导航:首页 > 数字科学 > 代数学发展对数学教学有哪些启发

代数学发展对数学教学有哪些启发

发布时间:2022-10-15 16:19:15

① 如何将数学史有效融入课堂教学

一直以来,数学史在数学教学中没有得到应有的重视,部分数学教师对有关数学史的知识轻描淡写,一带而过,忽视了数学史对数学教学的促进作用,如果不把数学史融入数学课堂教学中,那么数学的教育价值就难以体现,我们要充分认识到数学史对数学课堂教学的重大意义。
1.数学史融入课堂教学的现实意义
数学史融入数学课堂教学具有十分重要的意义,日渐成为当前数学教学的一种必然趋势。目前我国正在推进的基础教育改革十分重视数学史,采取了一系列措施,其中包括加强数学史和数学文化的教育。数学是人类文化的重要组成部分。数学课程应适当反映数学的历史、应用和发展趋势,体现数学的思想体系和美学价值,以及数学家的创新精神。新的《中学数学课程纲要》指出,以“对数学采取正面的态度,以及从美学和文化的角度欣赏数学的能力”作为数学教学宗旨之一。通过数学史的教学,学生不仅可以学到具体的现成的科学知识,而且可以学到“科学的方法”,开阔视野,培养洞察力。通过数学史例的介绍,学生不仅能养成注意数学发展的习惯,还能培养不甘落后、勇于进取、敢于创新的心理品格,这些正是新世纪高素质人才必须具备的基本素质。
2.数学史有效融入课堂教学的策略
数学史融入课堂教学可以活跃学习氛围,激发学生学习兴趣,使学生在了解数学价值的同时缩短心理上接受某一观念的时间。然而,现实的情况是教师普遍对数学史“高评价,低应用”,究其原因,课上无时间、手头无材料、胸中无知识、上面无要求。随着新课程改革的逐步深入,这一现象已有所改变。《义务教育课程标准(实验)》强调“数学课程应帮助学生了解数学在人类发展史中的作用,逐步形成正确的数学观”,笔者认为可以从以下方面入手,将数学史有效融入课堂教学。
2.1结合教材内容,“见缝插针”,使数学史自然融入课堂教学。
“圆”是一个古老的课题,人类的生活与生产活动和它密切相关。有关圆的知识在战国时期的《墨经》、《考工记》等书中都有记载,授课中穿插有关史料,作为课本知识的补充和延伸。例如讲解圆的定义与性质时,向学生介绍,约在公元前两千五百年左右,我国已有了圆的概念。圆的定义和性质在《墨经》中已有记载,其中,“圆,一中同长也”,即圆周上各点到中心的长度均相等。此外,还进一步说明“圆,规写交也”,即圆是用圆规画出来的终点与始点相交的线。这与欧几里得的定义相似,而《墨经》成书于公元前4~3世纪,是在欧几里得诞生时间问世的。
2.2利用数学史创设情境,增强教学效果。
利用数学史创设情境,可以增强课堂教学效果。形象生动地进行教学,更容易激发学生的学习兴趣。例如初三教材中有这样一道例题,是通过计算赵州桥的桥拱半径,使学生掌握垂径定理及其推论的运用。为了增强教学效果,激发学生学习兴趣,教师可结合图片介绍:“这是赵州桥,建于1300多年前的隋代大业年间,整个桥身是圆弧的一段,长50多米,宽9米多。这么长的桥,全部用石头砌成,没有桥墩……”这样引入数学史创设情境不仅可以让学生了解历史名胜,提高艺术鉴赏能力,而且可以使学生的学习情绪高涨,课堂气氛活跃。
2.3巧用数学史融入概念课的教学。
我国数学家余介石主张“历史之于教学可指示基本概念之有机发展情形,与夫心理及逻辑程序,如何得以融合调剂,不至相背,反可相成,诚为教师最宜留意体会之一事也”。数学史的引入不必完全遵循发明者的历史足迹,进行简单的移植和嫁接,而是要挖掘相关历史文献,创造性地制作适用于教学、自然、可信的“历史外套”,使学生在经历概念的历史演进的过程中,明确概念的效用与需要,从而获得牢固的印象和透彻的认识。
2.4利用数学史进行方法比较教学。
着名科学家巴甫洛夫指出方法是最主要和最基本的东西。一切都在于良好的方法,有了良好的方法,即使是没有多大才干的人也能作出许多成就。如果方法不好,则即便有天赋的人也将一事无成。必须使学生明白,任何方法仅仅是许许多多的方法之中的一个,其中有许多你可能联想都未曾想过。那种始终认为自己是最正确的、肯定自己的思维都比别人的要高明,肯定没有其他更好的选择的行为,都是自负的表现。自负是思维的重大过失,它会扼杀真正的思维。
事实上,数学教学中涉及的许多问题,从它的历史到现在,经过数代数学家的不懈努力,大都产生过不少令人拍案叫绝的各种解法。如勾股定理,就有面积证法、弦图证法、比例证法等300余种;求解一元二次方程,历史上就有几何方法、特殊值代入法、逐次逼近法、试位法、反演法、十字相乘法和公式法等;求不规则图形的面积,历史上有德漠克利法、穷竭法、割圆法、平衡法、开普勒法和沃利斯法及现代的微积分方法。通过搜集比较历史上的各种不同方法之后,学生不仅能更好地领会每种方法的内在本质,而且能深受启发,这对培养知识面宽、有能力、有信心、灵活多变的人才大有帮助。
总之,如何将数学史有效融入课堂教学的方法和途径还有很多,例如:在课堂中渗透历史发展的观点,开展数学史专题讲座,等等。我们应该认识到数学知识的学习与数学史教学之间的辩证关系,必须把握好数学史融入课堂教学的“度”,毕竟数学知识的学习是课堂教学的主阵地。数学史的融入达到“随风潜入夜,润物细无声”般潜移默化的效果,方为最佳境界。

② 《代数学》这本书具有哪些使用价值

《代数学》在12世纪传入欧洲,在以后的很长一段时间,它都被当作标准课本来使用,书中表现的内容、思想和方法对历代数学家都产生了广泛深远的影响。事实上,在中世纪和文艺复兴时期,凡是在代数学方面有过成就的欧洲数学家大多在不同程度上受到过花拉子密的影响。《代数学》一书以其逻辑严密,系统性强、通俗易懂等特点被奉为代数学教科书的鼻祖。

③ 荷兰数学教育家弗兰登塔尔的教肓思想对我国小学数学教育有什么启发

(1)他认为传统的数学教育模式是一种类似于把学生训练成计算机的模式。弗兰登塔尔反对把数学教育的目标主要是看成“致力于智力(思维能力)的发展”。他认为,如果把智力教育价值看成为数学教育的主要目的,则毫无疑问,数学教育的内容只能是那些经过精心组织的,条理清晰的数学结构,因为只有这样的内容才便于向学生脑子里嵌入成套的数学结构和逻辑的思考方法。而问题恰恰出现在这里,传统数学教育的模式使得“大多数学生不知道如何把他们从课堂上学到的数学知识应用到物理和化学学习中去,也不知道如何在与他们息息相关的日常生活中应用课堂上学到的数学知识。”之所以出现这样的结果,其根本的原因在于传统数学教育采取的是一种培养数学家的模式,它提供给学生的是一些正规的数学系统和现成的数学结果,“虽然这些系统是完美的,但同时也是封闭的,封闭到没有出口和入口,完美到机器亦能处理。一旦机器可以介入,人的作用就不重要了。”所以这样的内容教师只能采用“灌输”式的教学方式,学习者的参与只能是被动的。弗兰登塔尔认为这是一种类似于把学生训练成计算机的教育模式,即学生只能被动的执行程序,没有留给他们发挥主动性和创造性的空间。其结果不仅在计算方面人无法与计算机相比,而且严重抑制了人在思维方面的主动性和创造性的发展。
(2)他认为数学在本质上是一项人类活动,让学生重复人类数学发现的过程是可能的。 以讲授“现成结果”为主,以“灌输”为特征的传统数学教育必须加以改变。 弗兰登塔尔指出,这一改变应从如何让学生积极的学习数学,主动地参与数学教育过程入手。 数学教育需要发展,应以一种新的观点来认识作为教育的数学和数学学习。归根到底,数学是一项人类活动,所以作为教育的数学也要作为一项人类活动来看待。“学校中的数学不是那些封闭的系统,而是作为一项人类活动的数学,是从现实生活开始的数学化过程……。”学生具有“潜在的发现能力”,他们本身的思维和行为方式已经具备了某种教师甚至研究人员的特征,在他们身上实现重复人类数学发现的活动是可能的。数学教育就应当发展这种潜能,使已经存在于学生头脑中的那些非正规的数学知识和数学思维上升发展为科学的结论,实现数学的“再发现”。 数学教育应当是引导学生重复人类数学发现的过程,实现数学再发现再创造的教育。
(3)他认为数学教育应当从学生熟悉的现实生活开始和结束。根据弗兰登塔尔的观点,数学教育不能从已经是最终结果的那些完美的数学系统开始,不能采用向学生硬性嵌入一些远离现实生活的抽象数学结构的方式进行。数学教育应当从学生熟悉的现实生活开始,沿着数学发现过程中人类的活动轨迹,从生活中的问题到数学问题,从具体问题到抽象概念,从特殊关系到一般规则,逐步通过学生自己的发现去学习数学、获取知识。得到抽象化的数学知识之后,再及时把它们应用到新的现实问题上去。按照这样的途径发展,数学教育才能较好地沟通生活中的数学与课堂上数学的联系,才能有益于学生理解数学,热爱数学和使数学成为生活中有用的本领。

④ 数学史对数学教育意义有什么意义

数学史既属史学领域,又属数学科学领域,因此数学史研究既要遵循史学规律,又要遵循数理科学的规律。根据这一特点,可以将数理分析作为数学史研究的特殊的辅助手段;

在缺乏史料或史料真伪莫辨的情况下,站在现代数学的高度,对古代数学内容与方法进行数学原理分析,以达到正本清源、理论概括以及提出历史假说的目的。数理分析实际上是“古”与“今”间的一种联系。

数学史是一门文理交叉学科,从今天的教育现状来看,文科与理科的鸿沟导致我们的教育所培养的人才已经越来越不能适应当今自然科学与社会科学高度渗透的现代化社会,正是由于科学史的学科交叉性才可显示其在沟通文理科方面的作用。

通过数学史学习,可以使数学系的学生在接受数学专业训练的同时,获得人文科学方面的修养,文科或其它专业的学生通过数学史的学习可以了解数学概貌,获得数理方面的修养。而历史上数学家的业绩与品德也会在青少年的人格培养上发挥十分重要的作用。

(4)代数学发展对数学教学有哪些启发扩展阅读:

数学史的研究范围:

按研究的范围又可分为内史和外史:

1、内史:从数学内在的原因(包括和其他自然科学之间的关系)来研究数学发展的历史;

2、外史:从外在的社会原因(包括政治、经济、哲学思潮等原因)来研究数学发展与其他社会因素间的关系。

数学史和数学研究的各个分支,和社会史与文化史的各个方面都有着密切的联系,这表明数学史具有多学科交叉与综合性强的性质。

从研究材料上说,考古资料、历史档案材料、历史上的数学原始文献、各种历史文献、民族学资料、文化史资料,以及对数学家的访问记录,等等,都是重要的研究对象,其中数学原始文献是最常用且最重要的第一手研究资料。

从研究目标来说,可以研究数学思想、方法、理论、概念的演变史;可以研究数学科学与人类社会的互动关系;可以研究数学思想的传播与交流史;可以研究数学家的生平等等。

⑤ 找一篇关于研究数学发展史的心得

分数分别产生于测量及计算过程中。在测量过程中,它是整体或一个单位的一部份;而在计算过程中,当两个数(整数)相除而除不尽的时候,便得到分数。

一般可分为五期:

上古期:(2700B.C.~200B.C.)对数学有所创见的有伏羲氏、黄帝、隶首、缍等人。其成就归纳如下:

1. 结绳:最古的记数方法,传为伏羲所创。

2. 书器:一种最古的记数工具,传为隶首所创。

3. 河图,洛书:相传分别为伏羲、夏禹所作,是为最初的魔方阵。

4. 八卦:传为周公所创,是最初的二进制法。

5. 规矩:传为伏羲或缍所创,用以作方圆,测量田地与勘测水道。

6. 几何图案:在金石陶器、石器时代的陶片、周秦时代的彝器已有简单 的几何图形出现,其种类不下数十种。

7. 九九:即个位数乘法表,传为伏羲所创。古代数学家以九九之术作为初等数学的代表。

8. 技术方法:当时是以累积之方法记数,已有百……亿,兆等大数产生,都是以十进制的;也已有分数的产生。当时盛行的筹算,演变为后来的珠算术。

9. 算学教育:周朝时,把算数列为六艺之一,再小学时就受以珠算。

初等数学在此时期已有相当基础,算数与几何由于人类实际生活的需要已初步形成,但并无形成一定逻辑关联的系统。

中古期:(200B.C.~600A.D.由汉至隋)中国数学家对于算学已有可考据的着作。

1. 而对圆周率寄算最有成就者为祖冲之。所得结果比之西方早一千多年。

2. 算经十书的编篡:

算经十书为:周髀,九章算术,孙子算经,张丘健算经,夏侯阳算经,五曹算经,海岛算经,五经算术,辑古算经及缀术,后因缀术亡失,而已数术记遗代之;其中辑古算经在唐朝才完成。此时期的数学成就,可以从这十本算经中之其概略。数学成就可归纳为以下各点:

(1)分数论的应用

(2)整数勾股形的计算

(3) 平方零约数:已建立开方的方法有两种

(4)方程论:已有联立一次方程的解法。九章算数方程章为世界最早包含不只一个未知 数的算 式和联立方程组概念,并产生了正负数的概念。

(5)平面立体形的计算:一切直线图的面积和体积公式皆正确;圆面积、球体积为近似公式

(6)级数论上的成就:已有等差、等比问题产生。

(7)数论上的成就:孙子算经上的“物不知数”是一次同余式问题,由此以后所推广的中国剩余定理比西洋早了一千多年。

(8)数学教育制度的建立

近古期:(600A.D.~1367A.D.由唐到宋元)

分为前后两期,各以唐及宋元为代表。可以说是中国数学史的黄金时代;数学教育制度更臻完善,民间研究数学的风气很盛。数学成就归纳如下:

(1) 代数学上的成就:中国古代数学家很早就知道利用代数方法解决实际问题;这时期天元术的产生促使代数学向前发展,使其成为更完整的数学体系。其它数学也获得更进一步的发展。数学家们掌握天元术之后,很快地把它应用到多元高次方程组而产生所谓的四元术;并利用天元术开方。开方数也推广到多乘方,比西洋数学家的发现早约五百年。求数学高次方程的正根方法也已建立起理论根据。

(2) 几何学与三角学的成就:割圆术得到进一步的推广,除了平面割圆术外,球面割圆术也已产生,球面三角由此而初步建立起来。

(3) 数论上的成就:一次同余的理论基础扩大了应用范围,有八次联立一次同余式的问题出现,在整数论上是一个伟大的成就。所用解一次同余式的方法为有名的辗转相除法,即西方数学家所谓欧几里得算法。

(4) 级数论上的成就:级数论在世界数学史上有着悠久的历史,中算家所论述的在此中占有一定位子。由高阶等差级数研究中发明了招差数、垛积数。

(5) 纵横图说的研究:一些有名的纵横图(所谓方阵图)已经产生。

由以上所述,可以看出,有系统的代数学已建立起来,更多的数学方法与数学概念也得到更进一步的推广与发展。

婆罗门、天竺数学输入中国,但中国的数学并没有受到影响;同时中国的数学也输入了百济和日本。

近世纪:(1367A.D.~1750A.D.明初到清初)

为中国算学衰落时期,统治者对数学教育不注重,民间研习数学风气不盛。

回回历法在元末明初输入中国,至明末,应用回回历法已近尾声。自利玛窦至中国之后,西洋历法、西洋数学也随之输入中国。当时还有人研究中算,但由于中算不如西算的简明有系统,故中国古算陷入停顿状态而得不到新的发展。

西洋数学输入的有笔算、筹算、代数学、对数术、几何学、平面及球面三角术、三角函数表、比例对数表、割圆术及圆锥曲线说。

着名的天元术停滞不前,珠算随着实际生活的需要而产生,很多有关珠算实用算数书陆续出版;珠算术的发明是中算的革命、我国的伟大成就。

清初的一些大数学家都致力于西洋数学的研究,编写了数学各科的入门书籍。中国数学输入朝鲜及把元明数学输入日本。

最近世期:(1750A.D.~1910A.D.清干隆三十七到清末)

西算输入告一段落。这时学术潮流偏向古典考证一路发展,数学研究也转到古代数学方面去,对算经十书与宋元算书加以传刻与研讨到达最高峰。当时数学家很多都能兼通中西数学,在高等数学方面获得相当的成就。

对圆周率解析法作深入的探讨,级数论、方程论及数论得到进一步的研究,理论更臻完善。对中算史加以研究与着成专书。数学教育制度重新建立起来。此期末,西方数学第二次输入中国,以补中算的不足,中国数学在此又进入另一阶段。

⑥ 如何学好高等代数

高等代数和数学分析、空间解析几何一起,并称为数学系本科生的三大基础课。所谓基础课,顾名思义,就是本科四年学习的所有数学课程,都是以上述三门课作为基础的。因此对一年级新生而言,学好这三门基础课,其重要性不言而喻。另一方面,从高中阶段的“初等数学”过渡到大学阶段的“高等数学”,中间需要一个思维转变和理解进阶的过程。这个过程延续的时间可长可短,完全取决于个人的能力和努力。因此,如何通过学好这三门基础课,尽快跨越这个转变过程,对一年级新生而言,其意思更加重大。
一、将三门基础课作为一个整体去学,摒弃孤立的学习,提倡综合的思考
恩格斯曾经说过:“数学是研究数和形的科学。”这位先哲对数学的这一概括,从现代数学的发展来看,已经远远不够准确了,但这一概括却点明了数学最本质的研究对象,即为“数”与“形”。比如说,从“数”的研究衍生出数论、代数、函数、方程等数学分支;从“形”的研究衍生出几何、拓扑等数学分支。20世纪以来,这些传统的数学分支相互渗透、相互交叉,形成了现代数学最前沿的研究方向,比如说,代数数论、解析数论、代数几何、微分几何、代数拓扑、微分拓扑等等。可以说,现代数学正朝着各种数学分支相互融合的方向继续蓬勃地发展下去。
数学分析、高等代数、空间解析几何这三门基础课,恰好是数学最重要的三个分支--分析、代数、几何的最重要的基础课程。根据课程的特点,每门课程的学习方法当然各不相同,但是如果不能以一种整体的眼光去学习和思考,即使每门课都得了A,也不见得就学的很好。学院的资深教授曾向我们抱怨:“有的问题只要画个图,想一想就做出来了,怎么现在的学生做题,拿来就只知道死算,连个图也不画一下。”当然,造成这种不足的原因肯定是多方面的。比如说,从教的角度来看,各门课程的教材或授课在某种程度上过于强调自身的特点,很少以整体的眼光去讲授课程或处理问题,课程之间的相互联系也涉及的较少;从学的角度来看,学生们大都处于孤立学习的状态,也就是说,孤立在某门课程中学习这门课程,缺乏对多门课程的整体把握和综合思考。
根据我的经验,将高等代数和空间解析几何作为一个整体去学,效果肯定比单独学好,因为高等代数中最核心的概念是“线性空间”,这是一个几何对象;而且高等代数中的很多内容都是空间解析几何自然的延续和推广。另外,高等代数中还有很多分析方面的技巧,比如说“摄动法”,它是一种分析的方法,可以让我们把问题从一般矩阵化到非异矩阵的情形。因此,要学好高等代数,首先要跳出高等代数,将三门基础课作为一个整体去学,摒弃孤立的学习,提倡综合的思考。
二、正确认识代数学的特点,在抽象和具体之间找到结合点
代数学(包括高等代数和抽象代数)给人的印象就是“抽象”,这与另外两门基础课有很大的不同。以“线性空间”的定义为例,集合V上定义了加法和数乘两种运算,并且这两种运算满足八条性质,那么V就称为线性空间。我想第一次学高等代数的同学都会认为这个定义太抽象了。其实在高等代数中,这样抽象的定义比比皆是。不过这样的抽象是有意义的,因为我们可以验证三维欧氏空间、连续函数全体、多项式全体、矩阵全体都是线性空间,也就是说,线性空间是从许多具体例子中抽象出来的概念,具有绝对的一般性。代数学的研究方法是,从许多具体的例子中抽象出某个概念;然后通过代数的方法对这一概念进行研究,得到一般的结论;最后再将这些结论返回到具体的例子中,得到各种运用。因此,“具体--抽象--具体”,这便是代数学的特点。
在认识了代数学的特点后,就可以有的放矢地学习高等代数了。我们可以通过具体的例子去理解抽象的定义和证明;我们可以将定理的结论运用到具体的例子中,从而加深对定理的理解和掌握;我们还可以通过具体例子的启发,去发现和证明一些新的结果。因此,要学好高等代数,就需要正确认识抽象和具体的辩证关系,在抽象和具体之间找到结合点。
三、高等代数不仅要学代数,也要学几何,更要在代数和几何之间建立一座桥梁
随着时代的变迁,高等代数的教学内容和方式也在不断的发展。大概在90年代之前,国内高校的高等代数教材大多以“矩阵论”作为中心,比较强调矩阵论的相关技巧;90年代之后,国内高校的高等代数教材渐渐地改变为以“线性空间理论”作为中心,比较强调几何的意义。作为缩影,复旦的高等代数教材也经历了这样一个变化过程,1993年之前采用的屠伯埙老师的教材强调“矩阵论”;1993年之后采用的姚慕生老师的教材强调“线性空间理论”。从单纯重视“代数”到“代数”与“几何”并重,这其实是高等代数教学观念的一种全球性的改变,可能这种改变与现代数学的发展密切相关吧!
学好高等代数的有效方法应该是:
深入理解几何意义、熟练掌握代数方法。
其次,高等代数中很多问题都是几何的问题,我们经常将几何的问题代数化,然后用代数的方法去解决它。当然,对于一些代数的问题,我们有时也将其几何化,然后用几何的方法去解决它。
最后,代数和几何之间存在一座桥梁,这就是代数和几何之间的转换语言。有了这座桥梁,我们就可以在代数和几何之间来去自由、游刃有余。因此,要学好高等代数,不仅要学代数,也要学几何,更要在代数和几何之间建立一座桥梁。
四、学好教材,用好教参,练好基本功
复旦现行的高等代数教材是姚慕生老师、吴泉水老师编着的《高等代数学(第二版)》。这本教材从1993年开始沿用至今,已有近20年的历史。教材内容翔实、重点突出、表述清晰、习题丰富,即使与全国各高校的高等代数教材相比,也不失为出类拔萃之作。
复旦现行的高等代数教学参考书是姚慕生老师编着的《高等代数学习方法指导(第二版)》(因为封面为白色,俗称“白皮书”)。这本教参书是数院本科生必备的宝典,基本上人手一册,风行程度可见一斑。
要学好高等代数,学好教材是最低的要求。另外,如何用好教参书,也是一个重要的环节。很多同学购买教参书,主要是因为教材里的部分作业(包括一些很难的证明题)都可以在教参书上找到答案。当然,这一点无可厚非,毕竟这就是教参书的功能嘛!但是,我还是希望一年级的新生能正确地使用教参书,遇到问题首先自己独立思考,实在想不出,再去看懂教参书上的解答,这样才能达到提高能力、锻炼思维的效果。注意:既不独立思考,又不看懂教参书上的解答,只是抄袭,这对自己来说是一种极不负责的行为,希望大家努力避免!
最后,我愿以华罗庚先生的一句诗“勤能补拙是良训,一份辛勤一份才”与大家共勉,祝大家不断进步、学业有成!

⑦ 代数学有什么用,给一点实际的例子。比如他对哪一方面的研究有用,对其他什么学科有用,对以后学习什么有用

主要用于物理学,物理上的全部理论都需要用到数学,尤其是航空航天专业,对数学的依赖性更大。还有经济学,几乎都需要数学建模。还有建筑学,对线性代数要求多比较高的。不过数学是一门基础学科,直接应用性不大,你最好是兼修,不过就是主修也没什么,学数学不是让你用得,否则学到初中就够用了,学数学是是为了培养你的数学思维,现在很多大公司都注重这一点的,在某方面说,数学是个热门专业

⑧ 述“数学史”知识对改进数学教学有哪些积极意义

教育意义
当我们学习过数学史后,自然会有这样的感觉:数学的发展并不合逻辑,或者说,数学发展的实际情况与我们今日所学的数学教科书很不一致。我们今日中学所学的数学内容基本上属于17世纪微积分学以前的初等数学知识,而大学数学系学习的大部分内容则是17、18世纪的高等数学。这些数学教材业已经过千锤百炼,是在科学性与教育要求相结合的原则指导下经过反复编写的,是将历史上的数学材料按照一定的逻辑结构和学习要求加以取舍编纂的知识体系,这样就必然舍弃了许多数学概念和方法形成的实际背景、知识背景、演化历程以及导致其演化的各种因素,因此仅凭数学教材的学习,难以获得数学的原貌和全景,同时忽视了那些被历史淘汰掉的但对现实科学或许有用的数学材料与方法,而弥补这方面不足的最好途径就是通过数学史的学习。 在一般人看来,数学是一门枯燥无味的学科,因而很多人视其为畏途,从某种程度上说,这是由于我们的数学教科书教授的往往是一些僵化的、一成不变的数学内容,如果在数学教学中渗透数学史内容而让数学活起来,这样便可以激发学生的学习兴趣,也有助于学生对数学概念、方法和原理的理解与认识的深化。 科学史是一门文理交叉学科,从今天的教育现状来看,文科与理科的鸿沟导致我们的教育所培养的人才已经越来越不能适应当今自然科学与社会科学高度渗透的现代化社会,正是由于科学史的学科交叉性才可显示其在沟通文理科方面的作用。通过数学史学习,可以使数学系的学生在接受数学专业训练的同时,获得人文科学方面的修养,文科或其它专业的学生通过数学史的学习可以了解数学概貌,获得数理方面的修养。而历史上数学家的业绩与品德也会在青少年的人格培养上发挥十分重要的作用。 中国数学有着悠久的历史,14世纪以前一直是世界上数学最为发达的国家,出现过许多杰出数学家,取得了很多辉煌成就,其源远流长的以计算为中心、具有程序性和机械性的算法化数学模式与古希腊的以几何定理的演绎推理为特征的公理化数学模式相辉映,交替影响世界数学的发展。由于各种复杂的原因,16世纪以后中国变为数学入超国,经历了漫长而艰难的发展历程才渐渐汇入现代数学的潮流。由于教育上的失误,致使接受现代数学文明熏陶的我们,往往数典忘祖,对祖国的传统科学一无所知。数学史可以使学生了解中国古代数学的辉煌成就,了解中国近代数学落后的原因,中国现代数学研究的现状以及与发达国家数学的差距,以激发学生的爱国热情,振兴民族科学。

⑨ 数学家伟达对数学对我们有什么启示

韦达(Viete,Francois,seigneurdeLa Bigotiere)是法国十六世纪最有影响的数学家之一。第一个引进系统的代数符号,并对方程论做了改进。
大家都知道,一元二次方程根与系数的关系,又叫韦达定理,这是因为该定理是由l6世纪法国最杰
出的数学家韦达发现的.由于他第一次用符号代替已知量,确定了符号原理与方法,从而使得当时的数学系统化.毕业后曾以律师

的身份在法国议会工作.历任巴黎行政院审查官,皇室律师和最高法院律师.韦达不是专职的数学家,

研究数学只是他的业余爱好.不过,他非常喜欢在政治生涯的间隙和工作的余暇时间研究教学,并为此

作出了巨大的贡献.因而使得他成为那个时代最伟大的数学家. 韦达是数学史上第一个有意识地和系统地使用字母表示数的人,并且他还对数学符号进行了许多有

益的改进.1591年,韦达发表了他的惊世成名的着作《分析术引论》,这是一部最早的符号代数着作,他

首次比较系

统化,并且

1579年写出

精确三角函

展.

韦达还

元三次方程

系常被人称

数关系。
给我们的启示:不论你学的什么专业,做的什么工作,只要努力去做了,就可以把兴趣发展成事业。

⑩ 数学史怎样融入数学教育

20 世纪70 年代, 数学史与数学教育关系( HPM) 就已成为西方的一个学术研究新领域,美国学者的有关研究、论述和大力提倡是该领域创立与深入发展的重要推动力量. 长期以来,虽然人们已认识到数学教学中融入数学史的许多重要意义, 并在教学实践中有所行动,但其困难和问题的存在也是显然的. 其中一个显着的困难和问题就是, 数学教学中需要采取哪些教学策略来融入数学史呢?
1 故事策略
虽说数学史不等于数学故事,但是,数学家或数学界的遗闻佚事, 不仅能大大激发学生的学习兴趣,而且对学生的人格成长还富有启发作用. 譬如,我国着名数学家陈景润, 就是在上中学时, 听了他的数学老师沈元向学生介绍了, 哥德巴赫猜想这一难倒无数数学家的难题后, 其心灵受到了震撼,点燃起了他攀登高峰、摘取桂冠的热情, 从而他一生醉心于数学, 并取得了令世人瞩目的成绩. 说故事的目的就是要设计一个教学情景, 这个教学情景主要是能引起学生的学习动机与兴趣. 同时,也可利用故事情景引出学生已有的数学概念,或是借故事情节引入要教的数学概念,也可以利用故事情节的铺设, 呈现给学生想要解决的问题等.

2 方法比较策略

着名科学家巴甫洛夫指出:方法是最主要和最基本的东西. 一切都在于良好的方法,有了良好的方法,即使是没有多大才干的人也能作出许多成就. 如果方法不好,即便是有天才的人也将一事无成. 数学教学必须要使学生明白,任何方法仅仅是许许多多的方法之中的一个, 其中有许多你可能联想都未曾想过. 那种始终认为自己是最正确的、肯定自己的思维都比别人的要高明,肯定没有其他更好的选择的行为,这些都是自负的表现. 而自负是思维的重大过失,它会扼杀真正的思维.

通过搜集比较历史上的各种不同方法, 不仅能使学生更好地领会每种方法的内在本质,而且能启发学生,这对培养知识面宽、有能力、有信心、灵活多变的人才大有帮助.

3 追踪历史起源策略

数学固然起源于人类对日常生活现象的观察,但它决不简单, 有一定的难度, 需要时间去体验、把玩并体会它的意蕴. 追踪历史起源,就是要引导学生去揭示或感受知识发生的前提或原因、知识概括或扩充的经过以及向前发展的方向,引导学生在重演、再现知识发生过程的活动中,内化前人发现知识的方法和能力. 使学生在掌握知识的同时,还能占有镌刻于知识产生中的认识能力,这种认识能力正是构成创新思维能力的核心.

4 揭示思维过程策略

将数学研究中的思想和方法的要点原原本本地告诉学生, 使学生充分领略以前数学大师们的灵感,承受他们的启迪,可以从中学到他们的策略和经验等.前人的成功和失误,都是后人聪明的源泉. 数学史可以将逻辑推理还原为合情推理, 将逻辑演绎追溯到归纳演绎. 通过挖掘历史上数学家解决问题的真谛,学生不仅可以学到具体的现成的数学知识,而且可以学到“科学的方法”,开拓学生的视野,使学生更具有洞察力.

阅读全文

与代数学发展对数学教学有哪些启发相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:740
乙酸乙酯化学式怎么算 浏览:1406
沈阳初中的数学是什么版本的 浏览:1353
华为手机家人共享如何查看地理位置 浏览:1045
一氧化碳还原氧化铝化学方程式怎么配平 浏览:886
数学c什么意思是什么意思是什么 浏览:1411
中考初中地理如何补 浏览:1300
360浏览器历史在哪里下载迅雷下载 浏览:703
数学奥数卡怎么办 浏览:1388
如何回答地理是什么 浏览:1025
win7如何删除电脑文件浏览历史 浏览:1058
大学物理实验干什么用的到 浏览:1487
二年级上册数学框框怎么填 浏览:1701
西安瑞禧生物科技有限公司怎么样 浏览:976
武大的分析化学怎么样 浏览:1250
ige电化学发光偏高怎么办 浏览:1339
学而思初中英语和语文怎么样 浏览:1653
下列哪个水飞蓟素化学结构 浏览:1425
化学理学哪些专业好 浏览:1488
数学中的棱的意思是什么 浏览:1059