❶ 数学三大未解之谜
即费马猜想、四色猜想和哥德巴赫猜想。
费马猜想的证明于1994年由英国数学家安德鲁·怀尔斯(Andrew Wiles)完成,遂称费马大定理;
四色猜想的证明于1976年由美国数学家阿佩尔(Kenneth Appel)与哈肯(Wolfgang Haken)借助计算机完成,遂称四色定理;
哥德巴赫猜想尚未解决,目前最好的成果(陈氏定理)乃于1966年由中国数学家陈景润取得。这三个问题的共同点就是题面简单易懂,内涵深邃无比,影响了一代代的数学家。
❷ 数学未解之谜有哪些啊
几个未解的题。
1、求 (1/1)^3+(1/2)^3+(1/3)^3+(1/4)^3+(1/5)^3+ … +(1/n)^3=?
更一般地:
当k为奇数时 求
(1/1)^k+(1/2)^k+(1/3)^k+(1/4)^k+(1/5)^k+ … +(1/n)^k=?
背景:
欧拉求出:
(1/1)^2+(1/2)^2+(1/3)^2+(1/4)^2+(1/5)^2+ … +(1/n)^2=(π^2)/6
并且当k为偶数时的表达式。
2、e+π的超越性
背景
此题为希尔伯特第7问题中的一个特例。
已经证明了e^π的超越性,却至今未有人证明e+π的超越性。
3、素数问题。
证明:
ζ(s)=1+(1/2)^s+(1/3)^s+(1/4)^s+(1/5)^s + …
(s属于复数域)
所定义的函数ζ(s)的零点,除负整实数外,全都具有实部1/2。
背景:
此即黎曼猜想。也就是希尔伯特第8问题。
美国数学家用计算机算了ζ(s)函数前300万个零点确实符合猜想。
希尔伯特认为黎曼猜想的解决能够使我们严格地去解决歌德巴赫猜想(任一偶数可以分解为两素数之和)和孪生素数猜想(存在无穷多相差为2的素数)。
引申的问题是:素数的表达公式?素数的本质是什么?
4、 存在奇完全数吗?
背景:
所谓完全数,就是等于其因子的和的数。
前三个完全数是:
6=1+2+3
28=1+2+4+7+14
496=1+2+4+8+16+31+62+124+248
目前已知的32个完全数全部是偶数。
1973年得到的结论是如果n为奇完全数,则:
n>10^50
5、 除了8=2^3,9=3^2外,再没有两个连续的整数可表为其他正整数的方幂了吗?
背景:
这是卡塔兰猜想(1842)。
1962年我国数学家柯召独立证明了不存在连续三个整数可表为其它正整数的方幂。
1976年,荷兰数学家证明了大于某个数的任何两个正整数幂都不连续。因此只要检查小于这个数的任意正整数幂是否有连续的就行了。
但是,由于这个数太大,有500多位,已超出计算机的计算范围。
所以,这个猜想几乎是正确的,但是至今无人能够证实。
6、 任给一个正整数n,如果n为偶数,就将它变为n/2,如果除后变为奇数,则将它乘3加1(即3n+1)。不断重复这样的运算,经过有限步后,一定可以得到1吗?
背景:
这角古猜想(1930)。
人们通过大量的验算,从来没有发现反例,但没有人能证明。
三 希尔伯特23问题里尚未解决的问题。
1、问题1连续统假设。
全体正整数(被称为可数集)的基数 和实数集合(被称为连续统)的基数c之间没有其它基数。
背景:1938年奥地利数学家哥德尔证明此假设在集合论公理系统,即策莫罗-佛朗克尔公理系统里,不可证伪。
1963年美国数学家柯恩证明在该公理系统,不能证明此假设是对的。
所以,至今未有人知道,此假设到底是对还是错。
2、问题2 算术公理相容性。
背景:哥德尔证明了算术系统的不完备,使希尔伯特的用元数学证明算术公理系统的无矛盾性的想法破灭。
3、 问题7 某些数的无理性和超越性。
见上面 二 的 2
5、 问题 8 素数问题。
见上面 二 的 3
6、 问题 11 系数为任意代数数的二次型。
背景:德国和法国数学家在60年代曾取得重大进展。
7、 问题 12 阿贝尔域上的克罗内克定理在任意代数有理域上的推广。
背景:此问题只有些零散的结果,离彻底解决还十分遥远。
8、 问题13 仅用二元函数解一般7次代数方程的不可能性。
背景:1957苏联数学家解决了连续函数情形。如要求是解析函数则此问题尚未完全解决。
9、 问题15 舒伯特计数演算的严格基础。
背景: 代数簌交点的个数问题。和代数几何学有关。
10、 问题 16 代数曲线和曲面的拓扑。
要求代数曲线含有闭的分枝曲线的最大数目。和微分方程的极限环的最多个数和相对位置。
11、 问题 18 用全等多面体来构造空间。
无限个相等的给定形式的多面体最紧密的排列问题,现在仍未解决。
12、 问题 20 一般边值问题。
偏微分方程的边值问题,正在蓬勃发展。
13、 问题 23 变分法的进一步发展。
四 千禧七大难题
2000年美国克雷数学促进研究所提出。为了纪念百年前希尔伯特提出的23问题。每一道题的赏金均为百万美金。
1、 黎曼猜想。
见 二 的 3
透过此猜想,数学家认为可以解决素数分布之谜。
这个问题是希尔伯特23个问题中还没有解决的问题。透过研究黎曼猜想数
学家们认为除了能解开质数分布之谜外,对于解析数论、函数理论、
椭圆函数论、群论、质数检验等都将会有实质的影响。
2、杨-密尔斯理论与质量漏洞猜想(Yang-Mills Theory and Mass Gap
Hypothesis)
西元1954 年杨振宁与密尔斯提出杨-密尔斯规范理论,杨振宁由
数学开始,提出一个具有规范性的理论架构,后来逐渐发展成为量子
物理之重要理论,也使得他成为近代物理奠基的重要人物。
杨振宁与密尔斯提出的理论中会产生传送作用力的粒子,而他们
碰到的困难是这个粒子的质量的问题。他们从数学上所推导的结果
是,这个粒子具有电荷但没有质量。然而,困难的是如果这一有电荷
的粒子是没有质量的,那么为什么没有任何实验证据呢?而如果假定
该粒子有质量,规范对称性就会被破坏。一般物理学家是相信有质
量,因此如何填补这个漏洞就是相当具挑战性的数学问题。
3、P 问题对NP 问题(The P Versus NP Problems)
随着计算尺寸的增大,计算时间会以多项式方式增加的型式的问题叫做“P 问题”。
P 问题的P 是Polynomial Time(多项式时间)的头一个字母。已
知尺寸为n,如果能决定计算时间在cnd (c 、d 为正实数) 时间以下
就可以或不行时,我们就称之为“多项式时间决定法”。而能用这个
算法解的问题就是P 问题。反之若有其他因素,例如第六感参与进来
的算法就叫做“非决定性算法”,这类的问题就是“NP 问题”,NP 是
Non deterministic Polynomial time (非决定性多项式时间)的缩写。
由定义来说,P 问题是NP 问题的一部份。但是否NP 问题里面有
些不属于P 问题等级的东西呢?或者NP 问题终究也成为P 问题?这
就是相当着名的PNP 问题。
4、.纳维尔–史托克方程(Navier–Stokes Equations)
因为尤拉方程太过简化所以寻求作修正,在修正的过程中产生了
新的结果。法国工程师纳维尔及英国数学家史托克经过了严格的数学
推导,将黏性项也考虑进去得到的就是纳维尔–史托克方程。
自从西元1943 年法国数学家勒雷(Leray)证明了纳维尔–史托
克方程的全时间弱解(global weak solution)之后,人们一直想知道
的是此解是否唯一?得到的结果是:如果事先假设纳维尔–史托克方
程的解是强解(strong solution),则解是唯一。所以此问题变成:弱解与强解之间的差距有多大,有没有可能弱解会等于强解?换句话说,是不是能得到纳维尔–史托克方程的全时间平滑解?再者就是证
明其解在有限时间内会爆掉(blow up in finite time)。
解决此问题不仅对数学还有对物理与航太工程有贡献,特别是乱
流(turbulence)都会有决定性的影响,另外纳维尔–史托克方程与奥
地利伟大物理学家波兹曼的波兹曼方程也有密切的关系,研究纳维
尔–史托克(尤拉)方程与波兹曼方程(Boltzmann Equations)两
者之关系的学问叫做流体极限(hydrodynamics limit),由此可见纳
维尔–史托克方程本身有非常丰富之内涵。
5.庞加莱臆测(Poincare Conjecture)
庞加莱臆测是拓朴学的大问题。用数学界的行话来说:单连通的
三维闭流形与三维球面同胚。
从数学的意义上说这是一个看似简单却又非
常困难的问题,自庞加莱在西元1904 年提出之
后,吸引许多优秀的数学家投入这个研究主题。
庞加莱(图4)臆测提出不久,数学们自然的将
之推广到高维空间(n4),我们称之为广义庞加莱臆测:单连通的
≥
n(n4)维闭流形,如果与n
≥ 维球面有相同的基本群(fundamental group)则必与n维球面同胚。
经过近60 年后,西元1961 年,美国数学家斯麦尔(Smale)以
巧妙的方法,他忽略三维、四维的困难,直接证明五维(n5)以上的
≥
广义庞加莱臆测,他因此获得西元1966 年的费尔兹奖。经过20年之
后,另一个美国数学家佛瑞曼(Freedman)则证明了四维的庞加莱臆
测,并于西元1986年因为这个成就获得费尔兹奖。但是对于我们真
正居住的三维空间(n3),在当时仍然是一个未解之谜。
=
一直到西元2003 年4 月,俄罗斯数学家斐雷曼(Perelman)于
麻省理工学院做了三场演讲,在会中他回答了许多数学家的疑问,许
多迹象显示斐雷曼可能已经破解庞加莱臆测。数天后“纽约时报”首
次以“俄国人解决了着名的数学问题”为题向公众披露此一消息。同
日深具影响力的数学网站MathWorld 刊出的头条文章为“庞加莱臆测
被证明了,这次是真的!”[14]。
数学家们的审查将到2005年才能完成,到目前为止,尚未发现
斐雷曼无法领取克雷数学研究所之百万美金的漏洞。
6.白之与斯温纳顿-戴尔臆测(Birch and Swinnerton-Dyer
Conjecture)
一般的椭圆曲线方程式 y^2=x^3+ax+b ,在计算椭圆之弧长时
就会遇见这种曲线。自50 年代以来,数学家便发现椭圆曲线与数论、
几何、密码学等有着密切的关系。例如:怀尔斯(Wiles)证明费马
最后定理,其中一个关键步骤就是用到椭圆曲线与模形式(molarform)之关系-即谷山-志村猜想,白之与斯温纳顿-戴尔臆测就是与
椭圆曲线有关。
60年代英国剑桥大学的白之与斯温纳顿-戴尔利用电脑计算一些
多项式方程式的有理数解。通常会有无穷多解,然而要如何计算无限
呢?其解法是先分类,典型的数学方法是同余(congruence)这个观念
并借此得同余类(congruence class)即被一个数除之后的余数,无穷
多个数不可能每个都要。数学家自然的选择了质数,所以这个问题与
黎曼猜想之Zeta 函数有关。经由长时间大量的计算与资料收集,他
们观察出一些规律与模式,因而提出这个猜测。他们从电脑计算之结
果断言:椭圆曲线会有无穷多个有理点,若且唯若附于曲线上面的
Zeta 函数ζ (s) = 时取值为0,即ζ (1)
;当s1= 0
7.霍奇臆测(Hodge Conjecture)
“任意在非奇异投影代数曲体上的调和微分形式,都是代数圆之
上同调类的有理组合。”
最后的这个难题,虽不是千禧七大难题中最困难的问题,但却可
能是最不容易被一般人所了解的。因为其中有太多高深专业而且抽象
参考资料:《数学的100个基本问题》《数学与文化》《希尔伯特23个数学问题回顾》
❸ 世界顶级未解数学难题都有哪些
1、霍奇猜想(Hodge conjecture):
二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。
这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导致一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。
不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。
霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。
2、庞加莱猜想(Poincaré conjecture):
如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。
另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。
我们说,苹果表面是“单连通的”,而轮胎面不是。大约在一百年以前,法国数学家庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。
3、黎曼假设:
有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2、3、5、7……等等。这样的数称为素数;它们在纯粹数学及应用数学中都起着重要作用。
在所有自然数中,素数分布似乎并不遵循任何有规则的模式;然而,德国数学家黎曼(1826~1866)观察到,素数的频率紧密相关于所谓的黎曼ζ函数。
黎曼假设断言,方程ζ(s)=0的非平凡零点的实部都是1/2,即位于直线1/2 + ti(“临界线”,critical line)上。这点已经对于开首的1,500,000,000个解验证过。证明它对于每一个有意义的解都成立,将为围绕素数分布的许多奥秘带来光明。
4、杨-米尔斯(Yang-Mills)存在性和质量缺口:
量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的。大约半个世纪以前,杨振宁和罗伯特·米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系。
基于杨-米尔斯方程的预言已经在如下的全世界范围内的实验室中所履行的高能实验中得到证实:布罗克哈文、斯坦福、欧洲粒子物理研究所和筑波。
尽管如此,他们的既描述重粒子、又在数学上严格的方程,并没有已知的解。特别是,被大多数物理学家所确认、并且在他们的对于“夸克”的不可见性的解释中应用的“质量缺口”假设,从来没有得到一个数学上令人满意的证实。
周氏猜测:
当2^(2^n)<p<2^(2^(n+1))时,Mp有2^(n+1)-1个是素数。
周海中还据此作出推论:当p<2^(2^(n+1))时,Mp有2^(n+2)-n-2个是素数。
关于梅森素数的分布研究,英国数学家香克斯、德国数学家伯利哈特、印度数学家拉曼纽杨和美国数学家吉里斯等曾分别提出过猜测,但他们的猜测有一个共同点,就是都以近似表达式提出;而它们与实际情况的接近程度均难如人意。
唯有周氏猜测是以精确表达式提出,而且颇具数学美。这一猜测至今未被证明或反证,已成了着名的数学难题。
美籍挪威数论大师、菲尔茨奖和沃尔夫奖得主阿特勒·塞尔伯格认为:周氏猜测具有创新性,开创了富于启发性的新方法;其创新性还表现在揭示新的规律上。
网络--数学难题
❹ 数学界有哪些让你惊叹“怎么这都不知道”的未解之谜
有理距离
在平面上是否存在一个点,它到单位正方形的四个顶点的距离都是有理数?
第一次知道这个问题竟然没被解决时,我很是吃惊——我原本还以为这个问题会有一些很平凡的解呢。然而,仔细想想也不奇怪,这和很多其他的数学难题一样,本质上都是 Diophantus 方程,其解的存在性都是很难判断的。只不过,某些问题的叙述方式会给人带来一种格外基本、格外初等的感觉。与这个问题类似的是 Euler 完美长方体问题:是否存在一个长方体,它的长、宽、高、所有面对角线以及体对角线的长度都是有理数?事实上,还有很多“构造点集让距离满足一定关系”形式的数学问题,它们都是长期以来悬而未解的难题。
数学很有趣值得思考研究 。
❺ 世界三大未解数学难题是什么
1、霍奇猜想(Hodge conjecture):
二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。
这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导致一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。
不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。
霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。
2、黎曼假设:
有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2、3、5、7……等等。这样的数称为素数;它们在纯粹数学及应用数学中都起着重要作用。
在所有自然数中,素数分布似乎并不遵循任何有规则的模式;然而,德国数学家黎曼(1826~1866)观察到,素数的频率紧密相关于所谓的黎曼ζ函数。
黎曼假设断言,方程ζ(s)=0的非平凡零点的实部都是1/2,即位于直线1/2 + ti(“临界线”,critical line)上。这点已经对于开首的1,500,000,000个解验证过。证明它对于每一个有意义的解都成立,将为围绕素数分布的许多奥秘带来光明。
难题的提出
20世纪是数学大发展的一个世纪。数学的许多重大难题得到完满解决, 如费马大定理的证明,有限单群分类工作的完成等, 从而使数学的基本理论得到空前发展。
效法希尔伯特, 许多当代世界着名的数学家在过去几年中整理和提出新的数学难题,希冀为新世纪数学的发展指明方向。 这些数学家知名度是高的, 但他们的这项行动并没有引起世界数学界的共同关注。
2000年初美国克雷数学研究所的科学顾问委员会选定了七个"千年大奖问题",克雷数学研究所的董事会决定建立七百万美元的大奖基金,每个"千年大奖问题"的解决都可获得百万美元的奖励。克雷数学研究所"千年大奖问题"的选定,其目的不是为了形成新世纪数学发展的新方向, 而是集中在对数学发展具有中心意义、数学家们梦寐以求而期待解决的重大难题。
❻ 世界上有哪些至今没有解决的数学难题
1.哥德巴赫猜想:1个偶数可分为2个质数相加《本题未解》(本题被誉为数学王冠上的明珠,陈景润证明了1个偶数可分为1个质数加上2个质数相乘,俗称1+2)
2.费马猜想:任意自然数abc,当n大于2时,a的n次方加b的n次方必不等于c的n次方《本题已解,奖金已送出》(法律专业的费马写完这个猜想后说道:我已想到这个题目的美妙解法,无奈这页空白太少,写不下,就不写了…后来的数学家看到这句话后大为光火,奋而求解,终于在350多年后怀尔斯用模椭圆曲线和群论搞定了本题)
3.四色猜想:任何地图只要4种颜色就可以区分所有国家《本题已解》(1976年美国数学家阿佩尔、哈肯用2台计算机经过50多天100多亿次逻辑判断证明了出来,据说刚开始它作为答案仅仅是因为没人能证明该证明过程是错的)
4.植树问题:种20棵树,4棵为1行,问最多能种几行(16世纪排出16行,19世纪排出18行,20世纪末排出20行,那么你呢…)
5.欧氏第五公设问题:…等价表达…过直线外1点只有1条平行线《本题无解》(欧几里德通过这个假设推出了欧氏几何,也叫平面几何;顽强而又不幸的罗巴切夫斯基通过这个假设的反面推出了非欧几何,也叫黎曼几何,广义相对论的基础…)
6.黎曼猜想:黎曼zeta函数等0时的所有解在同一直线上《本题未解》(本题非常的神秘,据说它涉及数论函数甚至经济社会等等方面,博奕论鼻祖纳什曾经用n年时间求解此题,不幸疯掉…)
7.角谷猜想:1个自然数,是偶数就除2,是奇数就乘3加1,最后结果总会是1《本题未解》
8.单色3角形问题:有6个点,每2点用黑色或红色相连,是否必定存在1个单色3角形?《本题未解》(另一表达:6个人在一起,必有3个人认识或不认识)
❼ 世界三大未解数学难题是什么
世界三大未解数学难题如下。
1.第一题:三等分任意角。用一把没刻度的尺子和圆规来三等分任意角。
2.第二题:化圆为方。把一个圆“兑换”成相同大小的正方形。
3.第三题:尺规作图。用一把没有刻度的尺子和一把圆规作出漂亮的对称图形。
世界近代三大数学难题之一四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。这个结论能不能从数学上加以严格证明呢。
他和在大学读书的弟弟格里斯决心试一试。兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。1852年10月23日,他的弟弟就这个问题的证明请教他的老师、着名数学家德摩尔根,摩尔根也没有能找到解决这个问题的途径。
于是写信向自己的好友、着名数学家哈密尔顿爵士请教。哈密尔顿接到摩尔根的信后,对四色问题进行论证。但直到1865年哈密尔顿逝世为止,问题也没有能够解决。
❽ 世界顶级未解数学难题都有哪些
哥德巴赫猜想
❾ 世界上有哪些着名的猜想
世界三大数学猜想即费马猜想、四色猜想和哥德巴赫猜想。
费马猜想的证明于1994年由英国数学家安德鲁·怀尔斯(Andrew Wiles)完成,遂称费马大定理。
四色猜想的证明于1976年由美国数学家阿佩尔(Kenneth Appel)与哈肯(Wolfgang Haken)借助计算机完成,遂称四色定理。
哥德巴赫猜想尚未解决,最好的成果(陈氏定理)乃于1966年由中国数学家陈景润取得。这三个问题的共同点就是题面简单易懂,内涵深邃无比,影响了一代代的数学家。
四色定理的内容及提出
四色问题的内容是:“任何一张平面地图只用四种颜色就能使具有共同边界的国家着上不同的颜色。”用数学语言表示,即“将平面任意地细分为不相重叠的区域,每一个区域总可以用1,2,3,4这四个数字之一来标记,而不会使相邻的两个区域得到相同的数字。”
这里所指的相邻区域,是指有一整段边界是公共的。如果两个区域只相遇于一点或有限多点,就不叫相邻的。因为用相同的颜色给它们着色不会引起混淆。