导航:首页 > 数字科学 > 近代数学什么是个学

近代数学什么是个学

发布时间:2022-10-16 05:59:33

Ⅰ 概述近现代数学的发展史

--《近现代数学发展概论》张光远重庆出版社 1991.12版

《现代化知识文库--二十世纪数学史话》知识出版社 1984.2上海
注一:这是《二十世纪数学史话》的说法。
winion整理,如要转载,请注明转载自
国际数学界的最高奖?菲尔兹奖和国际数学家大会
诺贝尔奖金中为什么没有设数学奖?对此人们一直有着各种猜测与议论。每年一度的诺贝尔物理、化学、生理学和医学奖,表彰了这几个学科中的重大成就,奖掖了科学精英,可谓举世瞩目。不设数学奖,对于这个重要的基础学科,岂不是失去了一个在世界范围内评价重大成就和杰出人才的机会?
其实,数学领域中也有一种世界性的奖励,这就是每四年颁发一次的菲尔兹奖。在各国数学家的眼里,菲尔兹奖所带来的荣誉可与诺贝尔奖金媲美。
菲尔兹奖是由国际数学联盟(简称IMU)主持评定的,并且只在每四年召开一次的国际数学家大会(简称ICM)上颁发。菲尔兹奖的权威性,部分地即来自于此。所以,这里先简单介绍一下“联盟”与“大会”。

十九世纪以来,数学取得了巨大的进展。新思想、新概念、新方法、新结果层出不穷。面对琳琅满目的新文献,连第一流的数学家也深感有国际交流的必要。他们迫切希望直接沟通,以便尽快把握发展大势。正是在这样的情况下,第一次国际数学家大会在苏黎世召开了。紧接着,一九00年又在巴黎召开了第二次会议,在两个世纪的交接点上,德国数学家希尔伯特提出了承前启后的二十三个数学问题,使得这次大会成为名副其实的迎接新世纪的会议。

自一九00年以后,大会一般每四年召开一次。只是因为世界大战的影响,在一九一六年和一九四0~一九五0年间中断举行。第二次世界大战以后的第一次大会是一九五0年在美国举行的。在这次会议前夕,国际数学联盟成立了。这个联盟联络了全世界几乎所有的主要数学家,她的主要任务是促进数学事业的发展和国际交流,组织进行四年一次的国际数学家大会及其他专业性国际会议,颁发菲尔兹奖。自此以后,大会的召开比较正常。从一八九七年算起,总共举行了十九次大会,其中有九次是在一九五0~一九八三年间举行的。

联盟的日常事务由任期四年的执行委员会领导进行,近年来,这个委员会设主席一人,副主席二人,秘书长一人,一般委员五人,都是由在国际数坛上有影响的着名数学家担任。每次大会的议程,由执委会提名一个九人咨询委员会来编定。而菲尔兹奖的获奖人,则由执委会提名一个八人评定委员会来遴选。评委会的主席也就是执委会的主席,可见对这个奖的重视。这个评委会首先由每人提名,集中提出近四十个值得认真考虑的候选人,然后进行充分的讨论并广泛听取各国数学家的意见,最后在评定委员会内部投票决定本届菲尔兹奖的得奖人。

现在,国际数学家大会已是全世界数学家最重要的学术交流盛会了。一九五0年以来,每次参加者都在两千人以上,最近两次大会的参加者更在三千人以上。这么多的参加者再加上这四年来无数的新成果,用什么方法才能很好地交流呢?近几次大会采取了分三个层次讲演的办法。以一九七八年为例,在各专业小组中自行申请作十分钟讲演的约有七百人,然后由咨询委员会确定在各专业组中作四十五分钟邀请讲演的名单约二百个,以及向全会作一小时综述报告的人选十七位。被指定作一小时报告是一种殊荣,报告者是当今最活跃的一些数学家,其中有不少是过去或未来的菲尔兹奖获得者。

菲尔兹奖的宣布与授予,是开幕式的主要内容。当执委会主席(即评委会主席)宣布本届得主名单之后,全场掌声雷动。接着由东道国的重要人士(当地市长、所在国科学院院长、甚至国王、总统),或评委会主席授予一块金质奖章,外加一干五百美元的奖金。最后由一些权威的数学家来介绍得奖人的杰出工作,并以此结束开幕式。

菲尔兹奖是以已故的加拿大数学家约翰?查尔斯?菲尔兹命名的。

一八六三年五月十四日,菲尔兹生子加拿大渥太华。他十一岁时父亲逝世,十八岁时又失去了慈母,家境不算太好。菲尔兹十七岁时进入多伦多大学专攻数学。一八八七年,菲尔兹二十四岁,就在美国约翰.霍普金斯大学获得了博士学位。又过了两年,他在美国阿勒格尼大学当上了教授。

当时,世界数学的中心是在欧洲。北美的数学家差不多都要到欧洲学习、工作一段时间。一八九二年,菲尔兹远渡重洋,游学巴黎、柏林整整十年。在欧洲,他与福雪斯、弗劳伯纽斯等着名数学家有密切的交往。这一段经历,大大地开阔了菲尔兹的眼界。

作为一个数学家,菲尔兹的工作兴趣集中在代数函数方面,成就不算突出,但作为一名数学事业的组织、管理者,菲尔兹却是功绩卓着的。

菲尔兹很早就意识到研究生教育的重要,他是在加拿大推进研究生教育的第一人。现在人们都知道,一个国家的研究生培养情况如何,是衡量这个国家科学水平的一个可靠指数。而在当时,能有这样的认识实属难能可贵。

菲尔兹对于数学的国际交流的重要性,对于促进北美州数学的发展,都有一些卓越的见解。为了使北美的数学迅速赶上欧洲,菲尔兹竭尽全力主持筹备了一九二四年的多伦多国际数学家大会(这是在欧洲之外召开的第一次大会)。这次大会使他精疲力尽,健康状况再也没有好转,但这次会议对于北美的数学水平的成长产生了深远的影响。

一九二四年大会没有邀请德国等第一次世界大战的战败国的数学家。在此之前的一九二0年大会,因为是在法国的斯特拉斯堡(战前属德国)举行,德国拒绝参加(一九二八年的波伦亚大会只是由于希尔伯特坚持,德国才参加了。)。这些事情很可能触发了菲尔兹发起一项国际性奖金的念头,因为菲尔兹强烈地主张数学发展应该是国际性的。当菲尔兹知道了一九二四年大会的经费有结余时,他就建议以此作为基金设立一项这样的奖。菲尔兹奔走欧美谋求支持,并想在?九三二年苏黎世大会亲自提出正式建议,结果未及开幕他就逝世了。是多伦多大学数学系的悉涅,把这个建议和一大笔钱(其中包括一九二四年大会的结余和菲尔兹的遗产)提交苏黎世大会,大会立即接受了这一建议。

按照菲尔兹的意见,这项奖金应该就叫国际奖金,而不应该以任何国家机构或个人的名字来命名。但是国际数学家大会还是决定命名为菲尔兹奖。数学家们希望用这一方式来表示对菲尔兹的纪念和赞许,他不是以自已的研究工作,而是以远见、组织才能和勤恳的工作促进了本世纪的数学事业。

第一次菲尔兹奖颁发于一九三六年。不久,国际形势急剧恶化。原定一九四0年在美国召开的大会已成泡影。第二次的菲尔兹奖是在战后的第一次大会,即一九五0年大会上颁发的。以后,每次大会都顺利地进行了这一议程。?般是每届两名获奖者。但一九六六年、一九七0年、一九七八年得奖人是四名,据说是因为有一位不愿透露姓名的捐款人,使奖金可以临时增加到四份,一九八二年华沙会议因故而延期至一九八三年八月举行,获奖者为三名。总起来,获得菲尔兹奖的数学家己有二十七名。

在一九三六年、?九五0年、一九五四年这三次大会上,都是由一位数学家来介绍所有得奖人的工作的。一九三六年卡拉凯渥铎利还讲了一点获奖者的生平。一九五0年评委会主席玻尔就只用清晰而非专门的语言简述工作。一九五四年,由本世纪着名的数学家外尔介绍,他在结束语中盛赞两位得奖者“所达到的高度是自己未曾梦想到的”,“自已从未见过这样的明星在数学天空中灿烂地升起,”他说:“数学界为你们二位所做的工作感到骄傲。它表明数学这棵长满节瘤的老树仍然充满着汁液和生机。你们是怎样开始的,就怎样继续下去吧!”

从一九五八年起,改成每位获奖者分别由一位数学家介绍。介绍的内容比较地局限于工作,对于获奖者个人的情况很少涉及。这个做法,一直延续到最近一次大会。

菲尔兹奖只是一枚金质奖章,与诺贝尔奖金的十万美元相比真是微不足道。为什么在人们心目中,菲尔兹奖的地位竟然与诺贝尔奖金相当?

原因看来很多。菲尔兹奖是由数学界的国际学术团体--国际数学联盟,从全世界的第一流数学家中遴选的。就权威性与国际性而言,任何其他的奖励都无法与之相比。菲尔兹奖四年才发一次,每次至多四名,因而获奖机会比诺贝尔奖要少得多。但是主要的原因应该是:迄今为止的获奖者用他们的杰出工作,证明了菲尔兹奖不愧为最重要的国际数学奖。事情就是这样:从表面上看,一项奖赏为获奖人带来了巨大荣誉;而事实上正相反,正是得奖工作的水准奠定了这项奖励的学术地位的基础。

菲尔兹奖首先是一项工作奖(这一点与诺贝尔奖金相同),即授予的原因只能是“已经做出的成就”,而不能是服务优秀、活动积极等其他原因。但是菲尔兹奖只授予四十岁以下的数学家(起先是一种默契,后来就成为不成文的规定),因此也带有一点鼓励性。问题在于,如果放在整个数学家的范围里,菲尔兹奖的得奖工作地位如何?

我们只举一个小小的例子。一九七八年,当代着名的老一辈数学家,布尔巴基学派创始人之一丢东涅发表了一篇题为《论纯数学的当前趋势》的论文,对于近二十年来纯数学各分支的前沿作了全面概述。在文章中,他列举了十三个目前处于主流的数学分支。其中十二个分支中的部分重要工作是由菲尔兹奖获得者作出的。这再清楚不过地说明了菲尔兹奖获奖成就的地位。

人们不能不承认,数学对于现实生活的影晌正在与日俱增。许多学科都在悄悄地或先或后地经历着一场数学化的进程。现在,已经没有哪个领域能够抵御得住数学方法的渗透。

数学本身也在一日千里地发展着。全世界成千上万的数学工作者正在几十个分支成百个专门方向上孜孜研究着。他们每年提出大约二十万条新定理!重要论文数,如以《数学评论》的摘要为准,每八至十年翻一番。文献数量的爆炸再加上方法概念的迅速更新,使得工作在不同方向上的数学家连交谈也有点困难,更不用说非数学专业的人了。

这样就产生了一个尖锐的矛盾。一方面,公众非常需要数学,他们渴望理解数学!另?方面,现代数学过于深刻、庞大、变得越来越不容易接近。

因此,对于数学,特别是现代数学加以普及,使得数学和数学家的工作能对现实生活产生应有的积极影响,这已成为人们日益重视的课题。

二十一世纪的曙光即将普照全球,要概述一下二十世纪的数学发展决非易事。就纯粹数学而言,我们觉得有两个主题可以起到提纲挈领的作用:一个是希尔伯特二十三问题的提出、解决现状与发展,另一个就是菲尔兹奖的获奖者及其工作。

作为一种表彰纯数学成就的奖励,菲尔兹奖当然不能体现现代数学的全部内容。就这个奖本身而言也有种种缺点。但是,无论从哪一方面讲,菲尔兹奖的获得者都可以作为当代数学家的代表,他们的工作所属的领域大体上覆盖了纯粹数学主流分支的前沿。这样,菲尔兹奖就成了一个窥视现代数学面貌的很好的“窗口”。

Ⅱ 数学发展历史是什么

数学发展如下:

第一时期

数学形成时期,这是人类建立最基本的数学概念的时期,人类从数数开始逐渐建立了自然数的概念,简单的计算法,并认识了最基本最简单的几何形式,算术与几何还没有分开。

第二时期

初等数学,即常量数学时期,这个时期的基本的、最简单的成果构成中学数学的主要内容,这个时期从公元前5世纪开始,也许更早一些,直到17世纪,大约持续了两千年,这个时期逐渐形成了初等数学的主要分支算术、几何、代数。

第三时期

变量数学时期,变量数学产生于17世纪,大体上经历了两个决定性的重大步骤,第一步是解析几何的产生,第二步是微积分,即高等数学中研究函数的微分、积分以及有关概念和应用的数学分支,它是数学的一个基础学科,内容主要包括极限、微分学、积分学、方程及其应用。

微分学包括求导数的运算,是一套关于变化率的理论,它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论,积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。

第四时期

现代数学,现代数学时期,大致从19世纪初开始,数学发展的现代阶段的开端,以其所有的基础代数、几何、分析中的深刻变化为特征。

中华民族是一个具有灿烂文化和悠久历史的民族,在灿烂的文化瑰宝中数学在世界数学发展史中也同样具有许多耀眼的光环,中国古代算术的许多研究成果里面就早已孕育了后来西方数学才设计的先进思想方法,近代也有不少世界领先的数学研究成果就是以华人数学家命名的。

华氏定理是我国着名数学家华罗庚的研究成果,华氏定理为体的半自同构必是自同构自同体或反同体,数学家华罗庚关于完整三角和的研究成果被国际数学界称为华氏定理,另外他与数学家王元提出多重积分近似计算的方法被国际上誉为华—王方。

苏氏锥面数学家苏步青在仿射微分几何学方面的研究成果在国际上被命名为苏氏锥面。

苏步青院士对仿射微分几何的一个极其美妙的发现是他对一般的曲面,构做出一个访射不变的4次代数锥面。

在访射的曲面理论中为人们许多协变几何对象,包括2条主切曲线,3条达布切线,3条塞格雷切线和仿射法线等等,都可以由这个锥面和它的3根尖点直线以美妙的方式体现出来,这个锥面被命名为苏氏锥面。

Ⅲ 数学是什么

数学是研究数量、结构、变化以及空间模型等概念的一门学科。透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。数学家们拓展这些概念,为了公式化新的猜想以及从合适选定的公理及定义中建立起严谨推导出的真理。


数学【shù xué】(希腊语:μαθηματικ?)源自于古希腊语的μ?θημα(máthēma),其有学习、学问、科学,以及另外还有个较狭隘且技术性的意义——“数学研究”。即使在其语源内,其形容词意义和与学习有关的,亦会被用来指数学的。其在英语的复数形式,及在法语中的复数形式+es成 mathématiques,可溯至拉丁文的中性复数mathematica,由西塞hjt数学(math)。以前我国古代把数学叫算术,又称算学,最后才改为数学。
它的意义
数学,作为人类思维的表达形式,反映了人们积极进取的意志、缜密周详的逻辑推理及对完美境界的追求。它的基本要素是:逻辑和直观、分析和推理、共性和个性。虽然不同的传统学派可以强调不同的侧面,然而正是这些互相对立的力量的相互作用,以及它们综合起来的努力,才构成了数学科学的生命力、可用性和它的崇高价值。
数学史
基础数学的知识与运用是个人与团体生活中不可或缺的一部分。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。从那时开始,其发展便持续不断地有小幅度的进展,直至16世纪的文艺复兴时期,因着和新科学发现相作用而生成的数学革新导致了知识的加速,直至今日。 今日,数学被使用在世界不同的领域上,包括科学、工程、医学和经济学等。数学对这些领域的应用通常被称为应用数学,有时亦会激起新的数学发现,并导致全新学科的发展。数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标。虽然许多以纯数学开始的研究,但之后会发现许多应用。 创立于二十世纪三十年代的法国的布尔巴基学派认为:数学,至少纯数学,是研究抽象结构的理论。结构,就是以初始概念和公理出发的演绎系统。布学派认为,有三种基本的抽象结构:代数结构(群,环,域……),序结构(偏序,全序……),拓扑结构(邻域,极限,连通性,维数……)。

编辑本段数学研究的各领域
数学主要的学科首要产生于商业上计算的需要、了解数与数之间的关系、测量土地及预测天文事件。这四种需要大致地与数量、结构、空间及变化(即算术、代数、几何及分析)等数学上广泛的领域相关连着。除了上述主要的关注之外,亦有用来探索由数学核心至其他领域上之间的连结的子领域:至逻辑、至集合论(基础)、至不同科学的经验上的数学(应用数学)、及较近代的至不确定性的严格学习。 数量 数量的学习起于数,一开始为熟悉的自然数及整数与被描述在算术内的自然数及整数的算术运算。整数更深的性质被研究于数论中,此一理论包括了如费马最后定理之着名的结果。 当数系更进一步发展时,整数被承认为有理数的子集,而有理数则包含于实数中,连续的数量即是以实数来表示的。实数则可以被进一步广义化成复数。数的进一步广义化可以持续至包含四元数及八元数。自然数的考虑亦可导致超限数,它公式化了计数至无限的这一概念。另一个研究的领域为其大小,这个导致了基数和之后对无限的另外一种概念:阿列夫数,它允许无限集合之间的大小可以做有意义的比较。 结构 许多如数及函数的集合等数学物件都有着内含的结构。这些物件的结构性质被探讨于群、环、体及其他本身即为此物件的抽象系统中。此为抽象代数的领域。在此有一个很重要的概念,即向量,且广义化至向量空间,并研究于线性代数中。向量的研究结合了数学的三个基本领域:数量、结构及空间。向量分析则将其扩展至第四个基本的领域内,即变化。 空间 空间的研究源自于几何-尤其是欧式几何。三角学则结合了空间及 数,且包含有非常着名的勾股定理。现今对空间的研究更推广到了更高维的几何、非欧几何(其在广义相对论中扮演着核心的角色)及拓扑学。数和空间在解析几何、微分几何和代数几何中都有着很重要的角色。在微分几何中有着纤维丛及流形上的计算等概念。在代数几何中有着如多项式方程的解集等几何物件的描述,结合了数和空间的概念;亦有着拓扑群的研究,结合了结构与空间。李群被用来研究空间、结构及变化。 基础与哲学 为了搞清楚数学基础,数学逻辑和集合论等领域被发展了出来。德国数学家康托(Georg Cantor,1845-1918)首创集合论,大胆地向“无穷大”进军,为的是给数学各分支提供一个坚实的基础,而它本身的内容也是相当丰富的,提出了实无穷的存在,为以后的数学发展作出了不可估量的贡献。Cantor的工作给数学发展带来了一场革命。由于他的理论超越直观,所以曾受到当时一些大数学家的反对,Pioncare也把集合论比作有趣的“病理情形”,Kronecker还击Cantor是“神经质”,“走进了超越数的地狱”。对于这些非难和指责,Cantor仍充满信心,他说:“我的理论犹如磐石一般坚固,任何反对它的人都将搬起石头砸自己的脚.” 集合论在20世纪初已逐渐渗透到了各个数学分支,成为了分析理论,测度论,拓扑学及数理科学中必不可少的工具。20世纪初世界上最伟大的数学家Hilbert在德国传播了Cantor的思想,把他称为“数学家的乐园”和“数学思想最惊人的产物”。英国哲学家Russell把Cantor的工作誉为“这个时代所能夸耀的最巨大的工作”。 数学逻辑专注在将数学置于一坚固的公理架构上,并研究此一架构的成果。就其本身而言,其为哥德尔第二不完备定理的产地,而这或许是逻辑中最广为流传的成果-总存在一不能被证明的真实定理。现代逻辑被分成递归论、模型论和证明论,且和理论计算机科学有着密切的关联性。

数学天才──高斯(C.F. Gauss) 高斯是德国数学家、物理学家和天文学家。 高斯一生下来,就对一切现象和事物十分好奇,而且决心弄个水落石出。7岁那年,高斯第一次上学了。 在全世界广为流传的一则故事说,高斯10岁时算出布特纳给学生们出的将1到100的所有整数加起来的算术题,布特纳当时给孩子们出的是一道更难的加法题:81297+81495+81693+…+100899。说完高斯也算完并把写有答案的小石板交了上去,当时只有他写的答案是正确的。数学史家们倾向于认为,高斯当时已掌握了等差数列求和的方法。一位年仅10岁的孩子,能独立发现这一数学方法实属很不平常。 高斯的学术地位,历来被人们推崇得很高。他有“数学王子”、“数学家之王”的美称。
艾萨克·牛顿
牛顿(Isaac Newton) 是英国较为着名的物理学家和数学学家。 艾萨克·牛顿
在学校里,牛顿是个古怪的孩子,就喜欢自己设计、自己动手,做风筝、日晷、滴漏之类器物。他对周围的一切充满好奇,但并不显得特别聪明。 1665~1666年严重的鼠疫席卷了伦敦,剑桥离伦敦不远,为恐波及,学校因此而停课,牛顿于1665年6月离校返乡。一天在树下闲坐,看到一个苹果落在地上,便开始捉摸,这种将苹果往下拉的力会不会也在控制着月球。由此牛顿推导出物体的下落速度改变率与重力的大小成正比,而重力大小与距地心距离的平方成反比。后来牛顿的棱镜实验也使他一举成名。 牛顿最卓越的数学成就是创立了微积分,此外对解析几何与综合几何都有比较显着的贡献。 牛顿有两句名言是大家所熟知的。他在一封信中写道:“如果我比别人看得远些,那是因为我站在巨人们的肩上。”据说他还讲过:“我不知道世人对我怎么看;但在我自己看来就好像只是一个在海滨嬉戏的孩子,不时地为比别人找到一块光滑的卵石或一只更美丽的贝壳而感到高兴,而我面前的 戈特弗里德·威廉·凡·莱布尼茨
浩瀚的真理海洋,却还完全是个谜。”
960年,北宋王朝的建立结束了五代十国割据的局面。北宋的农业、手工业、商业空前繁荣,科学技术突飞猛进,火药、指南针、印刷术三大发明就是在这种经济高涨的情况下得到广泛应用。1084年秘书省第一次印刷出版了《算经十书》,1213年鲍擀之又进行翻刻。这些都为数学发展创造了良好的条件。 从11~14世纪约300年期间,出现了一批着名的数学家和数学着作,如贾宪的《黄帝九章算法细草》,刘益的《议古根源》,秦九韶的《数书九章》,李冶的《测圆海镜》和《益古演段》,杨辉的《详解九章算法》《日用算法》和《杨辉算法》,朱世杰的《算学启蒙》《四元玉鉴》等,很多领域都达到古代数学的高峰,其中一些成就也是当时世界数学的高峰。 从开平方、开立方到四次以上的开方,在认识上是一个飞跃,实现这个飞跃的就是贾宪。杨辉在《九章算法纂类》中载有贾宪“增乘开平方法”、“增乘开立方法”;在《详解九章算法》中载有贾宪的“开方作法本源”图、“增乘方法求廉草”和用增乘开方法开四次方的例子。根据这些记录可以确定贾宪已发现二项系数表,创造了增乘开方法。这两项成就对整个宋元数学发生重大的影响,其中贾宪三角比西方的帕斯卡三角形早提出600多年。 把增乘开方法推广到数字高次方程(包括系数为负的情形)解法的是刘益。《杨辉算法》中“田亩比类乘除捷法”卷,介绍了原书中22个二次方程和 1个四次方程,后者是用增乘开方法解三次以上的高次方程的最早例子。 秦九韶是高次方程解法的集大成者,他在《数书九章》中收集了21个用增乘开方法解高次方程(最高次数为10)的问题。为了适应增乘开方法的计算程序,秦九韶把常数项规定为负数,把高次方程解法分成各种类型。当方程的根为非整数时,秦九韶采取继续求根的小数,或用减根变换方程各次幂的系数之和为分母,常数为分子来表示根的非整数部分,这是《九章算术》和刘徽注处理无理数方法的发展。在求根的第二位数时,秦九韶还提出以一次项系数除常数项为根的第二位数的试除法,这比西方最早的霍纳方法早500多年。 元代天文学家王恂、郭守敬等在《授时历》中解决了三次函数的内插值问题。秦九韶在“缀术推星”题、朱世杰在《四元玉鉴》“如象招数”题都提到内插法(他们称为招差术),朱世杰得到一个四次函数的内插公式。 用天元(相当于x)作为未知数符号,立出高次方程,古代称为天元术,这是中国数学史上首次引入符号,并用符号运算来解决建立高次方程的问题。现存最早的天元术着作是李冶的《测圆海镜》。 从天元术推广到二元、三元和四元的高次联立方程组,是宋元数学家的又一项杰出的创造。留传至今,并对这一杰出创造进行系统论述的是朱世杰的《四元玉鉴》。 朱世杰的四元高次联立方程组表示法是在天元术的基础上发展起来的,他把常数放在中央,四元的各次幂放在上、下、左、右四个方向上,其他各项放在四个象限中。朱世杰的最大贡献是提出四元消元法,其方法是先择一元为未知数,其他元组成的多项式作为这未知数的系数,列成若干个一元高次方程式,然后应用互乘相消法逐步消去这一未知数。重复这一步骤便可消去其他未知数,最后用增乘开方法求解。这是线性方法组解法的重大发展,比西方同类方法早400多年。 勾股形解法在宋元时期有新的发展,朱世杰在《算学启蒙》卷下提出已知勾弦和、股弦和求解勾股形的方法,补充了《九章算术》的不足。李冶在《测圆海镜》对勾股容圆问题进行了详细的研究,得到九个容圆公式,大大丰富了中国古代几何学的内容。 已知黄道与赤道的夹角和太阳从冬至点向春分点运行的黄经余弧,求赤经余弧和赤纬度数,是一个解球面直角三角形的问题,传统历法都是用内插法进行计算。元代王恂、郭守敬等则用传统的勾股形解法、沈括用会圆术和天元术解决了这个问题。不过他们得到的是一个近似公式,结果不够精确。但他们的整个推算步骤是正确无误的,从数学意义上讲,这个方法开辟了通往球面三角法的途径。 中国古代计算技术改革的高潮也是出现在宋元时期。宋元明的历史文献中载有大量这个时期的实用算术书目,其数量远比唐代为多,改革的主要内容仍是乘除法。与算法改革的同时,穿珠算盘在北宋可能已出现。但如果把现代珠算看成是既有穿珠算盘,又有一套完善的算法和口诀,那么应该说它最后完成于元代。 宋元数学的繁荣,是社会经济发展和科学技术发展的必然结果,是传统数学发展的必然结果。此外,数学家们的科学思想与数学思想也是十分重要的。宋元数学家都在不同程度上反对理学家的象数神秘主义。秦九韶虽曾主张数学与道学同出一源,但他后来认识到,“通神明”的数学是不存在的,只有“经世务类万物”的数学;莫若在《四元玉鉴》序文中提出的“用假象真,以虚问实”则代表了高度抽象思维的思想方法;杨辉对纵横图结构进行研究,揭示出洛书的本质,有力地批判了象数神秘主义。所有这些,无疑是促进数学发展的重要因素。
中西方数学的融合
中国从明代开始进入了封建社会的晚期,封建统治者实行极权统治,宣传唯心主义哲学,施行八股考试制度。在这种情况下,除珠算外,数学发展逐渐衰落。 16世纪末以后,西方初等数学陆续传入中国,使中国数学研究出现一个中西融合贯通的局面;鸦片战争以后,近代数学开始传入中国,中国数学便转入一个以学习西方数学为主的时期;到19世纪末20世纪初,近代数学研究才真正开始。 从明初到明中叶,商品经济有所发展,和这种商业发展相适应的是珠算的普及。明初《魁本对相四言杂字》和《鲁班木经》的出现,说明珠算已十分流行。前者是儿童看图识字的课本,后者把算盘作为家庭必需用品列入一般的木器家具手册中。 随着珠算的普及,珠算算法和口诀也逐渐趋于完善。例如王文素和程大位增加并改善撞归、起一口诀;徐心鲁和程大位增添加、减口诀并在除法中广泛应用归除,从而实现了珠算四则运算的全部口诀化;朱载墒和程大位把筹算开平方和开立方的方法应用到珠算,程大位用珠算解数字二次、三次方程等等。程大位的着作在国内外流传很广,影响很大。 1582年,意大利传教士利玛窦到中国,1607年以后,他先后与徐光启翻译了《几何原本》前六卷、《测量法义》一卷,与李之藻编译《圜容较义》和《同文算指》。1629年,徐光启被礼部任命督修历法,在他主持下,编译《崇祯历书》137卷。《崇祯历书》主要是介绍欧洲天文学家第谷的地心学说。作为这一学说的数学基础,希腊的几何学,欧洲玉山若干的三角学,以及纳皮尔算筹、伽利略比例规等计算工具也同时介绍进来。
在传入的数学中,影响最大的是《几何原本》。《几何原本》是中国第一部数学翻译着作,绝大部分数学名词都是首创,其中许多至今仍在沿用。徐光启认为对它“不必疑”、“不必改”,“举世无一人不当学”。《几何原本》是明清两代数学家必读的数学书,对他们的研究工作颇有影响。 其次应用最广的是三角学,介绍西方三角学的着作有《大测》《割圆八线表》和《测量全义》。《大测》主要说明三角八线(正弦、余弦、正切、余切、正割、余割、正矢、余矢)的性质,造表方法和用表方法。《测量全义》除增加一些《大测》所缺的平面三角外,比较重要的是积化和差公式和球面三角。所有这些,在当时历法工作中都是随译随用的。 1646年,波兰传教士穆尼阁来华,跟随他学习西方科学的有薛凤柞、方中通等。穆尼阁去世后,薛凤柞据其所学,编成《历学会通》,想把中法西法融会贯通起来。《历学会通》中的数学内容主要有比例对数表》《比例四线新表》和《三角算法》。前两书是介绍英国数学家纳皮尔和布里格斯发明增修的对数。后一书除《崇祯历书》介绍的球面三角外,尚有半角公式、半弧公式、德氏比例式、纳氏比例式等。方中通所着《数度衍》对对数理论进行解释。对数的传入是十分重要,它在历法计算中立即就得到应用。 清初学者研究中西数学有心得而着书传世的很多,影响较大的有王锡阐《图解》、梅文鼎《梅氏丛书辑要》(其中数学着作13种共40卷)、年希尧《视学》等。梅文鼎是集中西数学之大成者。他对传统数学中的线性方程组解法、勾股形解法和高次幂求正根方法等方面进行整理和研究,使濒于枯萎的明代数学出现了生机。年希尧的《视学》是中国第一部介绍西方透视学的着作。 清康熙皇帝十分重视西方科学,他除了亲自学习天文数学外,还培养了一些人才和翻译了一些着作。1712年康熙皇帝命梅彀成任蒙养斋汇编官,会同陈厚耀、何国宗、明安图、杨道声等编纂天文算法书。1721年完成《律历渊源》100卷,以康熙“御定”的名义于1723年出版。其中《数理精蕴》主要由梅彀成负责,分上下两编,上编包括《几何原本》、《算法原本》,均译自法文着作;下编包括算术、代数、平面几何平面三角、立体几何等初等数学,附有素数表、对数表和三角函数表。由于它是一部比较全面的初等数学网络全书,并有康熙“御定”的名义,因此对当时数学研究有一定影响。 雍正即位以后,对外闭关自守,导致西方科学停止输入中国,对内实行高压政策,致使一般学者既不能接触西方数学,又不敢过问经世致用之学,因而埋头于究治古籍。乾嘉年间逐渐形成一个以考据学为主的乾嘉学派。 随着《算经十书》与宋元数学着作的收集与注释,出现了一个研究传统数学的高潮。其中能突破旧有框框并有发明创造的有焦循、汪莱、李锐、李善兰等。他们的工作,和宋元时代的代数学比较是青出于蓝而胜于蓝的;和西方代数学比较,在时间上晚了一些,但这些成果是在没有受到西方近代数学的影响下独立得到的。 与传统数学研究出现高潮的同时,阮元与李锐等编写了一部天文数学家传记—《畴人传》,收集了从黄帝时期到嘉庆四年已故的天文学家和数学家270余人(其中有数学着作传世的不足50人),和明末以来介绍西方天文数学的传教士41人。这部着作全由“掇拾史书,荃萃群籍,甄而录之”而成,收集的完全是第一手的原始资料,在学术 数学家华罗庚
界颇有影响。 1840年鸦片战争以后,西方近代数学开始传入中国。首先是英人在上海设立墨海书馆,介绍西方数学。第二次鸦片战争后,曾国藩、李鸿章等官僚集团开展“洋务运动”,也主张介绍和学习西方数学,组织翻译了一批近代数学着作。 其中较重要的有李善兰与伟烈亚力翻译的《代数学》《代微积拾级》;华蘅芳与英人傅兰雅合译的《代数术》《微积溯源》《决疑数学》;邹立文与狄考文编译的《形学备旨》《代数备旨》《笔算数学》;谢洪赉与潘慎文合译的《代形合参》《八线备旨》等等。 《代微积拾级》是中国第一部微积分学译本;《代数学》是英国数学家德·摩根所着的符号代数学译本;《决疑数学》是第一部概率论译本。在这些译着中,创造了许多数学名词和术语,至今还在应用,但所用数学符号一般已被淘汰了。戊戌变法以后,各地兴办新法学校,上述一些着作便成为主要教科书。 在翻译西方数学着作的同时,中国学者也进行一些研究,写出一些着作,较重要的有李善兰的《尖锥变法解》《考数根法》;夏弯翔的《洞方术图解》《致曲术》《致曲图解》等等,都是会通中西学术思想的研究成果。 由于输入的近代数学需要一个消化吸收的过程,加上清末统治者十分腐败,在太平天国运动的冲击下,在帝国主义列强的掠夺下,焦头烂额,无暇顾及数学研究。直到1919年五四运动以后,中国近代数学的研究才真正开始。
编辑本段中国古代着名数学家

在数学的领域中, 提出问题的艺术比解答问题的艺术更为重要.——康扥尔 只要一门科学分支能提出大量的问题, 它就充满着生命力, 而问题缺乏则预示独立发展的终止或衰亡。 ——希尔伯特 在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么. ——毕达哥拉斯 一门科学,只有当它成功地运用数学时,才能达到真正完善的地步。 ——马克思 一个国家的科学水平可以用它消耗的数学来度量. ——拉奥 柯西 (Augustin Louis Cauchy 1789-1857) 如果认为只有在几何证明里或者在感觉的证据里才有必然,那会是一个严重的错误。给我五个系数, 笛卡儿(Rene Descartes 1596-1650) 我思故我在。 我决心放弃那个仅仅是抽象的几何。这就是说,不再去考虑那些仅仅是用来练思想的问题。我这样做,是为了研究另一种几何,即目的在于解释自然现象的几何。 数学是人类知识活动留下来最具威力的知识工具,是一些现象的根源。数学是不变的,是客观存在的,上帝必以数学法则建造宇宙。 欧拉(Leonhard Euler 1707-1783) 虽然不允许我们看透自然界本质的秘密,从而认识现象的真实原因,但仍可能发生这样的情形:一定的虚构假设足以解释许多现象。 因为宇宙的结构是最完善的而且是最明智的上帝的创造,因此,如果在宇宙里没有某种极大的或极小的法则,那就根本不会发生任何事情 祖冲之(429-500) 迟序之数,非出神怪,有形可检,有数可推。 刘徽 事类相推,各有攸归,故枝条虽分而同本干知,发其一端而已。又所析理以辞,解体用图,庶亦约而能周,通而不黩,览之者思过半矣。 拉普拉斯(Pierre Simon Laplace 1749-1827) 这就是结构好的语言的好处,它简化的记法常常是深奥理论的源泉。 在数学这门科学里,我们发现真理的主要工具是归纳和类比。 读读欧拉,读读欧拉,他是我们大家的老师。 一个国家只有数学蓬勃发展,才能表现她的国力强大。 认识一位巨人的研究方法,对于科学的进步并不比发现本身更少用处。科学研究的方法经 常是极富兴趣的部分。 莱布尼茨(Gottfried Wilhelm von Leibniz 1646-1716) 虚数是奇妙的人类棈神寄托,它好像是存在与不存在之间的一种两栖动物。 不发生作用的东西是不会存在的。 考虑了很少的那几样东西之后,整个的事情就归结为纯几何,这是物理和力学的一个目标 西尔维斯特(James Joseph Sylvester 1814-1897) 几何看来有时候要领先于分析,但事实上,几何的先行于分析,只不过像一个仆人走在主人的前面一样,是为主人开路的。 也许我可以并非不适当地要求获得数学上亚当这一称号,因为我相信数学理性创造物由我命名(已经流行通用)比起同时代其他数学家加在一起还要多。 魏尔斯
编辑本段现代数学衍生品
数学的出现,增加了很多学生的烦恼,但是数学也一直是大家无法回避的一个话题,数学的难题,让很多人不知所措。当今,更是出现了很多的的数学辅导班,各类的家教班。但是数学是一门很有用的学科。自从人类出现在地球上那天起,人们便在认识世界、改造世界的同时对数学有了逐渐深刻的了解。早在远古时代,就有原始人“涉猎计数”与“结绳记事”等种种传说。可见,“在早期一些古代文明社会中已产生了数学的开端和萌芽”(在BC3000年左右巴比伦和埃及数学出现以前,人类在数学上没有取得更多的进展”,而“在BC600—BC300年间古希腊学者登场后”,数学便开始“作为一名有组织的、独立的和理性的学科 由此可见,古往今来,人类社会都是在不断了解和探究数学的过程中得到发展进步的。数学对推动人类文明起了举足轻重的作用。

Ⅳ 近代数学的兴起读后感

数学在人类文明的发展中起着非常重要的作用,数学推动了重大科学技术的进步,在早期社会发展的历史上,限于技术条件,依据数学推理和推算所作的预见,往往要多年之后才能实现,数学为人类生产和生活带来的效益容易被忽视.进入二十世纪,尤其式到了二十世纪中叶以后,科学技术发展到现在的程度,数学理论研究与实际应用之间的时间已大大缩短,特别是当前,随着电脑应用的普及,信息的数字化和信息通道的大规模联网,依据数学所作的创造设想已达到即时试、即时实施的地步,数学技术将是一种应用最广泛、最直接、最及时、最富创造力和重要的技术,故而当今和未来的发展将更倚重数学的发展.

数学对人的影响也式非常深刻的,“数学是锻炼思维的体操”,数学的重要性不仅仅是它蕴含在各个知识领域之中,而且更重要的是它能很好地锻炼人的思维,有效地提高能力,而能力(理解能力、分析能力、运算能力)则是关系到学习效率的更重要因素.

在我国建国60年来,我国数学科学的发展更是取得了辉煌的成就,涌现了一批如:华罗庚、吴文俊等站在数学发展最前沿的,代表数学发展方向的,享誉世界的数学家,对比其他国家数学科学的发展,我国的数学发展可谓一波三折.

与美国相比,自二战以后,为了迎接越来越大的内外挑战,美国经历了四次重大的教育改革实践,由二十世纪50年代末前苏联在“外层空间”的挑战而引发的“学科结构”为运动发端的教育大讨论,70年代初兴起了改变职教与普教分离的“生计教育”,至70年代中期又展开了强调基础知识与基础技能训练的“回归基础”运动,而80年代则掀起了波澜壮阔的综合教育改革运动,如果说美国80年代以前的教育具有明显的“应时性”特征的话,那么进入80年代后则更多地呈现出综合性与前瞻性的特点,并以四个着名的教育改革文献——《国家处于危机之中:教育改革势在必行》,《2061计划:面向全体美国人的科学》,《美国2000年教育战略》,《2000年目标:美国教育法》为标志,向世界呈现了一副21世纪的教育蓝图.
从我国第一部数学着作,九章算术开始,中国的数学事业,便蓬勃的发展.算筹,割圆术,杨辉三角等等发现或者理论,祖冲之,秦九韶等数学家,都为中国在世界数学史上增辉添彩,许多数学理论,都领先外国多年.但是中国传统数学,有一个明显的特点,就是数学着作都以社会生产和生活实践中的问题为纲,这些问题基本按社会、生活领域进行分类,过分重实用,不利于抽象概念和命题的形成.而且,中国传统数学始终置于政府控制之下,直接受制于统治阶级的意识形态和社会的需求,特别的,明代封建统治者的政策不利于数学发展.这些都导致后期中国数学发展缓慢,无法与世界接轨.
至于中国近现代的数学发展,1919年五四运动以后,中国近代数学的研究才真正开始.这期间,浮现了诸多伟大的数学家,苏步青,赵元任,他们中的多数回国后成为着名数学家和数学教育家,为中国近现代数学发展做出重要贡献.从北大1912年成立时建立的数学系起,中国各地的数学教育日渐成熟,培养了许多数学领域的人才,在诸多领域都取得了伟大的成就(PS:具体LZ自己网络一下吧,很容易的,太长了)但是值得注意的是,自从改革开放,中国的经济实力不断增强,与外界的合作也日渐增多.但是,这给人们带来的功利,浮躁心理,也不容忽视.试看现在中国的数学教育,人人都在搞竞赛(虽然现在国家限制),各种培训班培养出来的,很多都是没有兴趣的做题机器,这种人,是很难在数学领域有所长足发展的.
中国在不断强大,我们新一代的年轻人,要有理想,不能急功近利的只关注高收益的学科与专业,更应注重基础学科的发展,一个国家的科技水平,不仅体现在工业领域,基础理论也是科学不可分割一部分.纵观中国的数学发展史,不管时代如何,代代都有才人出.希望,中国的数学,将会在我们这一代,有长足的发展,不要让中国悠久的历史,在我们这一代蒙羞.

Ⅳ 近代数学的创立,真的是牛顿为了学费而创立的

当然不是,牛顿为了增加多点学费而创立微积分这门学科的那个故事仅仅只是一个段子而已。实际上,牛顿是为了解决一些用当时的数学知识难以解决的问题才创立的微积分。大家都知道,数学只是科学研究的一种工具,有很大一部分的数学理论都是为了解决某些具体问题才创立的。至于说什么为了骗学生的学费才创立的微积分 ,这种故事很明显就是个段子而已。


当然了,牛顿在数学上还有很多的贡献,比如二项式定理等,但这些都是牛顿为了解决物理问题才研究出来的数学工具,并不是为了骗学生学费。

Ⅵ 近代数学的兴起

近代数学的兴起

第一节 中世纪的欧洲

在巴比伦、埃及、中国、印度、希腊和罗马等文明兴盛时代,欧洲(除希腊和意大利)还处于原始文明时期,大约在公元500年左右才开始出现新文化。公元5~11世纪,是欧洲历史上的黑暗时期,天主教会成为欧洲社会的绝对势力,封建宗教统治,使一般人笃信天国,追求来世,从而淡漠世俗生活,对自然不感兴趣。教会宣扬天启真理,并拥有解释这种真理的绝对权威,导致了理性的压抑,欧洲文明在整个中世纪处于凝滞状态。

由于罗马人偏重于实用而没有发展抽象数学,这对罗马帝国崩溃后的欧洲数学也有一定的影响,终使黑暗时代的欧洲在数学领域毫无成就。不过因宗教教育的需要,也出现一些水平低下的算术和几何教材。罗马人博埃齐(A.M.S.Boethius,约480~524)根据希腊材料用拉丁文选编了《几何》、《算术》等教科书,《几何》内容仅包含《几何原本》的第一卷和第三、四卷的部分命题,以及一些简单的测量术;《算术》则是根据四百年前尼科马库斯(Nicomachus)的一本浅易的着作编写的。这样简单的书籍竟一直成为欧洲教会学校的标准课本。此外,这一时期还有英国的比德(V.Bede,674~735)和后来成为教皇的法国人热尔拜尔(Gerbert,约950~1003,第一个在西班牙穆斯林学校学习的基督教徒)等人也讨论过数学,前者研究过算术中的指算,据说后者可能把印度-阿拉伯数字带入欧洲。

直到12世纪,欧洲数学才出现复苏的迹象。这种复苏开始由于受翻译、传播阿拉伯着作和希腊着作的刺激。1100年左右,欧洲人通过贸易和旅游,同地中海地区和近东的阿拉伯人以及东罗马帝国的拜占庭人发生了接触。十字军为掠夺土地的东征,使欧洲人进入了阿拉伯世界,从此欧洲人从阿拉伯人和拜占庭人那里学到希腊以及东方古典学术,激发他们对这些学术着作的搜求、发掘和研究,最终导致了文艺复兴时期欧洲数学的高涨。文艺复兴前哨的意大利,由于其特殊的地理位置容易与外部文明相联系,西西里岛成为东西方文化的熔炉。古代学术传播西欧的路线如下图所示。

数学着作的翻译主要有英国的阿德拉特(Adelard,约1120)翻译的《几何原本》和花拉字米的天文表;意大利人普拉托(Plato,12世纪上半叶)翻译的巴塔尼的《天文学》和狄奥多修斯的《球面几何》以及其它着作。12世纪最伟大的翻译家格拉多(Gherardo,1114~1187)将90多部阿拉伯文着作翻译成拉丁文,其中包括托勒玫的《大汇编》、《几何原本》、花拉子米的《代数学》。因此可以说12世纪是欧洲数学的翻译时代。

欧洲黑暗时代以后,第一位有影响的数学家是斐波那契(Fibonacci, 1170~1250),他早年就随其父亲在北非从师阿拉伯人学习算学,后又游历地中海沿岸诸国,回意大利写成《算盘书》(Abaci, 1202),这部着名的着作主要是古代中国、印度和希腊数学着作的内容,包括印度-阿拉伯数码,分数算法,开方法,二次和三次方程,不定方程,以及《几何原本》和希腊三角学的大部分内容(如中国数学的“孙子问题”,“百鸡问题”均出现于该书中)。特别是,书中系统介绍了印度数码,影响了欧洲数学面貌。《算盘书》可以看作是欧洲数学在经历了漫长的黑夜之后走向复苏的号角。

欧洲数学复苏的过程十分曲折,从12世纪到15世纪中叶,教会中的经院哲学派利用重新传入的希腊着作中的消极成分来阻抗科学的进步。特别是他们把亚里士多德、托勒玫的一些学术奉为绝对正确的教条,妄图用这种新的权威主义来继续束缚人们的思想。欧洲数学真正的复苏,要到15、16世纪。在文艺复兴的高潮中,数学的发展与科学的革新紧密结合在一起,数学在认识自然和探索真理方面的意义被文艺复兴的代表人物高度强调。达芬奇(1452~1519)就这样说过:“一个人若怀疑数学的极端可靠性就是陷入混乱,他永远不能平息诡辩科学中只会导致不断空谈的争辩。……因为人们的探讨不能称为科学的,除非通过数学上的说明和论证。”伽利略干脆认为宇宙“这本书是用数学的语言写成的”。科学中数学化趋势的增长促使数学本身走向繁荣。以下简略介绍这一时期数学发展的重要方面。 第二节 向近代数学的过渡

2.1 代数学

欧洲人在数学上的推进是从代数学开始的,它是文艺复兴时期成果最突出、影响最深远的领域,拉开了近代数学的序幕。主要包括三、四次方程求解与符号代数的引入这两个方面。

翻译家格拉多(gherardo, 1114~1187)将花拉子米的《代数学》翻译成拉丁文后,开始在欧洲传播,不过,直到十五世纪, 人们还以为三、四次方程与化圆为方问题一样难以解决。第一个突破是波伦亚大学的数学教授费罗(Scipionedel Ferro, 1465~1526)大约于1515年左右作出的,他发现了形如(m , n > 0)的三次方程的代数解法。当时流行着学者们不公开自己研究成果的风气,费罗将自己的解法秘密传给他的学生费奥(Antonio Maria Fior)。与此同时,1535年意大利另一位数学家塔塔利亚(Niccolo Fontana, 1499?~1557,绰号Tartaglia)也宣称自己可以解形如 (m , n > 0)的三次方程。于是,费奥开始向塔塔利亚挑战,要求各自解出对方提出的十三个三次方程,比赛结果,塔塔利亚很快解出形如和(m , n > 0)的两类型所有三次方程,而费奥仅能解出前一类型的方程。塔塔利亚同样没有公布他的解法,在教书行医于米兰的学者卡尔丹(G.Cardano,1501~1576)的再三请求、并答应保密的情况下,塔塔利亚将其解法传授与他。不久,卡尔丹违背诺言而着《大法》(Ars magna, 1545)一书,公布了这些解法。《大法》所载三次方程 x3+px= q 的解法,实质是考虑恒等式 (a-b)3 + 3ab(a-b) = a3-b3

若选取a和b,使 3ab= p,a3-b3 = q, (*)

由(*)不难解出a和b,

a = b=

于是得到a-b就是所求的x. 后人称之为卡尔丹公式。

三次方程解决后不久,1540年意大利数学家达科伊(T.Da Coi)向卡尔丹提出一个四次方程的问题,卡尔丹为能解决,由其学生费拉里(Lodovico Ferrari,1522~1565)解决了,其解法也被卡尔丹写进《大术》中。其解法是利用一个变换:,将一般四次方程简化为,由此进一步 于是,对于任意的z,有 再选择适当的z,使上式右边成为完全平方式,实际上使

即可。这样就变为z的三次方程。

费拉里所讨论的四次方程类型主要有以下几种:

当然,说卡尔丹完全是剽窃失之于公正,因为他在书中已注明这个解法是塔氏告诉他的,而且塔氏也没有给出证明。卡尔丹不仅将塔氏方法推广到一般情形的三次方程,并且补充了几何证明。书中对三次方程求解中的所谓“不可约”情形感到困惑(不可约情形就是判别式),实质上它涉及到实数的复数表示问题。在卡氏去世后四年的1572年,意大利数学家邦贝利(R.Bombelli, 约1526~1573)在其所着教科书《代数》中引进了虚数,用以解决三次方程不可约情况,并以dimrq11表示?-11.卡尔丹认为复根是成对出现的(这一推测后来被牛顿(Newton,1642~1727)在其《普遍的算术》中所证明),认识到三次方程有三个根,四次方程有四个根。在此基础上,荷兰人吉拉德(Albert Girard,1593~1632)于《代数新发现》(1629)中又作进一步的推断:对于n次多项式方程,如果把不可能的(复数根)考虑在内,并包括重根,则应有 n个根。不过,没有给出证明。卡尔丹还发现了三次方程的三根之和等于x2项的系数的相反数,每两根乘积之和等于x项的系数,等等,这种根与系数的关系问题后来由韦达(f.vieta,1540~1603)、牛顿和格列高里 (James Gregory,1638~1675) 等人作出系统阐述。

在法国,数学家韦达也写过《分析方法入门》(1591)、《论方程的整理与修正》(1615)与《有效的数值解法》(1600)等几本方程论着作,韦达给出代数方程的近似解法与代数方程的多项式分解因式解法。1637年,笛卡儿(Descartes,1596~1650)首次应用待定系数法将四次方程分解成两个二次方程求解。今天所说的因式分解定理,最早由笛卡儿在其《几何学》中提出,他说:f (x) 能为 (x-a) 整除,当且仅当a 是f (x) = 0的一个根。他还证明了:若有理系数的三次方程有一个有理根,则此多项式可表示为有理系数因子的乘积,并且引用了待定系数法原理。笛卡儿在《几何学》中也未加证明叙述了,n次多项式方程应有 n个根的论断,以及今天所谓的“笛卡儿符号法则”:多项式方程f (x) = 0 的正根的最多个数等于系数变号的次数,负根的最多个数等于两个正号与两个负号连续出现的次数。综览笛卡儿的工作,容易发现他已初步建立了多项式方程有理根的现代方法。

文艺复兴时期欧洲方程论与代数学研究是数学史上精彩的一页,意大利人在三、四次方程解法方面的工作是整个17、18世纪数学关于高次代数方程理论的一系列漫长而影响深远的探索的起始点。

代数上的进步还在于引用了较好的符号体系,这对于代数学本身的发展以及分析学的发展来说,至为重要。正是由于符号化体系的建立,才使代数有可能成为一门科学。近现代数学一个最为明显、突出的标志,就是普遍地使用了数学符号,它体现了数学学科的高度抽象与简练。文艺复兴时期代数学的另一重大进展,便是系统地引入符号代数。

尽管埃及、希腊与印度人都曾零星地使用过缩写文字和符号,中国宋元时期的数学家也引入天元、地元、人元、物元等来表示未知数,但他们都无意识到这样做的重要意义。只有丢番图(Diophantus)自觉地运用符号以使代数的思路与书写更加紧凑有效。或许由于印刷术传入欧洲带来的结果,十五世纪及十六世纪初的欧洲数学着作的书写形式尽管主要是文章式的,但流行着使用一些特殊词语的缩写与特定的数学符号,在意大利修道士帕奇欧里(L.Pacioli,约1445~1509)的《算术、几何及比例性质之摘要》(1494)、德国人斯蒂费尔(Stifel,1486?~1567)的《综合算术》(1544),以及鲁道夫(C.Rudolff, 约1500~约1545)的《求根术》等书中尤为显着。

数学符号系统化首先归功于法国数学家韦达,由于他的符号体系的引入导致代数性质上产生最重大变革。韦达原是律师与政治家,业余时间研究数学。他曾在布列塔尼(Brittany)议会工作,后任那瓦尔的亨瑞(Henry)亲王的枢密顾问官,他在政治上失意的1584~1589年间,献身于数学研究,曾研究过卡尔丹、塔塔利亚、邦贝利、史蒂文(Stevin, 1548~1620)和丢番图等人的着作,从这些着作特别是丢番图的着作中获得了使用字母的想法,在他的《分析引论》(1591)中,第一次有意识地使用系统的代数字母与符号,辅音字母表示已知量,元音字母表示未知量,他把符号性代数称作“类的算术”。同时规定了算术与代数的分界,认为代数(logistica speciosa)运算施行于事物的类或形式,算术运算(logistica numerosa)施行于具体的数。这就使代数成为研究一般类型的形式和方程的学问,因其抽象而应用更为广泛。

韦达的这种做法受到后人的赞赏,并被吉拉德的《代数新发现》和奥特雷德(Oughtred,1575~1660)的《实用分析术》所继承,灵活地加以运用,特别是通过后者的着作使采用数学符号的风气流行起来。对韦达所使用的代数法的改进工作是由笛卡儿完成的,他首先用拉丁字母的前几个(a, b, c, d, …)表示已知量,后几个(x, y, z, w, …)表示未知量,成为今天的习惯,他改变了韦达的做法,毫无区别地采用文字系数。韦达的符号代数保留着齐性原则,要求方程中各项都是“齐性”的,即体积与体积相加,面积与面积相加。这一障碍随着笛卡儿解析几何的诞生也得到消除。

到十七世纪末,欧洲数学家已普遍认识到,数学中特意使用符号具有很好的功效。并且使数学问题具有一般性。不过当时随意引入的符号太多,我们今天所使用的符号,实际是这些符号经过长期淘汰后剩下来的。

阅读全文

与近代数学什么是个学相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:740
乙酸乙酯化学式怎么算 浏览:1406
沈阳初中的数学是什么版本的 浏览:1353
华为手机家人共享如何查看地理位置 浏览:1045
一氧化碳还原氧化铝化学方程式怎么配平 浏览:886
数学c什么意思是什么意思是什么 浏览:1411
中考初中地理如何补 浏览:1300
360浏览器历史在哪里下载迅雷下载 浏览:703
数学奥数卡怎么办 浏览:1388
如何回答地理是什么 浏览:1025
win7如何删除电脑文件浏览历史 浏览:1058
大学物理实验干什么用的到 浏览:1487
二年级上册数学框框怎么填 浏览:1701
西安瑞禧生物科技有限公司怎么样 浏览:976
武大的分析化学怎么样 浏览:1250
ige电化学发光偏高怎么办 浏览:1339
学而思初中英语和语文怎么样 浏览:1653
下列哪个水飞蓟素化学结构 浏览:1425
化学理学哪些专业好 浏览:1488
数学中的棱的意思是什么 浏览:1059