1. 如何入门参与数学建模
想要入门参与数学建模,应该做到以下几点:(1)对数学建模有着深厚的兴趣,而不仅仅是为了获奖。数学建模有很多有意思的点,使用自己建立的模型解决了一个实际问题,是很有成就感的一件事情。数学建模中会伴随着编程与论文写作,也是对自己能力提升的一个重要途径。(2)有一定的基础数学知识,包括微积分、线性代数、概率论和数理统计。掌握这些知识并不是说一定要精通,而是起码应该知道一些基本方法,不然很多问题根本没法做分析。(3)逐个学习模型,推荐姜启源的《数学模型》。里面的模型都是一些基础模型,但是基础模型非常重要,比你学习高大上的建模方法还要重要,现在的评委已经不喜欢各种套高大上的方法了。这本书起码要结合案例去看,不需要十分精通,但一定要知道每种问题对应着哪种模型,在比赛期间方便查找,现学现卖。(4)掌握基础的编程和算法,推荐司守奎写的《数学建模算法与应用》,这本书主要内容是matlab,对建模比赛帮助很大。(5)掌握论文写作技巧。论文写作是数学建模竞赛是否获奖的重要因素,可以去参考历年优秀论文,重点学习格式和行文思路。
2. 大学的数学建模竞赛怎么准备
我在大二的时候就和室友一起参加过全国大学生数学建模竞赛,学校里也上过这方面的专业课,可以说对此有点自己的见解和建议。下面我想分享一下自己当时做的一些准备供你参考。
首先,肯定要学习数学模型方面的知识。
数学建模,顾名思义就是建立数学模型,需要你去了解一下常用的数学模型。有些同学可能会疑问,数学还有什么模型呢?不就是套套公式吗。其实不然,对于国赛,最常用的莫过于概率论与数理统计了。
当然,如果你学有余力的话,可以去学SPSS这种专业的统计软件,或者像Visio这样的绘图软件,在统计或者绘图等方面,用起来更加方面,图案也更加精美。
总而言之,对于大学的数学建模竞赛,还是需要好好准备的,无论是数学的专业知识还是算法的设计实现。如果能找到合适的队友,那么合作起来还是很轻松的,希望你能得到一个好成绩!
3. 数学建模新手如何选题
关于选题,具体展开讲讲。
全国赛分为本科组和大专组,历年每组两题(2019年额外增加一题),虽然题数有改变,但赛题无非就是评价、优化和预测类。
优化类题目只要题意理解正确,模型正确,能正常求解,有参考答案,只要解在参考答案附近那基本就能得奖了。而对于非运筹优化类则较为复杂,各式各样的问题都有,并且一般来讲没有参考答案,只要有思想有方法就会得到好的结果。
所以一般来讲做优化问题简单的时候,做优化的比做非优化的人数要多。但是涉及到比较复杂的时候那就要颠倒下了。就得奖人数来说两类题的各级得奖人数是相仿的,这时如果做A的人数少则得奖率就高了多了,所以在选题人数比较悬殊的时候则要选选做的人数相对少的那个题做。
而当选题人数比较平均的时候,就选自己拿手的做了。当然要知道这个选题比例那是不可能的,所以要实现小范围的互动了,由于一开始是赛区内评价所以在小范围内互动是有必要的,在自己的学校内尽量做到平均,不然就是自相残杀了。
4. 我开始自学数学建模,不知道从哪入手,请有心人们帮帮忙,应该怎么开始谢谢!
数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包涵抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。
我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只懂数学不懂数学在实际中的应用的数学家)变成物理学家,生物学家,经济学家甚至心理学家等等的过程。
数学模型一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。
数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,进入20世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在即将进入21世纪的知识经济时代,数学科学的地位会发生巨大的变化,它正在从国或经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展,数学理伦与方法的不断扩充使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。培养学生应用数学的意识和能力已经成为数学教学的一个重要方面。
应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分折和解决问题。这就需要深厚扎实的数学基础,敏锐的洞察力和想象力,对实际问题的浓厚兴趣和广博的知识面。数学建模是联系数学与实际问题的桥梁,是数学在各个领械广泛应用的媒介,是数学科学技术转化的主要途径,数学建模在科学技术发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代科技工作者必备的重要能力之。为了适应科学技术发展的需要和培养高质量、高层次科技人才,数学建模已经在大学教育中逐步开展,国内外越来越多的大学正在进行数学建模课程的教学和参加开放性的数学建模竞赛,将数学建模教学和竞赛作为高等院校的教学改革和培养高层次的科技人才的个重要方面,现在许多院校正在将数学建模与教学改革相结合,努力探索更有效的数学建模教学法和培养面向21世纪的人才的新思路,与我国高校的其它数学类课程相比,数学建模具有难度大、涉及面广、形式灵活,对教师和学生要求高等特点,数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。为了改变过去以教师为中心、以课堂讲授为主、以知识传授为主的传统教学模式,数学建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。通过教学使学生了解利用数学理论和方法去分折和解决问题的全过程,提高他们分折问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力,使他们在以后的工作中能经常性地想到用数学去解决问题,提高他们尽量利用计算机软件及当代高新科技成果的意识,能将数学、计算机有机地结合起来去解决实际问题。数学建模以学生为主,教师利用一些事先设计好问题启发,引导学生主动查阅文献资料和学习新知识,鼓励学生 积极开展讨论和辩论,培养学生主动探索,努力进取的学风,培养学生从事科研工作的初步能力,培养学生团结协作的精神、形成一个生动活泼的环境和气氛,教学过程的重点是创造一个环境去诱导学生的学习欲望、培养他们的自学能力,增强他们的数学素质和创新能力,提高他们的数举素质,强调的是获取新知识的能力,是解决问题的过程,而不是知识与结果。接受参加数学建模竞赛赛前培训的同学大都需要学习诸如数理统计、最优化、图论、微分方程、计算方法、神经网络、层次分析法、模糊数学,数学软件包的使用等等“短课程”(或讲座),用的学时不多,多数是启发性的讲一些基本的概念和方法,主要是靠同学们自己去学,充分调动同学们的积极性,充分发挥同学们的潜能。培训中广泛地采用的讨论班方式,同学自己报告、讨论、辩论,教师主要起质疑、答疑、辅导的作用,竞赛中一定要使用计算机及相应的软件,如Mathemathmatica, Matlab, Mapple,甚至排版软件等。
5. 数学建模应该如何做呢!需要了解些什么!
数学建模首先花点时间选题,选一个资料比较多而且自己比较熟悉的,选好后根据题意结合查阅的文献进行建模求解。最重要的是写论文。一般的论文的格式有摘要、问题的背景与重述(一般就是照抄原题,当然加上自己的理解最好)、全局符号说明、模型假设、模型的建立与求解、模型的改进与评价(优缺点都要说)、参考文献、附录。论文摘要的写作是关键,所以你的论文摘要一定要写好。要把你针对问题所建立的模型名称、计算结果列出来。记住,论文是最重要的,一定要写好。
6. 数学建模的七个步骤
数学建模(mathematical modeling)就是通过建立数学模型来解决各种实际问题的方法。数学建模没有固定的格式和标准,也没有明确的方法,通常有6个步骤:
明确问题
合理假设
搭建模型
求解模型
分析检验
模型解释
1、明确问题
数学建模所处理的问题通常是各领域的实际问题,这些问题本身往往含糊不清,难以直接找到关键所在,不能明确提出该用什么方法。因此建立模型的首要任务是辨明问题,分析相关条件和问题,一开始尽可能使问题简单,然后再根据目的和要求逐步完善。
2、合理假设
作出合理假设,是建模的一个关键步骤。一个实际问题不经简化、假设,很难直接翻译成数学问题,即使可能也会因其过于复杂而难以求解。因此,根据对象的特征和建模的目的,需要对问题进行必要合理地简化。
合理假设的作用除了简化问题,还对模型的使用范围加以限定。
作假设的依据通常是出于对问题内在规律的认识,或来自对数据或现象的分析,也可以是两者的综合。作假设时,既要运用与问题相关的物理、化学、生物、经济、机械等专业方面的知识,也要充分发挥想象力、洞察力和判断力,辨别问题的主次,尽量使问题简化。
为保证所作假设的合理性,在有数据的情况下应对所作的假设及假设的推论进行检验,同时注意存在的隐含假设。
3、搭建模型
搭建模型就是根据实际问题的基本原理或规律,建立变量之间的关系。
要描述一个变量随另一个变量的变化而变化,最简单的方法是作图,或者画表格,还可以用数学表达式。在建模中,通常要把一种形式转换成另一种形式。将数学表达式转换成图形和表格较容易,反过来则比较困难。
用一些简单典型函数的组合可以组成各种函数形式。使用函数解决具体的实际问题,还比须给出各参数的值,寻求这些参数的现实解释,往往可以抓住问题的一些本质特征。
4、求解模型
对模型的求解往往涉及不同学科的专业知识。现代计算机科学的发展提供了强有力的辅助工具,出现了很多可进行工程数值计算和数学推导的软件包和仿真工具,熟练掌握数学建模的仿真工具可大大增强建模能力。
不同数学模型的求解难易不同,一般情况下很多实际问题不能求出解析解,因此需要借助计算机用数值的方法来求解,在编写代码之前要明确算法和计算步骤,弄清初始值、步长等因素对结果的影响。
5、分析检验
在求出模型的解后,必须对模型和“解”进行分析,模型和解的适用范围如何,模型的稳定性和可靠性如何,是否到达建模目的,是否解决了问题?
数学模型相对于客观实际不可避免地会带来一定误差,一方面要根据建模的目的确定误差的允许范围,另一方面要分析误差来源,想办法减小误差。
一般误差有以下几个来源,需要小心分析检验:
模型假设的误差:一般来说模型难以完全反映客观实际,因此需要做不同的假设,在对模型进行分析时,需要对这些假设小心检验,分析比较不同假设对结果的影响。
求近似解方法的误差:一般来说很难得到模型的解析解,在采用数值方法求解时,数值计算方法本身也会有误差。这类误差许多是可以控制的。
计算工具的舍入误差:在用计算器或计算机进行数值计算时,都不可避免由于机器字长有限而产生舍入误差,如果进行了大量运算,这些误差的积累是不可忽视的。
数据的测量误差:在用传感器、调查问卷等方法获得数据时,应注意数据本身的误差。
6、模型解释
数学建模的最后阶段是用现实世界的语言对模型进行翻译,这对使用模型的人深入了解模型的结果是十分重要的。模型和解是否有实际意义,是否与实际证据相符合。这一步是使数学模型有实际价值的关键一步。
相关阅读
数学模型和数学建模介绍
数学建模常用的
7. 五一数学建模竞赛,菜鸟需要做好哪些知识准备
多看一些例题,增强自己的经验,同时也是要夯实自己的基础。
建模比赛是对数学爱好者的一个比赛,但是这个比赛也是需要有很强的思维能力。数学本身就是一门思维要求很强的学科,同时数学也是一门非常好用的工具,其它的行业都是需要用到数学。
知识是基础,其它的经验和一些外在经验的补充都是很有帮助的。在比赛前也是要调整好自己的心态,虽然自己有很多的东西还没有搞懂,但是自己已经有一部分充足的知识来应对这次的比赛,相信自己。
8. 参加数学建模大赛需要大概要掌握哪些方面的知识
数学建模竞赛的内容:
竞赛题目一般来源于工程技术和管理科学等方面经过适当简化加工的实际问题,不要求参赛者预先掌握深入的专门知识,只需要学过普通高校的数学课程。
题目有较大的灵活性供参赛者发挥其创造能力。参赛者应根据题目要求,完成一篇包括模型假设、建立和求解、计算方法的设计和计算机实现、结果的分析和检验、模型的改进等方面的论文。竞赛评奖以假设的合理性、建模的创造性、结果的正确性和文字表述的清晰程度为主要标准。
数学建模大赛步骤:
建模是一个非常复杂和创造性的工作。现实世界中的事物是如此的多样化和繁杂,以至于不可能指定如何使用一些规则和规则来构建各种模型。下面是对建模的一般步骤和原则的概括总结:
1、模型准备:首先要了解问题的实际背景,明确课题的要求,收集各种必要的信息。
2、模型假设:为了使用数学方法,通常需要对问题做出合理的假设,突出问题的主要特征,忽略问题的次要方面。
3、模型组成:根据所做的假设和事物之间的关系,构造出各量之间的关系,构成问题。
4、模型求解:利用已知的数学方法来求解前一步得到的数学问题,往往需要进一步的简化或假设。对于数学问题,要尽可能小心地使用简单的数学工具。
9. 数学建模怎么做
数学建模是在大学当中的一个数学竞赛项目,其规则就是,通过数学知识来解决实际生活中具体的问题。
因为无论是作图还是写文章,许多地方都需要通过软件来进行辅助制作。其次的话就是需要自己组建团队,一般需要三四个人的样子。
10. 数学建模a类,在开始竞赛前要做什么具体事项,求大神解答
1、诚信是最重要的.
数学建模竞赛是考查学生研究能力和实践能力的一场综合性比赛,有很多方面的知识 和能力可以考查,但其中我觉得最重要的是诚信.我感到中国在这方面的教育还远远不 够,我所知道有很多同学写论文并不是实事求是地去做,而是编造数据、修改结论,明
明自己没法编程实现却硬说自己做出来了,还编了一些数据,这些行为或许能够骗过评 委,也许可以因“此”而获奖,但是这对他们将来是很不利的.在这方面女生更应该要
注意一下,因为女生是容易会编造数据,这并不是我对女生的歧视,而是事实却是如此, 所以希望能够唤起足够的注意
2、团队合作是能否获奖的关键
在三天的比赛中,团队交流所占用的时间可能会超过一半.在一个小组中,出现意 见不一是非常正常的,如果一个队意见完全一致,我想他们肯定不会拿奖.当出现分歧 的时候应当如何解决是很关键的,甚至直接决定你是否可以获奖,我的建议是“妥协”,
这似乎是个贬义词,但我的意思是说不要总认为自己的观点是正确的,多听听别人的观 点,在两者之间谋求共同点.如果三个人都是自傲类型的人,也许每个人都非常强,但
一旦合作分歧就无法解决,做出来的就是一团糟,也就是说“三个诸葛亮顶不上一个臭 皮匠”.我奉劝这样的话最好别组成一队了.合作在竞赛前就应当培养,比如一块儿做
一道题什么的,充分利用每个人的优点,也可以张三准备图论,李四准备最优化方法, 然后几天后大家一块交流,这些都是可以磨合团队之间的关系的.
3、时间和体力的问题
竞赛中时间分配也很重要,分配不好可能完不成论文,所以开始时要大致做一下安排, 不必分的太细,比如第一天做第一小题,第二天做第二小题,这样反而会有压力,一切顺
其自然.开始阶段不忙写作,可以将一些小组讨论的要点记录下来,不要太工整,随便一 下,到第三天再开始写论文也不迟的.也不要象偶去年到第三天晚上才开始,还好自己那
时体力好,全部写完了.另外要说的就是体力要跟上,三天一般睡眠只有不到10个小时, 所以没有体力是不行的,建议是赛前熬夜编程几次,既训练了自己的建模能力,也达到了
训练体力的目的,赛前锻炼身体我觉得没什么用处,多熬夜就行了,但比赛前一天可不许 熬呀,呵呵.
4、重视摘要
摘要是论文的门面,摘要写的不好评委后面就不会去看了,自然只能给个成功参赛奖. 摘要首先不要写废话,也不要照抄题目的一些话,直奔主题,要写明自己怎样分析问题,
用什么方法解决问题,最重要的是结论是什么要说清楚,在中国的竞赛中结论如果正确 一般得奖是必然的,如果不正确的话评委可能会继续往下看,也可能会扔在一边,但不写
结论的话就一定不会得奖了,这一点不比美国竞赛,所以要认真写.摘要至少需要琢磨两 个小时,不要轻视了它的重要性.多看看优秀论文的摘要是如何去写的很有必要的,并要
作为赛前准备的课题之一.
5、论文写作要正规
论文一定要大致按照摘要、问题重述、模型假设、符号说明、问题分析、(建立、分析 、求解模型)、……、参考文献、附录等等的方式来写.一篇论文结构上如果失败的话,
比赛也一定不会成功,一般初评会先淘汰一些结构失败的文章,如果没有论文的结构,内 容再好也没有用.论文前面的结构一般都不会变的,后面可以按照实际情况来安排自己的
结构,省略的部分可以有结果说明、灵敏度分析、其他模型、模型扩展、优缺点分析等等 的东西,多看些优秀论文就知道还有哪些形式的了,附录可以贴一些算法流程图或比较大
的结果或图表等等.
6、分析问题要认真
比赛时一般题目自己肯定没有见过,而且根据近些年来赛题我发现每道题都不是书上哪 个模型可以直接套成功的,很多根本就没有固定的模型可以参考,比如就象去年的B题,所
以分析问题不是一个去找书本的过程,依赖书本就意味着自己的思想被束缚起来,可以完 全按照自己的分析去完成,平时练习的时候学习的是一种方法,通过以前学到的方法来解
决,不是套用书本来解决.01和02两年的四题都是需要自己分析来解决的,这四题哪本书 也不会告诉你怎么做,没有模型套怎么办,只有靠自己去实际分析.我估计在前面说的五
点也许会有1/3的队可以做到,而且可以做的很好,但是这一点上就需要真本事了,平时多 努力,比赛发挥正常,这一点做好是没有问题的.如果到现在为止所说的1~6点都做好了,
7、编程求解是重要手段
美国竞赛时,美国学生中的论文很多是编程数据的说明,比如99A行星撞地球那题,他 们也能够模拟出撞击后果,这对我们来说简直是不可思议的.美国学生实践能力较强,而
中国学生擅长理论分析,所以我把编程放在了分析的后面是有中国特色的. 数学建模竞赛特别强调计算机编程解决实际问题的能力,最近几年尤其强调,加强编程 方面的能力不是一朝一夕可以练成的,需要长期刻苦的训练,常用的工具有Matlab、
Mathemati