导航:首页 > 数字科学 > 高一数学解析式怎么办

高一数学解析式怎么办

发布时间:2022-10-15 01:00:49

㈠ 高一数学f(x)解析式的各种解法(加上例题)

直接法:
例1、在x克a%的盐水中,加入y克b%的盐水,浓度变为c%(a,b>0,a,b不相等),则x与y的函数关系是_________.
解析:由题意可得,,∴所求函数的解析式为:。
小结:此法常用于与函数有关的应用题。
待定系数法:
例2、已知f
(x)是二次函数且f(x+1)+f(x-1)=2x2-4x+4,则f
(x)=___.解:由题意可设:f(x)=ax2+bx+c,则f(x-1)+f(x+1)=a(x+1)2+b(x+1)+c+a(x-1)2+b(x-1)+c=
2ax2+2bx+2a+2c=2x2-4x+4对x∈R恒成立,从而有

小结:当已知函数的类型时,常用此法。
换元法:
例3、已知f
,则f(x)=____________.
解:设u=≥1,则,则=
,∴f(x).
4、凑配法:如例4(同例3)解:∵f
=,∴f(x)。
小结:当已知函数的一个复合函数的解析式时,常用换元法或凑配法。
5、方程组法:如例5、已知f(x)+2,求f(x).
解:∵①∴
以代替①式中x的得②
∴①-②2得:,即。
小结:当已知x与或x与-x的函数值的一个方程时,可考虑用此法。
6、相关点法:如例6、已知函数f(x)=2x+1与函数y=g(x)的图象关于直线x=2成轴对称图形,试求函数y=g(x)的解析式。
解:设在所求函数的图象上,点是M关于直线x=2的对称点,则
又∴即g(x)=9-2x.
小结:当以函数图象的对称性为已知条件时,可考虑用此法。
7、叠加法:如例7、已知函数f(x)对任意的x,y都有f(x+y)=f(x)+f(y)+(x+y)+1,且f(1)=1,若x∈N,试求f(x)的解析式。
解:令x=y=0,则有f(0)=f(0)+f(0)+0,∴f(0)=0,再令y=1,则f(x+1)=f(x)+f(1)+x,
①,令①中x=1,2,3,…,n-1,得f(2)=f(1)+2,f(3)=f(2)+3,
f(4)=f(3)+4,…,f(n-1)=f(n-2)+(n-1),f(n)=f(n-1)+n,以上各式左右两边分别相加得:
f(n)=f(1)+2+3+…+n=1+2+3+…+(n-1)=,当n=0时,f(0)=0成立。
故f(x)的表达式为f(x)=,x∈N.
小结:此法只适用于定义域为整数集(或它的子集)的函数,关键是可求得f(n)-f(n-1).
去网络文库收索吧,总结得很好呢!

㈡ 高一数学九大解题技巧

高一数学 并不是简简单单就能学好,升入高中以后,高中数学变得更抽象了,很多知识同学们理解起来开始有困难了。下面给大家分享一些关于高一数学九大解题技巧,希望对大家有所帮助。

高一数学九大解题技巧

1、配法

通过把一个解析式利用恒等变形的 方法 ,把其中的某些项配成一个或几个多项式正整数次幂的和形式解决数学问题的方法,叫配方法。配方法用的最多的是配成完全平方式,它是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

2、因式分解法

因式分解,就是把一个多项式化成几个整式乘积的形式,是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法

换元法是数学中一个非常重要而且应用十分广泛的解题方法。通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式法与韦达定理

一元二次方程ax2bxc=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

5、待定系数法

在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。

6、构造法

在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。

7、面积法

平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。

用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。

8、几何变换法

在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。

几何变换包括:(1)平移;(2)旋转;(3)对称。

9、反证法

反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。

反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。

归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。

高一数学基础差该怎么学习

一、快速掌握基础知识

对于基础薄弱的同学来说,课本就是他们第一步需要掌握的提分法宝。想要提高数学成绩,你需要记熟数学课本里的每一个知识点,看懂每一个例题,一章一章的进行掌握。

你可以先记公式,背熟之后在接着研究例题,最后去看课后习题,用例题和习题去思考该怎么解,不要急着去计算,先想就好,然后在翻看课本看公式定理是怎么推导的,尤其是过程和应用案例。对于课本中的典型问题,更是要深刻的理解,并学会解题后 反思 。这样才能够深刻理解这个问题,跳出题海这个怪圈。

做好错题笔记,记录容易犯的错误,分析错误的原因,找到正确的办法。不要盲目的去做题,必须要在搞清楚概念的基础上做这些才是有用的。

二、学会运用基础知识

在掌握数学基础知识的同时,要学会知识的运用,这样你才能在考试中拿到分数。高中数学学习的特点是:速度快、容量大、方法多。而这对于基础差的同学来说,有时听了会记不住,或是记住了却不会解题。这时候就需要我们把笔记记好,不需要一字不落的记下老师说的话,只需要把关键的思路和结论记下来就可以了,课后在去整理、回看笔记,这也是再学习的一个过程。

想要学好数学题就必须要多做题,只有做了一定题目才能学好数学,而且做题是高中数学学习的主旋律。但是这里的做题不是盲目做题,而是要看题思考,学会思考、反思、 总结 才是学习数学的王道。

其实数学解题并不难,分析题干,挖掘已知条件,寻找这些条件之间有什么关系,得出一个有用的结论,这个结论是我们所要用来解决问题的关键,这就是数学解题的形式。所以想要学好数学,主要靠的是答题的思路,而不是作出某道题的方法。

高一数学提分技巧

一、预习是聪明的选择

最好老师指定预习内容,每天不超过十分钟,预习的目的就是强制记忆基本概念。

二、基本概念是根本

基本概念要一个字一个字理解并记忆,要准确掌握基本概念的内涵外延。只有思维钻进去才能了解内涵,思维要发散才能了解外延。只有概念过关,作题才能又快又准。

三、作业可巩固所学知识

作业一定要认真做,不要为节约时间省步骤,作业不要自检,全面暴露存在的问题是好事。

四、难题要独立完成

想得高分一定要过难题关,难题的关键是学会三种语言的熟练转换。(文字语言、符号语言、图形语言)

五、加倍递减训练法

通过训练,从心理上、精力上、准确度上逐渐调整到考试的最佳状态,该训练一定要在专业人员指导下进行,否则达不到效果。

六、考前不要做新题

考前找到你近期做过的试卷,把错的题重做一遍,这才是有的放矢的 复习方法 。

七、良好心态

考生要自信,要有客观的考试目标。追求正常发挥,而不要期望自己超长表现,这样心态会放的很平和。沉着冷静的同时也要适度紧张,要使大脑处于最佳活跃状态

八、考试从审题开始

审题要避免“猜”、“漏”两种不良习惯,为此审题要从字到词再到句。

九、学会使用演算纸

要把演算纸看成是试卷的一部分,要工整有序,为了方便检查要写上题号。

十、正确对待难题

难题是用来拉开分数的,不管你水平高低,都应该学会绕开难题最后做,不要被难题搞乱思绪,只有这样才能保证无论什么考试,你都能排前几名。


高一数学九大解题技巧相关 文章 :

★ 高一数学的解题技巧

★ 高一数学解题思维和解题技巧

★ 高中数学集合解题方法

㈢ 高一求函数解析式什么时候用什么方法

一共有十一种:
一、定义法,二、换元法,三、方程组法,四、特殊化法,五、待定系数法,六、函数性质法,七、反函数法,八、“即时定义”法,九、建模法,十、图像法,十一、轨迹法。
但在高一阶段只有六种:

.
配凑法:把形如
f(g(x))
内的
g(x)
当做整体,在解析式的右端整理成只含有
g(x)
的形式,再把
g(x)

x
代替。一般的利用完全平方公式。

.
换元法:已知
f

g(x)

,

f(x)
的解析式,一般的可用换元法,具体为:令
t=g(x),
在求出
f(t)
可得
f

x
)的解析式。换元后要确定新元
t
的取值范围。

.
待定系数法:已知函数模型(如:一次函数,二次函数,等)求解析式,首先设出函数解析式,根据已知条件代入求系数。

.
方程组法:求抽象函数的解析式,往往通过变换变量构造一个方程,组成方程组,利用消元法求
f

x
)的解析式。

.
赋值法:一般的,已知一个关于
x,y
的抽象函数,利用特殊值去掉一个未知数
y
,得出关于
x
的解析式。

.
根据图象写出解析式:观察图像的特点和特殊点,可用代入法,或根据函数图像的性质进行解题。注意定义域的变化。

㈣ 高一求函数解析式的几种方法(详细解说)

一共有七种,介绍两种。换元法,已知f(x-1)=4x*x+3x+2,求f(x).解:设t=x-i,则x=t+1,则f(t)=(t+1)*(t+1)+3*(t+1)+2=t*t+5t+6,f(x)=x*x+5x+6;注意有整体换元(y=根号1-正弦x平方,则用t替换根号1-正弦x平方,按上述步骤求解即可, 方程组法,将3f(x)+2f(1/x)=4x与3f(1/x)+2f(x)=4/x联合组成方程组,按二元一次方程的解法即可的出结果!! 已知f(x)的定义域是非零实数
由于 3f(x)+2f(1/x)=4x
分别取 x=t,x=1/t
得 3f(t)+2f(1/t)=4t
3f(1/t)+2f(t)=4/t
联立解得
f(t)=4/5 *(3t-2/t)

f(x)=4/5 *(3x-2/x).

阅读全文

与高一数学解析式怎么办相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:740
乙酸乙酯化学式怎么算 浏览:1406
沈阳初中的数学是什么版本的 浏览:1353
华为手机家人共享如何查看地理位置 浏览:1045
一氧化碳还原氧化铝化学方程式怎么配平 浏览:886
数学c什么意思是什么意思是什么 浏览:1411
中考初中地理如何补 浏览:1300
360浏览器历史在哪里下载迅雷下载 浏览:703
数学奥数卡怎么办 浏览:1388
如何回答地理是什么 浏览:1025
win7如何删除电脑文件浏览历史 浏览:1058
大学物理实验干什么用的到 浏览:1487
二年级上册数学框框怎么填 浏览:1701
西安瑞禧生物科技有限公司怎么样 浏览:976
武大的分析化学怎么样 浏览:1250
ige电化学发光偏高怎么办 浏览:1339
学而思初中英语和语文怎么样 浏览:1653
下列哪个水飞蓟素化学结构 浏览:1425
化学理学哪些专业好 浏览:1488
数学中的棱的意思是什么 浏览:1059