导航:首页 > 数字科学 > 数学分形是用什么做的

数学分形是用什么做的

发布时间:2022-10-08 10:33:20

‘壹’ 什么 是分形和混沌,他们的基本特征

分形的诞生:
分形的创立也是基于一个巧合,颇似当年哥伦布发现美洲新大陆的意外收获。分形的创立者曼得勃罗特原先是为了解决电话电路的噪声等实际问题,结果却发现了几何学的一个新领域。海岸线具有自相似性,曼得勃罗特’就是在研究海岸线时创立了分形几何学。几何对象的一个局部放大后与其整体相似,这种性质就叫做自相似性。部分以某种形式与整体相似的形状就叫做分形。
分形几何主要研究吸引子在空间上的结构,它和混沌有共同的数学祖先-动力系统。如果把非线性动力系统看成是一个不稳定的发散过程,那么由迭代法生成分形吸引子正好是一个稳定的收敛过程。有的混沌学家说,混沌是时间上的分形,而分形是时间上的混沌。
分形具有五个基本特征或性质:⑴形态的不规则性;⑵结构的精细性;⑶局部与整体的自相似性;⑷维数的非整数性;⑸生成的迭代性。

‘贰’ 分形的历史

在传统的几何学中,人们研究一个几何对象,总是习惯于在Euclid空间(Rn,Euclidean)对其研究和度量,其中字母n表示空间的维数,通常为整数,如n分别为1、2、3时,对应的空间为线性空间、平面空间、立体空间,在相应的空间中,我们可以测得几何对象的长度、面积、体积等。但是大约在1个世纪前,在数学领域,相继出现了一些被称为数学怪物(mathematical monsters)的东西,在传统的Euclid领域,人们无法用几何语言去表述其整体或局部性质,其中,比较着名的数学怪物包括:
Von Koch曲线 此曲线在一维下测量任意段长度为无穷大(想象中,考虑到能测量原子的维度);在二维下测量面积为零
Sierpinski三角形 此图形面积为零
Cantor集
这些数学怪物困扰数学家许多年,直至20世纪,被美国数学家Benoit B. Mandelbrot创立的分形几何学(fractal geometry)彻底解决。Mandelbrot提出:我们之所以无法用几何语言去描述这些数学怪物,是因为我们是在维数为整数的空间中,用维数同样是整数的“尺子”对其丈量、描述;而维数不应该仅仅是整数,可以是任何一个正实数;只有在几何对象对应的维数空间中,才能对该几何体进行合理的整体或局部描述。以上图的Koch曲线为例,其维数约为1.26,我们应用同样为1.26维的尺子对其进行描述,比如取该曲线前1/4段作为单位为1的尺子去丈量这个几何体,此几何体长度为4。也正是因其维数介于1维与2维之间,所以此几何体在1维下长度为无穷大,2维下面积为零。
Fractal这个词是由Mandelbrot于1975创造的,来源于拉丁文“Fractus”,其英文意思是broken,即为“不规则、支离破碎”的物体。1967年,Mandelbrot在美国《Science》杂志上发表题目为《英国的海岸线有多长》的划时代论文,标志着其分形思想萌芽的出现。1977年,Mandelbrot在巴黎出版的法文着作《Les objets fractals:forme,hasard et dimension》,1977年,在美国出版其英文版《Fractals:From,Chance,and Dimension》(《分形:形状机遇和维数》),同年,他又出版了《The Fractal Geometry of Nature》(《大自然的分形几何》),但是这三本书还未对社会和学术界造成太大的影响。直到1982年,《The Fractal Geometry of Nature》(《大自然的分形几何》)第二版才得到欧美社会的广泛关注,并迅速形成了“分形热”,此书也被分形学界视为分形“圣经”。

‘叁’ 什么是分形数学

普通几何学研究的对象,一般都具有整数的维数。比如,零维的点、一维的线、二维的面、三维的立体、乃至四维的时空。在20世纪70年代末80年代初,产生了新兴的分形几何学(fractal geometry),空间具有不一定是整数的维,而存在一个分数维数。这是几何学的新突破,引起了数学家和自然科学者的极大关注。根据物理学家李荫远院士的建议,大陆将fractal一开始就定译为“分形”,而台湾学者一般将fractal译作“碎形”。

目录

分形几何的产生
两名数学家的贡献
芒德勃罗和电子计算机对分形几何的影响
分形几何的内容
关于维数
维数和测量的关系
分形几何学的应用
分形几何的意义
编辑本段分形几何的产生
客观自然界中许多事物,具有自相似的“层次”结构,在理想情况下,甚至具有无穷层次。适当的放大或缩小几何尺寸,整个结构并不改变。不少复杂的物理现象,背后就是反映着这类层次结构的分形几何学。 客观事物有它自己的特征长度,要用恰当的尺度去测量。用尺来测量万里长城,嫌太短;用尺来测量大肠杆菌,又嫌太长。从而产生了特征长度。还有的事物没有特征尺 分形几何
度,就必须同时考虑从小到大的许许多多尺度(或者叫标度),这叫做“无标度性”的问题。 如物理学中的湍流,湍流是自然界中普遍现象,小至静室中缭绕的轻烟,巨至木星大气中的涡流,都是十分紊乱的流体运动。流体宏观运动的能量,经过大、中、小、微等许许多度尺度上的漩涡,最后转化成分子尺度上的热运动,同时涉及大量不同尺度上的运动状态,就要借助“无标度性”解决问题,湍流中高漩涡区域,就需要用分形几何学。
编辑本段两名数学家的贡献
在二十世纪七十年代,法国数学家芒德勃罗(B.B.Mandelbrot)在他的着作中探讨了“英国的海岸线有多长”这个问题。这依赖于测量时所使用的尺度。 如果用公里作测量单位,从几米到几十米的一些曲折会被忽略;改用米来做单位,测得的总长度会增加,但是一些厘米量级以下的就不能反映出来。由于涨潮落潮使海岸线的水陆分界线具有各种层次的不规则性。海岸线在大小两个方向都有自然的限制,取不列颠岛外缘上几个突出的点,用直线把它们连起来,得到海岸线长度的一种下界。使用比这更长的尺度是没有意义的。还有海沙石的最小尺度是原子和分子,使用更小的尺度也是没有意义的。在这两个自然限度之间,存在着可以变化许多个数量级的“无标度”区,长度不是海岸线的定量特征,就要用分维。 数学家柯赫(Koch)从一个正方形的“岛”出发,始终保持面积不变,把它的“海岸线”变成无限曲线,其长度也不断增加,并趋向于无穷大。以后可以看到,分维才是“Koch岛”海岸线的确切特征量,即海岸线的分维均介于1到2之间。 这些自然现象,特别是物理现象和分形有着密切的关系,银河系中的若断若续的星体分布,就具有分维的吸引子。多孔介质中的流体运动和它产生的渗流模型,都是分形的研究对象。这些促使数学家进一步的研究,从而产生了分形几何学。
编辑本段芒德勃罗和电子计算机对分形几何的影响
电子计算机图形显示协助了人们推开分形几何的大门。这座具有无穷层次结构的宏伟建筑,每一个角落里都存在无限嵌套的迷宫和回廊,促使数学家和科学家深入研究。 法国数学家芒德勃罗这位计算机和数学兼通的人物,对分形几何产生了重大的推动作用。他在1975、1977和1982年先后用法文和英文出版了三本书,特别是《分形:形、机遇和维数》以及《自然界中的分形几何学(Fractal Geometry of Nature)》,开创了新的数学分支:分形几何学。“分形”(fractal)这个词正是芒德勃罗在1975年造出来的,词根是拉丁文的fractus,是“破碎”的意思。
编辑本段分形几何的内容
分形几何学的基本思想是:客观事物具有自相似的层次结构,局部与整体在形态、功能、信息、时间、空间等方面具有统计意义上的相似性,称为自相似性。例如,一块磁铁中的每一部分都像整体一样具有南北两极,不断分割下去,每一部分都具有和整体磁铁相同的磁场。这种自相似的层次结构,适当的放大或缩小几何尺寸,整个结构不变。
编辑本段关于维数
维数是几何对象的一个重要特征量,它是几何对象中一个点的位置所需的独立坐标数目。在欧氏空间中,人们习惯把空间看成三维的,平面或球面看成二维,而把直线或曲 分形几何作品
线看成一维。也可以稍加推广,认为点是零维的,还可以引入高维空间,对于更抽象或更复杂的对象,只要每个局部可以和欧氏空间对应,也容易确定维数。但通常人们习惯于整数的维数。 分形理论认为维数也可以是分数,这类维数是物理学家在研究混沌吸引子等理论时需要引入的重要概念。为了定量地描述客观事物的“非规则”程度,1919年,数学家从测度的角度引入了维数概念,将维数从整数扩大到分数,从而突破了一般拓扑集维数为整数的界限。
编辑本段维数和测量的关系
维数和测量有着密切的关系,下面我们举例说明一下分维的概念。 当我们画一根直线,如果我们用 0维的点来量它,其结果为无穷大,因为直线中包含无穷多个点;如果我们用一块平面来量它,其结果是 0,因为直线中不包含平面。那么,用怎样的尺度来量它才会得到有限值哪?看来只有用与其同维数的小线段来量它才会得到有限值,而这里直线的维数为 1(大于0、小于2)。 对于我们上面提到的Koch曲线,其整体是一条无限长的线折叠而成,显然,用小直线段量,其结果是无穷大,而用平面量,其结果是 0(此曲线中不包含平面),那么只有找一个与“寇赫岛”曲线维数相同的尺子量它才会得到有限值,而这个维数显然大于 1、小于 2,那么只能是小数了,所以存在分维。经过计算“寇赫岛”曲线的豪斯多夫维数(分维数)为d=log(4)/log(3)=1.26185950714... 定义 设分成的最小的闭集(区间,圆面,球体)占全集的1/δ,充满全集的最小闭集的个数为N,若极限D=(δ→0)ln(N)/ln(1/δ)存在,则称D为此集合的分形维数。
编辑本段分形几何学的应用
分形几何学已在自然界与物理学中得到了应用。如在显微镜下观察落入溶液中的一粒花粉,会看见它不间断地作无规则运动(布朗运动),这是花粉在大量液体分子的无规则碰撞(每秒钟多达十亿亿次)下表现的平均行为。布朗粒子的轨迹,由各种尺寸的折线连成。只要有足够的分辨率,就可以发现原以为是直线段的部分,其实由大量更小尺度的折线连成。这是一种处处连续,但又处处无导数的曲线。这种布朗粒子轨迹的分维是 2,大大高于它的拓扑维数 1. 在某些电化学反应中,电极附近沉积的固态物质,以不规则的树枝形状向外增长。受到污染的一些流水中,粘在藻类植物上的颗粒和胶状物,不断因新的沉积而生长,成为带有许多须须毛毛的枝条状,就可以用分维。 自然界中更大的尺度上也存在分形对象。一枝粗干可以分出不规则的枝杈,每个枝杈继续分为细杈……,至少有十几次分支的层次,可以用分形几何学去测量。 有人研究了某些云彩边界的几何性质,发现存在从 1公里到1000公里的无标度区。小于 1公里的云朵,更受地形概貌影响,大于1000公里时,地球曲率开始起作用。大小两端都受到一定特征尺度的限制,中间有三个数量级的无标度区,这已经足够了。分形存在于这中间区域。 近几年在流体力学不稳定性、光学双稳定器件、化学震荡反映等试验中,都实际测得了混沌吸引子,并从实验数据中计算出它们的分维。学会从实验数据测算分维是最近的一大进展。分形几何学在物理学、生物学上的应用也正在成为有充实内容的研究领域。
编辑本段分形几何的意义
上世纪80年代初开始的“分形热”经久不息。分形作为一种新的概念和方法,正在许多领域开展应用探索。美国物理学大师约翰·惠勒说过:今后谁不熟悉分形,谁就不能被称为科学上的文化人。由此可见分形的重要性。 中国着名学者周海中教授认为:分形几何不仅展示了数学之美,也揭示了世界的本质,还改变了人们理解自然奥秘的方式;可以说分形几何是真正描述大自然的几何学,对它的研究也极大地拓展了人类的认知疆域。 分形几何学作为当今世界十分风靡和活跃的新理论、新学科,它的出现,使人们重新审视这个世界:世界是非线性的,分形无处不在。分形几何学不仅让人们感悟到科学与艺术的融合,数学与艺术审美的统一,而且还有其深刻的科学方法论意义。
http://ke..com/view/44498.htm

‘肆’ 数学-分行理论

主 【分形几何-数学基础及其应用(第2版)】 译者:曾文曲 人民邮电出版社
【分形理论及其在分子科学中的应用】李后强,汪富泉 - 1993 - 科学出版社
【分形理论及其应用】辛厚文 - 1993 - 中国科学技术大学出版社
【分形理论及其应用】董连科 - 1991 - 辽宁科学技术出版社
【分形】李水根 高等教育出版社
【分形】张济忠 清华大学出版社 注:张济忠这本书可在线阅读网址如下:
http://books.google.com/books?hl=zh-CN&lr=&id=6IUarHeMWpAC&oi=fnd&pg=PT11&dq=%E5%88%86%E5%BD%A2& ots=0lJ9vaEFUF&sig=_ZVD86u57FbhSu9h_Xp7MP6HwHo
次 分形理论是当今十分风靡和活跃的新理论、新学科。分形的概念是美籍数学家芒德勃罗首先提出的。分形理论的数学基础是分形几何学,即由分形几何衍生出分形信息、分形设计、分形艺术等应用。
分形理论的最基本特点是用分数维度的视角和数学方法描述和研究客观事物,也就是用分形分维的数学工具来描述研究客观事物。它跳出了一维的线、二维的面、三维的立体乃至四维时空的传统藩篱,更加趋近复杂系统的真实属性与状态的描述,更加符合客观事物的多样性与复杂性。

‘伍’ 数学分形和统计分形

自然界的许多事物和现象表现出极为复杂的形态,并非所显示的那样理想化.自相似性或标度不变性往往以统计方式表现出来,即当改变尺度时,在该尺度包含的部分统计学的特征与整体是相似的.这种分形是数学分形的一种推广,叫做统计分形.

数学分形是一种理想化的情况,它必须具备两个条件:

(1)数学分形曲线必须具有无穷的“层次”结构,像Koch曲线那样;数学分形必须是无限点的集合,像Cantor集合那样.只有无穷的层次结构,才能使自相似性或标度不变性处处成立.

(2)数学分形的任何一个局部放大后,都和整体在形状,数量以及统计分布上完全相似.

数学分形是分析自然界复杂事物的一个数学模型.要具体应用到真实的自然现象,应对数学分形做些推广和修正:①由无穷“层次”结构到有限的“层次”结构,或由无穷集合到有限集合的推广,这里就产生了在一定范围内自相似性或标度不变性成立的问题,即无标度区间的问题;②由严格的数学相似到近似的统计相似性的推广.

‘陆’ 德国数学康托尔构造的这个图形叫分形,称做康托尔集.从长度为1的线段开始,康托尔取走其中间三分之一而

第一次操作后余下的线段之和为1-

1
3

第二次操作后余下的线段之和为(1-
1
3
2

第六次操作后余下的线段之和为(1-
1
3
6=
64
729

故答案为:
64
729

‘柒’ 什么是分形数学


动力系统中的分形集是近年分形几何中最活跃和引人入胜的一个研究领域。动力系统的奇异吸引子通常都是分形集,它们产生于非线性函数的迭代和非线性微分方程中。1963年,气象学家洛伦兹(E.N.Lorenz)在研究流体的对流运动时,发现了以他的名字命名的第一个奇异吸引子,它是一个典型的分形集。

1976年,法国天文学家伊侬(M.Henon)考虑标准二次映射迭代系统时获得伊侬吸引子。它具有某种自相似性和分形性质。1986年劳威尔(H.A.Lauwerier)将斯梅尔的马蹄映射变形成劳威尔映射,其迭代下不稳定流形的极限集成为典型的奇异吸引子,它与水平线的截面为康托集。1985年,格雷波基(C.Grebogi)等构造了一个二维迭代函数系统,其吸附界是维尔斯特拉斯函数,并得到盒维数。1985年,迈克多纳(S.M.MacDonald)和格雷波基等得到分形吸附界的三种类型:

(1) 局部不连通的分形集;

(2) 局部连通的分形拟圆周;

(3) 既不局部连能又不是拟圆周。前两者具有拟自相似性。

动力系统中另一类分形集来源于复平面上解析映射的迭代。朱利亚(G.Julia)和法图(P.Fatou)于1918-1919年间开创这一研究。他们发现,解析映射的迭代把复平面划分成两部分,一部分为法图集,另一部分为朱利亚集(J集)。他们在处理这一问题时还没有计算机,完全依赖于他们自身固有的想象力,因此他们的智力成就受到局限。随后50年间,这方面的研究没有得到什么进展。

随着可用机算机来做实验,这一研究课题才又获得生机。1980年,曼德尔布罗特用计算机绘出用他名字命名的曼德尔布罗特集(M集)的第一张图来。1982道迪(A.Douady)构造了含参二次复映射fc ,其朱利亚集J(fc)随参数C的变化呈现各种各样的分形图象,着名的有道迪免子,圣马科吸引子等。同年,茹厄勒(D.Ruelle)得到J集与映射系数的关系,解新局面了解析映射击集豪斯道夫维数的计算问题。茄勒特(L.Garnett)得到J(fc)集豪斯道夫维数的数值解法。1983年,韦当(M.Widom)进一步推广了部分结果 。法图1926年就就开始整函数迭代的研究。1981年密休威茨(M.Misiuterwicz)证明指数映射的J集为复平面,解决了法图提出的问题,引起研究者极大兴趣。发现超越整函数的J集与有理映射J的性质差异,1984年德万尼(R.L.Devanney)证明指数映射Eλ的J(Eλ)集是康托束或复平面而J(fc)是康托尘或连通集。

复平面上使J(fc)成为连通集的点C组成M集即曼德尔布罗特集,尤更斯(H.Jurgens)和培特根(H-O.Peitgen)认为,M集的性质过去一直是并且将来继续是数学研究的一个巨大难题。通过将数学理论与计算机图形学实验加以融合,及道迪、扈巴德(H.Hubbard)等人在这方面进行的基础性研究工作,在解决这一难题方面已取得重大进展,使人们加深了对M集的了解。道迪和扈巴德1982年证明M集是连通的和单连通的,人们猜测M集是局部连通的,目前每一张计算机图形都证实了这一猜测,但至今还没有人能给予证明。M是否为弧连通,目前尚不清楚。M集边界的维数也是值得研究的问题之一。

M集除了将J集分成连通与非连通的两类之外,还起着无穷个J集的图解目录表作用,即把M集C点周围的图形放大就是与C点有关的J集的组成部分。但这一发现的数学密性至今仍未确定,谭磊(Tan Lei)1985年证明了在每一个密休威茨点邻近M集与相关的J集之间存在着相似性。尤金斯等在M集的静电位研究中获得与自然形貌相似的分形图象。目前包括尤金斯等在内的很多研究人员都致力于借助计算机活动录象探索M集。其它一些分形集的研究工作正在取得进展。1990年德万尼通过数值实验观察到M集的复杂图形由许多不同周期的周期轨道的稳定区域共同构成。1991年黄永念运用他提出的代数分析法证明了这一事实,研究了M集及其广义情况周期轨道整体解析特性。

巴斯莱(B.M.Barnsley)和德门科(S.Demko)1985年引入迭代函数系统,J集及其其它很多分形集都是某些迭代函数的吸引集,用其它方法产生的分形集也可用迭代函数系逼近。1988年,劳威尔通过数值研究发现毕达哥拉斯树花是一迭代函数系的J集。1985年巴斯莱等研究含参数的函数系迭代动力系统,得到M集D并D与M在连通性上的差异。在一线性映射系迭代下,可以产生着名的分形曲线——双生龙曲线。1986年水谷(M.Mitzutani)等对其动力系统进行了研究。

一般动力系统中的分形集,其豪斯道夫维数dH难以通过理论方法或计算方法求得。对于有迭式构造的分形集,贝德浮德(T.Bedford)等在1986年已给出卓有成效的算法,但对一般非线性映射迭代动力系统产生的分形集,这些结果都难以应用,其豪斯道夫维数dH的结论与算法实际上没有。卡普兰(j.L.Kaplan)和约克(J.A.York) 1979年引入李雅普洛夫维数dL并猜测dL=dH。1981年勒拉皮尔证明dH≤dL。杨(L.S.Young)1982年证明二维情况下dH=dL。艾茄瓦(A.K.Agarwal)等1986年给出例子说明高维情形卡普兰-约克猜测不成立。这一猜测力图从动力学特征推断几何结构,其反问题是由吸引子维数推断混沌力学,这是值得研究的问题。但目前工作甚少且主要限于计算机研究。此外,含参动力系统在混沌临界态或突变处的分形集维数也有待进一步研究。

多重分形(multifractals)是与动力系统奇异吸引子有关的另一类重要分形集,其概念首先由曼德布罗特和伦依(A.Renyi)引入。法默(J.D.Farmer)等在1983年定义了多重分形广义维数。1988年博尔(T.Bohr)等人将拓扑熵引入多重分形的动力学描述与热力学类比。1988年,阿内多(A.Arneodo)等人将子波变换用于多重分形研究。费德(J.Feder)、特尔(T.Tel)等人进行了多重分形子集及标度指数的研究。阿姆特里卡等研究了多重分形的逆问题,提出广义配分函数,给出广义超越维数,对过去的维数进行了修正。李(J.Lee)等发现了多重分形热力学形式上的相变。1990年,伯克(C.Beck)得到广义维数的上下界和极限并研究了多重分形的均匀性量度。曼德布罗特研究了随机多重分形及负分维。1991年科维克(Z.Kov.acs)等引入双变量迭代系统,最大特征值和吉布斯势导出维数、熵、李雅普洛夫指数,提供了对多重分形相变分类的一般方案。对于多重分形相变分类的一般方案。对于多重分形目前虽已提出不少处理方法,但从数学的观点上看,还不够严格,部分问题的数学处理难度也较大。

分形理论真正发展起来才十余年,并且方兴未艾,很多方面的理论还有待进一步研究。值得注意的是,近年分形理论的应用发展远远超过了理论的发展,并且给分形的数学理论提出了更新更高的要求。各种分形维数计算方法和实验方法的建立、改进和完善,使之理论简便,可操作性强,是应用分形的科学家们普遍关注的问题。而在理论研究上,维数的理论计算、估计、分形重构(即求一动力系统,使其吸引集为给定分形集)、J集和M集及其推广形式的性质、动力学特征及维数研究将会成为数学工作者们十分活跃的研究领域。多重分形理论的完善、严格以及如何用这些理论来解决实际问题可能会引起科学家们广泛的兴趣,而动力学特征、相变和子波变换可能会成为其中的几个热点。

在哲学方面,人们的兴趣在于自相似性的普适性,M集和J集表现出的简单性与复杂性,复数与实数的统一性,多重分形相变与突变论的关系,自组织临界(SOC)现象的刻画以及分形体系内部的各种矛盾的转化等。可以预言,一场关于分形科学哲学问题的讨论即将在国内展开

‘捌’ 分形理论简述

分形几何(Fractal Geometry)的概念是由曼德布罗特(B.B.Mandelbrot.1975)在1975年首先提出的.几十年来,它已经发展成为一门新型的数学分支.这是一个研究和处理自然与工程中不规则图形的强有力的理论工具,它的应用几乎涉及自然科学的各个领域,甚至于社会科学,并且实际上正起着把现代科学各个领域连接起来的作用,分形是从新的角度解释了事物发展的本质.

分形(fractal)一词最早由B.B.Mandelbrot于1975年从拉丁文fractus创造出来,《自然界中的分形几何》(Mandelbrot,1982)为其经典之作.最先它所描述的是具有严格自相似结构的几何形体,物体的形状与标度无关,子体的数目N(r)与线性尺度(标度r)之间存在幂函数关系,即N(r)∝1/rD.分形的核心是标度不变性(或自相似性),即在任何标度下物体的性质(如形状,结构等)不变.数学上的分形实际是一种具有无穷嵌套结构的极限图形,分形的突出特点就是不存在特征尺度,描述分形的特征量是分形维数D.不过,现实的分形只是在一定的标度范围内呈现出自相似或自仿射的特性,这一标度范围也就称为(现实)分形的无标度区,在无标度区内,幂函数关系始终成立.

分形理论认为,分形内部任何一个相对独立的部分,在一定程度上都是整体的再现和相对缩影(分形元),人们可以通过认识部分来认识整体.但是分形元只是构成整体的单位,与整体相似,并不简单地等同于整体,整体的复杂性远远大于分形元.更为重要的是,分形理论指出了分形元构成整体所遵循的原理和规律,是对系统论的一个重要的贡献.

从分析事物的角度来看,分形论和系统论体现了从两个极端出发达到对事物全面认识的思路.系统论从整体出发来确立各部分的系统性质,从宏观到微观考察整体与部分的相关性;而分形论则是从部分出发确立整体性质,沿着从微观到宏观的方向展开.系统论强调部分对整体的依赖性,而分形论则强调整体对部分的依赖性,两者的互补,揭示了系统多层次面、多视角、多方位的联系方式,丰富和深化了局部与整体之间的辩证关系.

分形论的提出,对科学认识论与方法论具有广泛而深远的意义.第一,它揭示了整体与部分之间的内在联系,找到了从部分过渡到整体的媒介与桥梁,说明了部分与整体之间的信息“同构”.第二,分形与混沌和现代非线性科学的普遍联系与交叉渗透,打破了学科间的条块分割局面,使各个领域的科学家团结在一起.第三,为描述非线性复杂系统提供了简洁有力的几何语言,使人们的系统思维方法由线性进展到非线性,并得以从局部中认识整体,从有限中认识无限,从非规则中认识规则,从混沌中认识有序.

分形理论与耗散结构理论、混沌理论是相互补充和紧密联系的,都是在非线性科学的研究中所取得的重要成果.耗散结构理论着眼于从热力学角度研究在开放系统和远离平衡条件下形成的自组织,为热力学第二定律的“退化论”和达尔文的“进化论”开辟了一条联系通道,把自然科学和社会科学置于统一的世界观和认识论中.混沌理论侧重于从动力学观点研究不可积系统轨道的不稳定性,有助于消除对于自然界的确定论和随机论两套对立描述体系之间的鸿沟,深化对于偶然性和必然性这些范畴的认识.分形理论则从几何角度,研究不可积系统几何图形的自相似性质,可能成为定量描述耗散结构和混沌吸引子这些复杂而无规则现象的有力工具,进一步推动非线性科学的发展.

分形理论是一门新兴的横断学科,它给自然科学、社会科学、工程技术、文学艺术等极广泛的学科领域提供了一般的科学方法和思考方式.就目前所知,它有很高程度的应用普遍性.这是因为,具有标度不变性的分形结构是现实世界普遍存在的一大类结构,该结构的含义十分丰富,它不仅指研究对象的空间几何形态,而是一般地指其拓扑维(几何维数)小于其测量维数的点集,如事件点的分布,能量点的分布,时间点的分布,过程点的分布,甚至是意识点、思维点的分布.

分形思想的基本点可以简单表述如下:分形研究的对象是具有自相似性的无序系统,其维数的变化是连续的.从分形研究的进展看,近年来,又提出若干新的概念,其中包括自仿射分形、自反演分形、递归分形、多重分形、胖分形等等.有些分形常不具有严格的自相似性,正如定义所表达的,局部以某种方式与整体相似.

分形理论的自相似性概念,最初是指形态或结构的相似性,即在形态或结构上具有相似性的几何对象称为分形,研究这种分形特性的几何称为分形几何学.随着研究工作的深入发展和领域的拓展,又由于一些新学科,如系统论、信息论、控制论、耗散结构理论和协同论等相继涌现的影响,自相似性概念得到充实与扩展,把信息、功能和时间上的自相似性也包含在自相似性概念之中.于是,把形态(结构)、或信息、或功能、或时间上具有自相似性的客体称为广义分形.广义分形及其生成元可以是几何实体,也可以是由信息或功能支撑的数理模型,分形体系可以在形态(结构)、信息和功能各个方面同时具有自相似性,也允许只在某一方面具有自相似性;分形体系中的自相似性可以是完全相似,这种情况是不多见的,也可以是统计意义上的相似,这种情况占大多数,相似性具有层次或级别上的差别.级别最低的为生成元,级别最高的为分形体系的整体.级别愈接近,相似程度越好,级别相差愈大,相似程度越差,当超过一定范围时,则相似性就不存在了.

分形具有以下几个基本性质:

(1)自相似性是指事物的局部(或部分)与整体在形态、结构、信息、功能和时间等方面具有统计意义上的相似性.

(2)适当放大或缩小分形对象的几何尺寸,整个结构并不改变,这种性质称为标度不变性.

(3)自然现象仅在一定的尺度范围内,一定的层次中才表现出统计自相似性,在这样的尺度之外,不再具有分形特征.换言之,在不同尺度范围或不同层次上具有不同的分形特征.

(4)在欧氏几何学中,维数只能是整数,但是在分形几何学中维数可以是整数或分数.

(5)自然界中分形是具有幂函数分布的随机现象,因而必须用统计的方法进行分析和处理.

目前分形的分类有以下几种:①确定性分形与随机分形;②比例分形与非比例分形;③均匀分形与非均匀分形;④理论分形与自然分形;⑤空间分形与分形事件(时间分形).

分形研究应注意以下几个问题:

(1)统计性(随机性).研究统计意义上的分形特征,由统计数据分析中找出稳态规律,才能最客观地描述自然纹理与粗糙度.从形成过程来看,分形是一个无穷随机过程的体现.如大不列颠海岸线的复杂度是由长期海浪冲击、侵蚀及风化形成的,其他许多动力过程、凝聚过程也都是无穷随机的,不可能由某个特征量来形成.因此,探讨分形与随机序列、信息熵之间的内在联系是非常必要的.

(2)全局性.分形是整体与局部比较而存在的,它包括多层嵌套及无穷的精细结构.研究一个平面(二维)或立体(三维)的粗糙度,要考虑全局范围各个方向的平稳性,即区别各向同性或各向异性分布规律.

(3)多标度性.一个物体的分形特性通常是在某些尺度下体现出来,在另一些尺度下则不是分形特性.理想的无标度区几乎不存在,只有从多标度中研究分形特性才较实际.

模型的建立,其实是分形(相似性)模型的建立.利用相似性原理,建立模型单元,对预测单元进行分形处理和预测.

分形的正问题是给出规律,通过迭代和递推过程产生分形,产生的几何对象显然具有某种相似性.反问题叫做分形重构.广义而言,它指任何一个几何上认为是分形的图形,能否找到产生它的规律,以某种方式来生成它.当我们研究非线性动力学时,混沌动力学会产生分形,而分形重构则是动力学系统研究的逆问题.由于存在“一因多果”、“多因一果”,由分维重构分形还需加入另外参数.

临界现象与分形有关.重整化群是研究临界现象的一种方法.该方法首先对小尺寸模型进行计算,然后被重整化至大的或更大的尺度.如果我们有网格状的一组元素,每个元素具有一定的渗透概率,重整化群方法的一个应用就是计算渗透的开始问题.当元素渗透率达到某一临界值时,这一组元素的渗透流动就会突然地发生.一旦流动开始后,相联结元素之间便具有分形结构.

自组织临界现象的概念可以用来分析地震活动性.按照这个概念,一个自然界的系统处在稳定态的边缘,一旦偏离这个状态,系统会自然地演化回到边缘稳定的状态.临界状态不存在天然的长度标度,因而是分形的.简单的细胞自动机模型可以说明这种自组织临界现象.

分形理论作为非线性科学的一个分支,是研究自然界空间结构复杂性的一门学科,可从复杂的看似无序的图案中,提取出确定性、规律性的参量.既可以反演分形结构的形成机制,又可以从看似随机的演化过程(时间序列)中推测体系演化的结果,近年来倍受地球科学家的注意.在地质统计学,孔隙介质、储层非均匀性及石油勘探开发,固相表面或两相界面,岩石破裂、断层及地震和地形、地貌学等地球科学各个领域得到了广泛的应用.

自20世纪80年代初以来,一些专家学者注意到了地质学中的自相似现象,并试图将分形理论运用于地学之中.以地质学中普遍存在的自相似性现象、地质体高度不规则性和分割性与层次性、地质学中重演现象的普遍性、分形几何学在其他学科中应用实例与地质学中的研究对象的相似性、地质学中存在一些幂函数关系等为内在基础,以地质学定量化的需要、非线性地质学的发展及线性地质学难以解决诸多难点、分形理论及现代测试和电算技术的发展为外在基础,使分形理论与地质学相结合成为可能,它的进一步发展将充实数学地质的研究内容并推动数学地质迈上一个新台阶.目前,分形理论应用于地球科学主要包括以下两个方面的研究:

(1)对“地质存在”——地质体或某些地质现象的分形结构分析,求取相应分形维数,寻找分维值与有关物理参量之间的联系,探讨分形结构形成的机理.这方面的研究相对较多,如人们已对断裂、断层和褶皱等地质构造(现象)进行了分形分析,探讨分维值与岩石力学性质等之间的关系;从大到海底(或大陆)地貌,小到纳米级的微晶表面证实了各类粗糙表面具有分形特征;计算了河流网络,断裂网络,地质多孔介质和粘性指进的分维值以及脉厚与品位或品位与储量等之间的分形关系.

(2)对“地质演化”——地质作用过程进行分形分析,求取分形维数并考察其变化趋势,从而预测演化的结果.例如,科学家们通过对强震前小震分布的分形研究表明,强震前普遍出现降维现象,从而为地震预报提供有力理论工具.当今的研究,不仅仅局限于分维数的计算,分形模型的建立;而更着重于解释地质学中引起自相似性特征的原因或成因,自相似体系的生成过程及模拟,以及用分形理论解决地质学中的疑难问题与实践问题,如地震和灾害地质的预报、石油预测、岩体力学类型划分、成矿规律与成矿预测等.地球化学数据在很大程度上反映了地质现象的结构特征.分维是描述分形结构的定量参数,它有可能揭示出地球化学元素空间分布的内在规律.

分维与地质异常有一定的关系.我们可以对不同地段以一定的地质内容为参量对比它们分维大小的差异,以此求得结构地段的位置及范围,从而确定地质异常;也可以对不同时期可恢复的历史地质结构格局分别求分维,还可以确定分维背景值.分形是自然界中普遍存在的一种规律性.

总之,分形理论已经渗透到地学领域的各个角落,应用范围涉及地球物理学、地球化学、石油地质学、构造地质学及灾害地质学等.

‘玖’ 什么是分形数学

分形一般是指“一个粗糙或零碎的几何形状,可以分成数个部分,且每一部分都(至少会大略)是整体缩小尺寸的形状”[1],此一性质称为自相似。分形一词是由本华·曼德博于1975年提出的,有“零碎”、“破裂”之意。分形一般有以下特质:[2] 在任意小的尺度上都能有精细的结构;太不规则,以至难以传统欧氏几何的语言来描述;(至少是大略或任意地)自相似豪斯多夫维数会大于拓扑维数(但在空间填充曲线如希尔伯特曲线中为例外);有着简单的递归定义。因为分形在所有的大小尺度下都显得相似,所以通常被认为是无限复杂的(以不严谨的用词来说)。自然界里一定程度类似分形的事物有云、山脉、闪电、海岸线和雪片等等。但是,并不是所有自相似的东西都是分形,如实线虽然在形式上是自相似的,但却不符合分形的其他特质。 17世纪时,数学家兼哲学家莱布尼茨思考过递回的自相似,分形的数学从那时开始渐渐地成形(虽然他误认只有直线会自相似)。直到1872年,卡尔·魏尔施特拉斯给出一个处处连续但处处不可微的函数,在今日被认为是分形的图形才出现。1904年,科赫·范·卡区不满意魏尔施特拉斯那抽象且解析的定义,给出一个相似函数但更几何的定义,今日称之为科赫雪花。1915年瓦茨瓦夫·谢尔宾斯基造出了谢尔宾斯基三角形;隔年,又造出了谢尔宾斯基地毯。原本,这些几何分形都被认为是分形,而不如现今所认为的二维形状。1938年,保罗·皮埃尔·莱维在他的论文《Plane or Space Curves and Surfaces Consisting of Parts Similar to the Whole》中将自相似曲线的概念更进一步地推进,他在文中描述了一个新的分形曲线-莱维C形曲线。格奥尔格·康托尔也给出一个具有不寻常性质的实数子集-康托尔集,今日也被认为是分形。复平面的迭代函数在19世纪末20世纪初被儒勒·昂利·庞加莱、菲利克斯·克莱因、皮埃尔·法图和加斯东·茹利亚等人所研究,但直到现在有电脑绘图的帮忙,许多他们所发现的函数才显现出其美丽来。 1960年代,本华·曼德博开始研究自相似,且写下一篇论文《英国的海岸线有多长?统计自相似和分数维度》。最后,1975年,曼德博提出了“分形”一词,来标记一个物件,其豪斯多夫维数会大于拓扑维数。曼德博以显着的电脑架构图像来描绘此一数学定义,这些图像有着普遍的映象;许多都基于递归,以至“分形”的一般意思。造法 四个制造分形的一般技术如下:逃逸时间分形:由空间(如复平面)中每一点的递推关系式所定义,例如曼德博集合、茹利亚集合、火烧船分形、新分形和李奥普诺夫分形等。由一次或两次逃逸时间公式的迭代生成的二维矢量场也会产生分形,若点在此一矢量场中重复地被通过。迭代函数系统:这些分形都有着固定的几何替代规则。康托尔集、谢尔宾斯基三角形、谢尔宾斯基地毯、空间填充曲线、科赫雪花、龙形曲线、丁字方形、孟杰海绵等都是此类分形的一些例子。随机分形:由随机而无确定过程产生,如布朗运动的轨迹、莱维飞行、分形风景和布朗树等。后者会产生一种称之为树状分形的分形,如扩散限制聚集或反应限制聚集丛。奇异吸引子:以一个映射的迭代或一套会显出混沌的初值微分方程所产生。 [编辑]分类 分形也可以依据其自相似来分类,有如下三种:精确自相似:这是最强的一种自相似,分形在任一尺度下都显得一样。由迭代函数系统定义出的分形通常会展现出精确自相似来。半自相似:这是一种较松的自相似,分形在不同尺度下会显得大略(但非精确)相同。半自相似分形包含有整个分形扭曲及退化形式的缩小尺寸。由递推关系式定义出的分形通常会是半自相似,但不会是精确自相似。统计自相似:这是最弱的一种自相似,这种分形在不同尺度下都能保有固定的数值或统计测度。大多数对“分形”合理的定义自然会导致某一类型的统计自相似(分形维数本身即是个在不同尺度下都保持固定的数值测度)。随机分形是统计自相似,但非精确及半自相似的分形的一个例子.

‘拾’ 什么是分形几何

我们在学校里学习的可以说都是经典几何学,以规则且光滑的几何图形,如球面、双曲面、马鞍面、花瓶表面等几何图形为研究对象。但自然界中大量存在的事物或数学模型却是极不规则、极不光滑的。如山峦、河流里的旋涡、海岸、云朵及土地龟裂的裂纹、玻璃窗上的冰花等。这些图形使传统的几何学和古典数学显得有些束手无策。

当你漫步在海滩时,你可曾想过海岸线有多长吗?冬天,当雪花落下来时,你可曾留心过每个雪花的轮廓曲线是什么样的吗?这些不规则,但又很常见的图形,虽不会引起常人的重视,但这些问题在当代数学家芒德勃罗的眼中却有着不同的意义。他根据长期观察分析、收集与总结,创立了分形几何,很快,就引起了许多学科的关注,这是由于分形几何不仅在理论上,而且在实际生活中都具有重要价值。

分形几何是一门边缘学科,有着极其广泛的应用。比如,近年在研究治疗癌症的过程中,人们认为癌具有自相似性。癌细胞发育停滞,而分裂速度异常快,不规则、不协调,一片混乱,在“癌区”存在着“癌变分形元”。研究人员设法促进癌的分化发育,以突破滞点。目前许多药物与疗法正是根据这一原理进行的。

在上世纪70年代中期以前,芒德勃罗一直使用英文fractional一词来表示他的分形思想。因此,取拉丁词之头,采英文之尾的fractal,本意是不规则的、破碎的、分离的。芒德勃罗是想用此词来描述传统几何学所不能描述的一大类复杂无章的几何对象。例如,弯弯曲曲的海岸线、起伏不平的山脉、粗糙不堪的断面、变幻无常的浮云、九曲回肠的河流、纵横交错的血管、令人眼花缭乱的满天繁星等。它们的特点是,极不规则或极不光滑。直观而粗略地说,这些对象都是分形几何体。

中国着名学者周海中教授认为:分形几何不仅展示了数学之美,也揭示了世界的本质,还改变了人们理解自然奥秘的方式;可以说分形几何是真正描述大自然的几何学,对它的研究也极大地拓展了人类的认知疆域。

分形几何学作为当今世界十分风靡和活跃的新理论、新学科,它的出现,使人们重新审视这个世界:世界并非线性的一成不变,分形无处不在。分形几何学不仅让人们感悟到科学与艺术的融合,数学与艺术审美的统一,而且还有其深刻的科学方法与意义。

无尽相似的艺术

阅读全文

与数学分形是用什么做的相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:740
乙酸乙酯化学式怎么算 浏览:1406
沈阳初中的数学是什么版本的 浏览:1353
华为手机家人共享如何查看地理位置 浏览:1045
一氧化碳还原氧化铝化学方程式怎么配平 浏览:886
数学c什么意思是什么意思是什么 浏览:1411
中考初中地理如何补 浏览:1300
360浏览器历史在哪里下载迅雷下载 浏览:703
数学奥数卡怎么办 浏览:1388
如何回答地理是什么 浏览:1025
win7如何删除电脑文件浏览历史 浏览:1058
大学物理实验干什么用的到 浏览:1487
二年级上册数学框框怎么填 浏览:1701
西安瑞禧生物科技有限公司怎么样 浏览:976
武大的分析化学怎么样 浏览:1250
ige电化学发光偏高怎么办 浏览:1339
学而思初中英语和语文怎么样 浏览:1653
下列哪个水飞蓟素化学结构 浏览:1425
化学理学哪些专业好 浏览:1488
数学中的棱的意思是什么 浏览:1059