)
有些集合的公共属性不明显,难以概括,不便用描述法表示,只能用列举法。
(2)
有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要一一列举出来,常用描述法。
如:集合{1000以内的质数}
㈢ 什么是集合
集合是指具有某种特定性质的具体的或抽象的对象汇总而成的集体。其中,构成集合的这些对象则称为该集合的元素。
集合(简称集)是数学中一个基本概念,它是集合论的研究对象,集合论的基本理论直到19世纪才被创立。最简单的说法,即是在最原始的集合论——朴素集合论中的定义,集合就是“一堆东西”。集合里的“东西”,叫作元素。若x是集合A的元素,则记作x∈A。
集合语言是现代数学的基本语言,可以简洁、准确、规范的表达数学内容.本节学习集合的一些基本知识,用最基本的集合语言表示有关数学对象和数学问题等,并能在自然语言、图形语言、集合语言之间进行转换。
(3)在数学中集合是什么意思是什么意思是什么意思是什么扩展阅读
一、注意点
1、研究一个集合,首先要看集合中的代表元素,然后再看元素的限制条件,当集合用描述法表示时,注意弄清其元素表示的意义是什么.如本例(1)中集合B中的元素为实数,而有的是数对(点集)。
2、对于含有字母的集合,在求出字母的值后,要注意检验集合是否满足互异性。
二、集合间的基本关系
集合与集合之间的关系有包含、真包含和相等.若有限集有n个元素,其子集个数是2n,真子集个数得2n-1,非空子集个数是2n-1。
㈣ 集合的含义是什么
在数学教学中:
集合是把人们的直观的或思维中的某些确定的能够区分的对象汇合在一起,使之成为一个整体(或称为单体),这一整体就是集合。组成一集合的那些对象称为这一集合的元素(或简称为元)。
㈤ 什么是集合数学
集合一般是在高中一年级的基础数学章节。是高中数学函数的基础哦~~
关于集合的概念:
点、线、面等概念都是几何中原始的、不加定义的概念,集合则是集合论中原始的、不加定义的概念.
初中代数中曾经了解“正数的集合”、“不等式解的集合”;初中几何中也知道中垂线是“到两定点距离相等的点的集合”等等.在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识.教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集.”这句话,只是对集合概念的描述性说明.
我们可以举出很多生活中的实际例子来进一步说明这个概念,从而阐明集合概念如同其他数学概念一样,不是人们凭空想象出来的,而是来自现实世界.
总之,集合:某些指定的对象集在一起就形成一个集合。
集合的表示方法
1、列举法:把集合中的元素一一列举出来,写在大括号内表示集合的方法。
例如,由方程 的所有解组成的集合,可以表示为{-1,1}.
注:(1)有些集合亦可如下表示:
从51到100的所有整数组成的集合:{51,52,53,…,100}
所有正奇数组成的集合:{1,3,5,7,…}
(2)a与{a}不同:a表示一个元素,{a}表示一个集合,该集合只有一个元素。
描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括号内表示集合的方法。
格式:{x∈A| P(x)}
含义:在集合A中满足条件P(x)的x的集合。
例如,不等式 的解集可以表示为: 或
所有直角三角形的集合可以表示为:
注:(1)在不致混淆的情况下,可以省去竖线及左边部分。
如:{直角三角形};{大于104的实数}
(2)错误表示法:{实数集};{全体实数}
3、文氏图:用一条封闭的曲线的内部来表示一个集合的方法。
注:何时用列举法?何时用描述法?
(1) 有些集合的公共属性不明显,难以概括,不便用描述法表示,只能用列举法。
(2) 有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要一一列举出来,常用描述法。
如:集合{1000以内的质数}
㈥ 集合是什么意思
集合(简称集)是基本的数学概念,是集合论的研究对象,指具有某种特定性质的事物的总体(在最原始的集合论、朴素集合论中的定义,集合就是“一堆东西”。),集合里的事物,叫作元素。
现代的集合一般被定义为:由一个或多个确定的元素所构成的整体。
㈦ 集合是什么意思
1、许多分散的人或物聚在一起:全校同学已经在操场~了。
2、使集合;汇集:~各种材料,加以分析。
3、数学上指若干具有共同属性的事物的总体。如全部整数就成一个整数的集合,一个工厂的全体工人就成一个该工厂全体工人的集合。简称集。
近义词:齐集、咸集、凑集、鸠合、聚积、聚会、聚拢、调集、聚集、鸠集、召集、汇合
(7)在数学中集合是什么意思是什么意思是什么意思是什么扩展阅读
近义词
一、齐集[ qí jí ]
聚集;集拢:各国朋友~北京。
二、凑集[ còu jí ]
凑在一起;聚集:人烟~。~技术力量。
三、聚积[ jù jī ]
一点一滴地凑集;积聚。
四、聚会[ jù huì ]
1、(人)会合;聚集:老同学~在一起很不容易。
2、指聚会的事:明天有个~,你参加不参加?
五、调集[ diào jí ]
调动使集中:~军队。~防汛器材。
㈧ 什么是集合什么意思
数学概念集合
集合(简称集)是数学中一个基本概念,它是集合论的研究对象,集合论的基本理论直到19世纪才被创立。最简单的说法,即是在最原始的集合论——朴素集合论中的定义,集合就是“一堆东西”。集合里的“东西”,叫作元素。
㈨ 数学中什么是集合
集合一般是
在高中
一年级
的
基础数学
章节
。是
高中数学
函数
的基础哦~~
关于集合的
概念
:
点、线、面等概念都是
几何
中原始的、不加
定义
的概念,集合则是
集合论
中原始的、不加定义的概念.
初中
代数
中曾经了解“正数的集合”、“不等式解的集合”;初中几何中也知道中垂线是“到两定点距离相等的点的集合”等等.在开始接触集合的概念时,主要还是通过
实例
,对概念有一个初步认识.教科书给出的“一般地,某些指定的对象集
在一起
就成为一个集合,也简称集.”这句话,只是对
集合概念
的描述性说明.
我们可以举出很多
生活中
的实际
例子
来进一步说明这个概念,从而阐明集合概念如同其他
数学概念
一样,不是人们凭空想象出来的,而是来自
现实世界
.
总之,集合:某些指定的对象集在一起就形成一个集合。
集合的表示方法
1、列举法:把集合中的元素一一列举出来,写在
大括号
内表示集合的方法。
例如,由方程
的所有解组成的集合,可以表示为{-1,1}.
注:(1)有些集合亦可如下表示:
从51到100的所有整数组成的集合:{51,52,53,…,100}
所有正奇数组成的集合:{1,3,5,7,…}
(2)a与{a}不同:a表示一个元素,{a}表示一个集合,该集合只有一个元素。
描述法
:用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括号内表示集合的方法。
格式:{x∈A|
P(x)}
含义
:在集合A中满足条件P(x)的x的集合。
例如,不等式
的解集可以表示为:
或
所有
直角三角形
的集合可以表示为:
注:(1)在不致混淆的情况下,可以省去竖线及左边部分。
如:{直角三角形};{大于104的实数}
(2)
错误
表示法:{实数集};{
全体实数
}
3、文氏图:用一条封闭的曲线的内部来表示一个集合的方法。
注:何时用列举法?何时用描述法?
(1)
有些集合的公共属性不明显,难以概括,不便用描述法表示,只能用列举法。
(2)
有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要一一列举出来,常用描述法。
如:集合{1000以内的
质数
}