‘壹’ 频域特性的频域分析
频域(频率域)——自变量是频率,即横轴是频率,纵轴是该频率信号的幅度,也就是通常说的频谱图。频谱图描述了信号的频率结构及频率与该频率信号幅度的关系。
对信号进行时域分析时,有时一些信号的时域参数相同,但并不能说明信号就完全相同。因为信号不仅随时间变化,还与频率、相位等信息有关,这就需要进一步分析信号的频率结构,并在频率域中对信号进行描述。动态信号从时间域变换到频率域主要通过傅立叶级数和傅立叶变换实现。周期信号靠傅立叶级数,非周期信号靠傅立叶变换。 一个频域分析的简例可以通过图1:一个简单线性过程中小孩的玩具来加以说明。该线性系统包含一个用手柄安装的弹簧来悬挂的重物。小孩通过上下移动手柄来控制重物的位置。
任何玩过这种游戏的人都知道,如果或多或少以一种正弦波的方式来移动手柄,那么,重物也会以相同的频率开始振荡,尽管此时重物的振荡与手柄的移动并不同步。只有在弹簧无法充分伸长的情况下,重物与弹簧会同步运动且以相对较低的频率动作。
随着频率愈来愈高,重物振荡的相位可能更加超前于手柄的相位,也可能更加滞后。在过程对象的固有频率点上,重物振荡的高度将达到最高。过程对象的固有频率是由重物的质量及弹簧的强度系数来决定的。
当输入频率越来越大于过程对象的固有频率时,重物振荡的幅度将趋于减少,相位将更加滞后(换言之,重物振荡的幅度将越来越少,而其相位滞后将越来越大)。在极高频的情况下,重物仅仅轻微移动,而与手柄的运动方向恰恰相反。 所有的线性过程对象都表现出类似的特性。这些过程对象均将正弦波的输入转换为同频率的正弦波的输出,不同的是,输出与输入的振幅和相位有所改变。振幅和相位的变化量的大小取决于过程对象的相位滞后与增益大小。增益可以定义为“经由过程对象放大后,输出正弦波振幅与输入正弦波振幅之间的比例系数”,而相位滞后可以定义为“输出正弦波与输入正弦波相比较,输出信号滞后的度数”。
与稳态增益K值不同的是,“过程对象的增益和相位滞后”将依据于输入正弦波信号的频率而改变。在上例中,弹簧-重物对象不会大幅度的改变低频正弦波输入信号的振幅。这就是说,该对象仅有一个低频增益系数。当信号频率靠近过程对象的固有频率时,由于其输出信号的振幅要大于输入信号的振幅,因此,其增益系数要大于上述低频下的系数。而当上例中的玩具被快速摇动时,由于重物几乎无法起振,因此该过程对象的高频增益可以认为是零。
过程对象的相位滞后是一个例外的因素。由于当手柄移动得非常慢时,重物与手柄同步振荡,所以,在以上的例子中,相位滞后从接近于零的低频段输入信号就开始了。在高频输入信号时,相位滞后为“-180度”,也就是重物与手柄以相反的方向运动(因此,我们常常用‘滞后180度’来描述这类两者反向运动的状况)。
Bode图谱表现出弹簧-重物对象在0.01-100弧度/秒的频率范围内,系统增益与相位滞后的完整频谱图。这是Bode图谱的一个例子,该图谱是由贝尔实验室的Hendrick Bode于1940s年代发明的一种图形化的分析工具。利用该工具可以判断出,当以某一特定频率的正弦波输入信号来驱动过程对象时,其对应的输出信号的振动幅度和相位。欲获取输出信号的振幅,仅仅需要将输入信号的振幅乘以“Bode图中该频率对应的增益系数”。欲获取输出信号的相位,仅仅需要将输入信号的相位加上“Bode图中该频率对应的相位滞后值”。 在过程对象的Bode图中表现出来的增益系数和相位滞后值,反映了系统的非常确定的特征,对于一个有丰富经验的控制工程师而言,该图谱将其需要知道的、有关过程对象的一切特性都准确无误的告诉了他。由此,控制工程师运用此工具,不仅可以预测“系统未来对于正弦波的控制作用所产生的系统响应”,而且能够知道“系统对任何控制作用所产生的系统响应”。
傅立叶定理使得以上的分析成为可能,该定理表明任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。数学家傅立叶在1822年证明了这个着名的定理,并创造了为大家熟知的、被称之为傅立叶变换的算法,该算法利用直接测量到的原始信号,以累加方式来计算不同正弦波信号的频率、振幅和相位。
从理论上说,傅立叶变换和Bode图可以结合在一起使用,用以预测当线性过程对象受到控制作用的时序影响时产生的反应。详见以下:
1) 利用傅立叶变换这一数学方法,把提供给过程对象的控制作用,从理论上分解为不同的正弦波的信号组成或者频谱。
2) 利用Bode图可以判断出,每种正弦波信号在经由过程对象时发生了那些变化。换言之,在该图上可以找到正弦波在每种频率下的振幅和相位的改变。
3) 反之,利用反傅立叶变换这一方法,又可以将每个单独改变的正弦波信号转换成一个信号。
既然反傅立叶变换从本质上说,也是一种累加处理,那么过程对象的线性特征将会确保-“在第一步中计算得到的各种理论正弦波”所产生单独作用的集合,应该等效于“各不同正弦波的累加集合”共同产生的作用。因此,在第三步计算得到的总信号,将可以代表“当所提供的控制作用输入到过程对象时,过程对象的实际值”。
请注意,在以上这些步骤中,没有哪个点不是由画在图上的控制器产生的单独正弦波构成。所有这些频域方面的分析技术都是概念性的。这是一种方便的数学方法,运用傅立叶变换(或者紧密相关的拉普拉斯变换),将时域信号转换为频域信号,然后再用Bode图或其他一些频域分析工具来解决手头的一些问题,最后再用反傅立叶变换将频域信号转换为时域信号。
绝大多数可用此方法解决的控制设计问题,也可以在时域内通过直接的操控来解决,但是对于计算而言,利用频域的方法通常更简单一些。在上例中,就是用乘法和减法来计算过程实际值的频谱,而该过程实际值是通过对给定的控制作用进行傅立叶变换,尔后又对照Bode图分析而得到的。
将所有的正弦波进行正确的累加,就会产生如傅立叶变换所预示的那类形状的信号。当有时这一现象并不直观,举个例子可能有助于理解。
请再次想想上面那个例子中小孩的重物-弹簧玩具,操场上的跷跷板,以及位于外部海洋上的船。设想这艘船以频率为w和幅度为A的正弦波形式在海面上起起落落,我们同时再假设跷跷板也以频率为3w和幅度为A/3的正弦波形式在振荡,并且小孩以频率为5w和幅度为A/5的正弦波形式在摇动玩具。‘三张单独的正弦波波形图’已经显示出,如果我们将三个不同的正弦波运动进行分别观察的话,每个正弦波运动将会体现出的形式。
现在假设小孩坐在跷跷板上,而跷跷板又依次固定在轮船的甲板上。如果这三者单独的正弦波运动又恰巧排列正确的话,那么,玩具所表现出的总体运动就大约是一个方波-如图4:三者合成的正弦波显示的那样。
以上并非一个非常确切的实际例子,但是却明白无误的说明:基本频率正弦波、振幅为三分之一的三倍频率谐波、以及振幅为五分之一的五倍频率谐波,它们波形的相加总和大约等于频率为w、振幅为A的方波。甚至如果再加上振幅为七分之一的七倍频率谐波、以及振幅为九分之一的九倍频率谐波时,总波形会更像方波。其实,傅立叶定理早已说明,当不同频率的正弦波以无穷级数的方式无限累加时,那么由此产生的总叠加信号就是一个严格意义上的、幅度为A的方波。傅立叶定理也可以用来将非周期信号分解成正弦波信号的无限叠加。
通过求解微分方程分析时域性能是十分有用的,但对于比较复杂的系统这种办法就比较麻烦。因为微分方程的求解计算工作量将随着微分方程阶数的增加而增大。另外,当方程已经求解而系统的响应不能满足技术要求时,也不容易确定应该如何调整系统来获得预期结果。从工程角度来看,希望找出一种方法,使之不必求解微分方程就可以预示出系统的性能。同时,又能指出如何调整系统性能技术指标。频域分析法具有上述特点,是研究控制系统的一种经典方法,是在频域内应用图解分析法评价系统性能的一种工程方法。该方法是以输入信号的频率为变量,对系统的性能在频率域内进行研究的一种方法。频率特性可以由微分方程或传递函数求得,还可以用实验方法测定.频域分析法不必直接求解系统的微分方程,而是间接地揭示系统的时域性能,它能方便的显示出系统参数对系统性能的影响,并可以进一步指明如何设计校正.这种分析法有利于系统设计,能够估计到影响系统性能的频率范围。特别地,当系统中存在难以用数学模型描述的某些元部件时,可用实验方法求出系统的频率特性,从而对系统和元件进行准确而有效的分析。
‘贰’ 如何利用示波器测量一个信号的频率
周期性的方法:
1、对于任何周期信号,利用上述的时间间隔测量方法可以测量出每个周期的时间T,那么频率f:f=1/T的计算公式如下:
2、例如,在示波器上显示的测量波形的周期为8div。“T /div”开关设置在“1 s”位置,“微调”位置设置在“校准”位置。然后计算其周期和频率:T=1us/div&TImes, 8div=8us, f=1/8us=125kHz,则测量波形的频率为125kHz。
测量频率用李沙玉图示法:
1、在X-y工作模式设置示波器时,被测信号是输入轴,和标准频率信号输入外部连接“X”,和标准频率正在慢慢改变了两个信号频率成整数倍,如外汇:=1:2,财政年度将形成稳定的李余沙图在荧光屏上。
2、李沙玉图的形状不仅与两种偏转电压的相位有关,而且与两种偏转电压的频率有关。通过跟踪方法,我们可以绘制出用户体验和用户界面的不同频率比和不同相位差。
3、利用李沙玉的图与频率的关系,可以进行准确的频率比较,确定被测信号的频率。方法是将水平线和垂直线分别引过李沙玉的图,而垂直线不应穿过或相切于图。如果横线与图相交的点数为m,垂线与图相交的点数为n,则FY/fx=m/n
4、已知标准频率FX时,可由上式计算被测信号的频率fy。显然,在实际的试验工作中,为了使试验简单、正确,在条件允许的情况下,应尽量调整已知频率信号的频率,使荧光屏上显示的图形为圆形或椭圆形。被测信号的频率等于已知信号的频率。
5、由于应用于示波器的两个电压具有不同的相位,荧光屏上的图形会有不同的形状,但这并不影响未知频率的确定。图示法测频精度高,但操作时间长。它只适用于低频信号的测量。
(2)描述周期信号的频率结构可采用什么数学工具扩展阅读:
示波器的分类:
模拟示波器使用模拟电路(示波器管,其基础是电子枪)。电子枪向屏幕发射电子,发射的电子被聚焦形成电子束,撞击屏幕。屏幕的内表面涂有荧光材料,这样电子束的点就会发光。
数字示波器是通过数据采集、A/D转换和软件编程等一系列技术而产生的高性能示波器。数字示波器的工作原理是通过模拟转换器(ADC)将测量的电压转换成数字信息。
数字示波器采集波形的一系列采样值,并存储采样值。存储极限是确定积累的采样值是否能描述出波形,然后用数字示波器重建波形。数字示波器可分为数字存储示波器(DSO)、数字荧光示波器(DPO)和采样示波器。
为了提高模拟示波器的带宽,需要使用示波器、垂直放大和水平扫描。为了提高带宽,数字示波器只需要提高前端A/D转换器的性能,对示波器和扫描电路没有特殊要求。
加上数字尺度管,可以充分利用存储器、存储和处理,以及各种触发和预触发能力。20世纪80年代,数字示波器以众多的成果崭露头角,有全面取代模拟示波器的潜力。
‘叁’ 知识补充
(1) 傅立叶级数:法国数学家 傅里叶 发现,任何周期函数都可以用 正弦函数 和 余弦函数 构成的无穷级数来表示(选择正弦函数与余弦函数作为基函数是因为它们是正交的),后世称傅里叶级数为一种特殊的三角级数,根据 欧拉公式 ,三角函数又能化成指数形式,也称傅立叶级数为一种指数级数。傅里叶级数,在时域是一个周期且连续的函数,而在频域是一个非周期离散的函数。
(2) 傅立叶变换:将一个时域非周期的连续信号,转换为一个在频域非周期的连续信号。
(3) 频域,时域与相位之间的关系:
(4) 欧拉公式:
http://blog.jobbole.com/70549/
(1) 傅里叶变换的 不足
即我们知道傅里叶变化可以分析信号的频谱,那么为什么还要提出小波变换?答案就是 方沁园 所说的,“对 非平稳 过程,傅里叶变换有局限性”。
如下图:
做完FFT(快速傅里叶变换)后,可以在频谱上看到清晰的四条线,信号包含四个频率成分。
一切没有问题。但是,如果是 频率随着时间变化的非平稳信号 呢?
如上图,最上边的是频率始终不变的平稳信号。而下边两个则是频率随着时间改变的非平稳信号,它们同样包含和最上信号相同频率的四个成分。
做FFT后,我们发现这三个时域上有巨大差异的信号,频谱(幅值谱)却非常一致。尤其是下边两个非平稳信号,我们从频谱上无法区分它们,因为它们包含的四个频率的信号的成分确实是一样的,只是出现的先后顺序不同。
可见,傅里叶变换处理非平稳信号有天生缺陷。它只能获取 一段信号总体上包含哪些频率的成分 ,但是 对各成分出现的时刻并无所知 。因此时域相差很大的两个信号,可能频谱图一样。
然而平稳信号大多是人为制造出来的,自然界的大量信号几乎都是非平稳的,所以在比如生物医学信号分析等领域的论文中,基本看不到单纯傅里叶变换这样naive的方法。
(2) 短时傅里叶变换(Short-time Fourier Transform, STFT)
一个简单可行的方法就是—— 加窗 。我又要套用 方沁园 同学的描述了,“把整个时域过程分解成无数个等长的小过程,每个小过程近似平稳,再傅里叶变换,就知道在哪个时间点上出现了什么频率了。”这就是短时傅里叶变换。
时域上分成一段一段做FFT,不就知道频率成分随着时间的变化情况了吗!
用这样的方法,可以得到一个信号的时频图了:
图上既能看到10Hz, 25 Hz, 50 Hz, 100 Hz四个频域成分,还能看到出现的时间。两排峰是对称的,所以大家只用看一排就行了。
是不是棒棒的?时频分析结果到手。但是STFT依然有缺陷。
使用STFT存在一个问题,我们应该用多宽的窗函数?
窗太宽太窄都有问题:
窗太窄,窗内的信号太短,会导致频率分析不够精准,频率分辨率差。窗太宽,时域上又不够精细,时间分辨率低。
(这里插一句,这个道理可以用海森堡不确定性原理来解释。类似于我们不能同时获取一个粒子的动量和位置,我们也不能同时获取信号绝对精准的时刻和频率。这也是一对不可兼得的矛盾体。我们不知道在某个瞬间哪个频率分量存在,我们知道的只能是在一个时间段内某个频带的分量存在。 所以绝对意义的瞬时频率是不存在的。)
所以 窄窗口时间分辨率高、频率分辨率低 , 宽窗口时间分辨率低、频率分辨率高 。对于时变的非稳态信号, 高频适合小窗口,低频适合大窗口 。然而 STFT的窗口是固定的 ,在一次STFT中宽度不会变化,所以STFT还是无法满足非稳态信号变化的频率的需求。
(3) 小波变换
那么你可能会想到,让窗口大小变起来,多做几次STFT不就可以了吗?!没错,小波变换就有着这样的思路。
但事实上小波并不是这么做的(关于这一点, 方沁园 同学的表述“小波变换就是根据算法,加不等长的窗,对每一小部分进行傅里叶变换”就不准确了。小波变换并没有采用窗的思想,更没有做傅里叶变换。)
至于为什么不采用可变窗的STFT呢,我认为是因为这样做冗余会太严重, STFT做不到正交化 ,这也是它的一大缺陷。
于是小波变换的出发点和STFT还是不同的。 STFT是给信号加窗,分段做FFT ;而小波直接把傅里叶变换的基给换了——将 无限长的三角函数基 换成了 有限长的会衰减的小波基 。这样 不仅能够获取频率 ,还可以 定位到时间 了~
这就是为什么它叫“小波”,因为是很小的一个波嘛~
从公式可以看出,不同于傅里叶变换,变量只有频率ω,小波变换有两个变量:尺度a(scale)和平移量 τ(translation)。 尺度 a控制小波函数的 伸缩 , 平移量 τ控制小波函数的 平移 。 尺度 就对应于 频率 (反比), 平移量 τ就对应于 时间 。
当伸缩、平移到这么一种重合情况时,也会相乘得到一个大的值。这时候和傅里叶变换不同的是,这 不仅可以知道信号有这样频率的成分,而且知道它在时域上存在的具体位置。
而当我们在每个尺度下都平移着和信号乘过一遍后,我们就知道信号 在每个位置都包含哪些频率成分 。
看到了吗?有了小波,我们从此再也不害怕非稳定信号啦!从此可以做时频分析啦!
做傅里叶变换只能得到一个 频谱 ,做小波变换却可以得到一个 时频谱 !
小波还有一些好处,比如,我们知道对于突变信号,傅里叶变换存在 吉布斯效应 ,我们用无限长的三角函数怎么也拟合不好突变信号。
链接:https://www.hu.com/question/22864189/answer/40772083
(1) PSNR(峰值信噪比)
PSNR: Peak Signal to Noise Ratio,一种全参考的图像质量评价指标。
其中,MSE表示当前图像X和参考图像Y的均方误差(Mean Square Error),H、W分别为图像的高度和宽度;n为每像素的比特数,一般取8,即像素灰阶数为256. PSNR的单位是dB,数值越大表示失真越小。
PSNR是最普遍和使用最为广泛的一种图像客观评价指标,然而它是基于对应像素点间的误差,即基于误差敏感的图像质量评价。由于并未考虑到人眼的视觉特性(人眼对空间频率较低的对比差异敏感度较高,人眼对亮度对比差异的敏感度较色度高,人眼对一个区域的感知结果会受到其周围邻近区域的影响等),因而经常出现评价结果与人的主观感觉不一致的情况。
(2) SSIM(结构相似性)
SSIM: structural similarity index, 是一种衡量两幅图像相似度的指标。它分别从亮度、对比度、结构三方面度量图像相似性。
结构相似性的范围为-1到1。当两张图像一模一样时,SSIM的值等于1。
其他指标:http://blog.csdn.net/smallstones/article/details/42198049
‘肆’ 频域的频域分析
频域(频率域)——自变量是频率,即横轴是频率,纵轴是该频率信号的幅度,也就是通常说的频谱图。频谱图描述了信号的频率结构及频率与该频率信号幅度的关系。
对信号进行时域分析时,有时一些信号的时域参数相同,但并不能说明信号就完全相同。因为信号不仅随时间变化,还与频率、相位等信息有关,这就需要进一步分析信号的频率结构,并在频率域中对信号进行描述。动态信号从时间域变换到频率域主要通过傅立叶级数和傅立叶变换实现。周期信号靠傅立叶级数,非周期信号靠傅立叶变换。 一个频域分析的简例可以通过图1:一个简单线性过程中小孩的玩具来加以说明。该线性系统包含一个用手柄安装的弹簧来悬挂的重物。小孩通过上下移动手柄来控制重物的位置。
任何玩过这种游戏的人都知道,如果或多或少以一种正弦波的方式来移动手柄,那么,重物也会以相同的频率开始振荡,尽管此时重物的振荡与手柄的移动并不同步。只有在弹簧无法充分伸长的情况下,重物与弹簧会同步运动且以相对较低的频率动作。
随着频率愈来愈高,重物振荡的相位可能更加超前于手柄的相位,也可能更加滞后。在过程对象的固有频率点上,重物振荡的高度将达到最高。过程对象的固有频率是由重物的质量及弹簧的强度系数来决定的。
当输入频率越来越大于过程对象的固有频率时,重物振荡的幅度将趋于减少,相位将更加滞后(换言之,重物振荡的幅度将越来越少,而其相位滞后将越来越大)。在极高频的情况下,重物仅仅轻微移动,而与手柄的运动方向恰恰相反。 所有的线性过程对象都表现出类似的特性。这些过程对象均将正弦波的输入转换为同频率的正弦波的输出,不同的是,输出与输入的振幅和相位有所改变。振幅和相位的变化量的大小取决于过程对象的相位滞后与增益大小。增益可以定义为“经由过程对象放大后,输出正弦波振幅与输入正弦波振幅之间的比例系数”,而相位滞后可以定义为“输出正弦波与输入正弦波相比较,输出信号滞后的度数”。
与稳态增益K值不同的是,“过程对象的增益和相位滞后”将依据于输入正弦波信号的频率而改变。在上例中,弹簧-重物对象不会大幅度的改变低频正弦波输入信号的振幅。这就是说,该对象仅有一个低频增益系数。当信号频率靠近过程对象的固有频率时,由于其输出信号的振幅要大于输入信号的振幅,因此,其增益系数要大于上述低频下的系数。而当上例中的玩具被快速摇动时,由于重物几乎无法起振,因此该过程对象的高频增益可以认为是零。
过程对象的相位滞后是一个例外的因素。由于当手柄移动得非常慢时,重物与手柄同步振荡,所以,在以上的例子中,相位滞后从接近于零的低频段输入信号就开始了。在高频输入信号时,相位滞后为“-180度”,也就是重物与手柄以相反的方向运动(因此,我们常常用‘滞后180度’来描述这类两者反向运动的状况)。
Bode图谱表现出弹簧-重物对象在0.01-100弧度/秒的频率范围内,系统增益与相位滞后的完整频谱图。这是Bode图谱的一个例子,该图谱是由贝尔实验室的Hendrick Bode于1940s年代发明的一种图形化的分析工具。利用该工具可以判断出,当以某一特定频率的正弦波输入信号来驱动过程对象时,其对应的输出信号的振动幅度和相位。欲获取输出信号的振幅,仅仅需要将输入信号的振幅乘以“Bode图中该频率对应的增益系数”。欲获取输出信号的相位,仅仅需要将输入信号的相位加上“Bode图中该频率对应的相位滞后值”。
‘伍’ 周期半波余弦信号傅里叶级数求解~ 要过程 谢谢 越细越好
频域分析法即傅里叶分析法,是变换域分析法的基石。其中,傅里叶级数是变换域分析法的理论基础,傅里叶变换作为频域分析法的重要数学工具,具有明确的物理意义,在不同的领域得到广泛的应用
连续时间周期信号的分解:以高等数学的知识,任何周期为T的周期函数,在满足狄里赫利条件时,则该周期信号可以展开成傅里叶级数。傅里叶级数有三角形式和指数形式两种。
根据欧拉公式并考虑和奇偶性可将改写为指数形式的傅里叶级数:即周期信号可分解为一系列不同频率的虚指数信号之和。
(5)描述周期信号的频率结构可采用什么数学工具扩展阅读:
注意事项:
如果对一个系统输入复指数信号,输出必定也是复指数信号,根据复数相等实部实部相等、虚部虚部相等的原则,那么输出的实部与输入的实部:cos(wt)相对应,输出的虚部与输入的虚部:sin(wt)相对应。
输入一个复指数函数就同时解决了系统输出的振幅和相位的问题:因为输出的振幅等于响应实部的平方与虚部的平方和的开方,而输出的相位等于响应虚部与实部的比值的反正切。对于线性控制系统输入是正弦的输出也是正弦的,且周期不变。
‘陆’ 2. 在频域中描述周期信号的数学方法是什么
频域分析法
借助傅里叶级数,将非正弦周期性电压(电流)分解为一系列不同频率的正弦量之和,按照正弦交流电路计算方法对不同频率的正弦量分别求解,再根据线性电路叠加定理进行叠加即为所求的解,这是分析非正弦周期性电路的基本方法,这种方法叫频域分析法,也称为频谱分析法.
不好意思,我也搜索到的
‘柒’ 既然傅里叶级数系数能够描述信号的频率特性,为什么还要傅里叶变换
傅里叶级数系数能够描述【周期信号】的频率特性。
傅里叶变换,能够描述【非周期信号】的频率特性。