1. 圆柱与圆锥和比例只要是六年级下学期的数学重点知识都给我讲一下
1.比的意义和性质
两个数相除右叫两个数的比。(意义)
比的前项和后项同时除以一个数(零除外),比值不变。(基本性质)
2.比例的意义和性质
表示两个比相等的式子叫比例。(意义)
两个外项的积,等于两个内项的积。(基本性质)
3.正比例和反比例
正比例:y÷x=k(一定)
反比例:yx=k(一定)
4.比例尺
图上距离比实际距离的比,通常把比例尺写成前项是1的比。
1.圆柱
圆柱体表面的面积,叫做这个圆柱的表面积。
圆柱的表面积=2×底面积+侧面积
圆柱的侧面沿高展开以后是一个正方形或长方形,侧面展开以后的长是底面周长,宽是高,(当底面周长与高相等时就是正方形,所以侧面沿高展开的特殊情况是正方形),所以侧面积=底面周长×高。
圆柱的底面是两个完全相等的圆。
两个底面之间的距离叫做圆柱的高。圆柱有无数条高,且高的长度都相等。
求圆柱的体积跟求长方体、正方体一样,都是底面积×高:设一个圆柱底面半径为r,高为h,则体积V:V=πr2h
如S为底面积,高为h,体积为V:V=Sh
圆柱的两个圆面叫做底面(又分上底和下底);圆柱有一个曲面,叫做侧面;两个底面之间的距离叫做高(高有无数条)。
②特征:
圆柱的底面都是圆,并且大小一样。
2.圆锥
圆锥只有一个底面是个圆。
圆锥的顶点到底面圆心的距离叫做圆锥的高,圆锥只有一条高。
圆锥的侧面展开图是一个扇形。
圆锥的体积公式是V=1/3πr2h
3.圆柱与圆锥的关系
与圆柱等底等高的圆锥体积是圆柱体积的三分之一。
体积和高相等的圆锥与圆柱(等底等高)之间,圆锥的底面积是圆柱的三倍。
体积和底面积相等的圆锥与圆柱(等底等高)之间,圆锥的高是圆柱的三倍。
底面积和高不相等的圆柱圆锥不相等。
2. 数学里尖角是什么
好像没听说过尖角这个词语。可能是锐角。就是角的度数小于90的角都叫锐角。
3. 什么叫圆规
圆规在数学的几何、制图里,是用来绘制圆或弦的工具,常用于尺规作图。圆规的制作材料有金属和塑料等,包括两部分连接,由一个,其中有可作调整的铰链。圆规由笔头、转轴、圆规支腿、格尺、折叶、笔体、笔尖、圆规尖、小耳构成,它的笔头一端插入笔体筒下端,笔体的下端螺纹在笔尖的上端音域固定,小耳的平齐端焊接在圆规支腿的外侧中间,圆规支腿的下端夹紧连接在圆规尖的上端。
【简介】
圆规的材料通常是金属,包括两部分连接着一个铰链,可调整所画的弧的半径大小。
【分类】
圆规分普通圆规、弹簧圆规、点圆规、梁规等。
【介绍】
绘圆用的绘图工具。有两只脚,上端铰接,下端可随意分开或合拢,以调整所绘圆弧半径的大小。一只脚的末端为针尖,另一只脚的末端可装入绘铅笔线或墨线的脚。有的圆规装上延伸杆,可画出较大的圆。有梁规、弹簧小圆规和活心小圆规等。
圆规主要用于画圆和圆弧。一般有大圆规、弹簧圆规和点圆规等三种。使用时,应先调整针脚,使针尖略长于铅芯,且插针和铅芯脚都与纸面大致保持垂直。画大圆弧时,可加上延伸杆。
【发明】
圆规的发明最早可追溯至中国夏朝,《史记•夏本纪》载大禹治水“左凖绳,右规距”,公元前15世纪的甲骨文中,已有规、矩二字,当时称为“ 规”,
即今日的圆规,《周礼•考工记•匠人》记载:“匠人建国,平地以悬,置槷以悬,视以景。为规,识日出之景与日入之景。昼参诸日中之景,夜考之极星,以正朝夕。”山东嘉祥武梁祠内有“东汉伏羲女娲砖刻像”,其中女娲执规,伏羲执矩,这里的规是古式梁规,形状与甲骨文“癸”的字形相似。绘圆用的绘图工具。有两只脚,上端铰接,下端可随意分开或合拢,以调整所绘圆弧半径的大小。一只脚的末端为针尖,另一只脚的末端可装入绘铅笔线或墨线的脚。有的圆规装上延伸杆,可画出较大的圆。有梁规、弹簧小圆规和活心小圆规等。
【结构】
圆规由笔头、转轴、圆规支腿、格尺 、折叶、笔体、笔尖、圆规尖、小耳构成,它的笔头的下端插入连接在笔体的上端,笔体的下端螺纹连接在笔尖的上端,小耳的平齐端焊接在圆规支腿的外侧中间,圆规支腿的下端夹紧连接在圆规尖的上端。 其特征是:笔体的一面粘贴连接在折叶的一面,折叶的另一面粘贴连接在格尺的一端中间,笔体的夹缝上端两侧插入连接在转轴的两端,转轴的轴体穿套连接在圆规支腿的上端。
【方法】
1、用尺子量出圆规两脚尖之间的距离,作为弧的半径。
2、把带有针的一端稍微压固定在一个地方,作为圆心。
3、把带有铅笔的一端旋转一周画弧或者圆。
【注意事项】
1、圆规两脚之间的高度基本一样。
2、画圆的过程中圆规要稍微倾斜30度左右,有一些压力以便使画出的圆的线条流畅。
3、画圆的过程中带有针的一端(即圆心)不能移动。
4、画圆的过程中两脚距离(即半径)不能改变。
5、绘图时小心针刺到手。
【技巧】
熟练掌握常用的绘图工具使用技巧,对于提高手工绘图的质量和速率有重要意义。
1、常用绘图工具
(1)(图板) 画图时,需将图纸平铺在图纸上,所以,图板的表面必须平整、光洁、且富有弹性。图板的左侧边称为导边,必须平直。常用的图板规格有0号、1号和二号三种。
(2) 丁字尺 丁字尺主要用于画水平线,它由尺头和尺身组成。尺头和尺身的连接处必须牢固,尺头的内侧边与尺身的上边(称为工作边)必须垂直。使用时,用左手扶住尺头,将尺头的内侧边紧贴图板的导边,上下移动丁字尺,自左向右可画出一系列不同位置的水平线。
(3) 三角板 三角板有45°- 90°角和30°- 60°- 90°角的各一块。将一块三角板与丁字尺配合使用,自下而上可画出一系列不同位置的直线;还可画与水平线成特殊角度如30°、45°、60°的倾斜线,将两快三角板与丁字尺配合使用,可画出与水平线成15°、75°的倾斜线,如图2所示。两块三角板互相配合使用,可任画已知直线的水平线或垂直线。
2、分规、比例尺
(1) 分规 分规是用来量取尺寸、截取线段、等分线段的工具。分规的两腿端部有钢针,当两腿合龙时,两针尖应重合于一点。图5所示为用分规在比例尺上量取尺寸,然后在线上连续截取等长线段的方法若欲将AB线段四等分,可先任凭自测估计,将分规的两针尖开到约为AB/4进行试分,如有剩余(或不足)时,再将针尖间的距离张大(或缩小)e/4,e为剩余或不足量,再进行试分,直到满意为止。用试分法也可等分圆或圆弧。
(2) 比例尺 比例尺的三个棱面上有六种不同比例的刻度,如1:100、1:200等,可用于量取不同比例的尺寸。
3、圆规圆规是用来画圆或圆弧的工具。
圆规固定腿上的钢针具有两种不同形状的尖端:带台阶的尖端是画圆货圆弧时定心用的;带锥形的尖端可作分规使用。活动腿上有肘形关节,可随时装换铅芯插脚、鸭嘴脚及作分规用的锥形钢针插脚。
画圆或圆弧时,要注意调整钢针在固定腿上的位置,使两腿在合龙时针尖比铅芯稍长些,以便将针尖全部扎入内;按顺时针方向转动圆规,并稍向前倾斜,此时,要保证针尖和笔尖均垂直纸面;画大圆时,可接上延长杆后使用。
4、曲线板是绘制非圆曲线的常用工具。
画线时,先徒手将各点轻轻地连成曲线;然后在曲线板上选取曲率相当的部分,分几段逐次将各点连成曲线,但每段都不要全部描完,至少留出后两点间的一小段,使之与下段吻合,以保证曲线的光滑连接。
5、铅笔
(1) 铅笔的型号及应用 绘图铅笔分软与硬两种型号,字母“B”表示软铅笔,字母“H”表示硬铅芯。“B”之前的数值越大,表示铅芯越软;“H”之前的数值越大,表示铅芯越硬。
字母“HB”表示软硬适中的铅芯。
绘制机械图样时,常用2H或H铅笔画底稿线加深细线;用HB或H铅笔写字画箭头;用HB或B铅笔画粗线;加深粗线的圆或圆弧时,比加深直线用的HB或B铅笔软一级。(2) 铅笔的磨削方法画底稿线、细线和写字 用的铅笔 ,笔芯应削成锥型尖端;画粗线时,铅芯宜削成呈梯形棱柱状的头部,因其磨损较缓,线型易于一致。磨削铅笔时,先用小刀将铅笔无字一端的木皮削去约25-30mm,使铅芯露出(6-8)mm,再将露出的铅芯用刀或砂纸修磨成所需的形状。画细线圆时,将2H或H铅芯磨成凿形;画粗线圆时,将B或2B铅芯磨成带方形截面的头部。
(3) 用铅笔画线的方法 画直线时,铅笔在前后方向上应与纸面垂直,且向画线方向倾斜约30°。当铅笔头部呈梯形棱柱状时,倾斜角度可相应地减小一些,但用力要稍许加大,并匀速前进。
6、其他绘图工具
为了提高绘图速度,可运用各种多功能的绘图模板,量画结合,使绘图工作更趋于专业化。绘图机是先进的手工绘图设备,其机头上装有一对互相垂直的直尺,可作3600的转动,它能代替丁字尺、三角板、量角器等绘图工具的工作,画出水平线、垂直线和任意角度的倾斜线。例如钢带式绘图机;导轨式绘图机。
4. 圆周率是
圆周率(Pi)是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π也等于圆形之面积与半径平方之比。是精确计算圆周长、圆面积、球体积等几何形状的关键值。 在分析学里,π可以严格地定义为满足sin x = 0的最小正实数x。
圆周率用字母 (读作pài)表示,是一个常数(约等于3.141592654),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用十位小数3.141592654便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。[1]
1965年,英国数学家约翰·沃利斯(John Wallis)出版了一本数学专着,其中他推导出一个公式,发现圆周率等于无穷个分数相乘的积。2015年,罗切斯特大学的科学家们在氢原子能级的量子力学计算中发现了圆周率相同的公式[2] 。
是第十六个希腊字母的小写。
这个符号,亦是希腊语 περιφρεια (表示周边,地域,圆周等意思)的首字母。1706年英国数学家威廉·琼斯(William Jones ,1675-1749)最先使用“π”来表示圆周率[3] 。1736年,瑞士大数学家欧拉也开始用
表示圆周率。从此,
便成了圆周率的代名词。[4]
要注意不可把
和其大写Π混用,后者是指连乘的意思。
http://ke..com/link?url=Kd2Ja_0BAewEZL057mCfjmaQA4iLPistX-GNb8DAxVc-fMrSCKEIRQxialXpZXq-CtNykpNkMB7F0LisBx136K
5. 数学圆的概念
圆的基本知识
圆
定义 圆的定义有两个 其一:平面上到定点的距离等于定长的点的集合叫圆。 其二:平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。
概括
把一个圆按一条直线对折过去,并且完全重合,展开再换个方向对折,折出后,这些折痕相交的一个点,叫做圆心,用字母O表示。连接圆心和圆上的任意一点的线段叫做半径,用字母r表示。通过圆心并且两端都在圆上的线段叫做直径,用字母d表示。圆心决定圆的位置,半径和直径决定圆的大小。在同一个圆或等圆中,半径都相等,直径也都相等,直径是半径的2倍,半径是直径的1/2。 用字母表示是:d=2r或r=d/2
圆的相关量
圆周率:圆周长度与圆的直径长度的比值叫做圆周率,它是一个无限不循环的小数通常用π表示,π=3.1415926535...,在实际应用中我们只取它的近似值,即π≈3.14(在奥数中一般π只取3、3.1416或3.14159) 圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧(arc)。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦(chord)。圆中最长的弦为直径(diameter)。 圆心角和圆周角:顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。 内心和外心:和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。 扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径称为圆锥的母线。 【圆和圆的相关量字母表示方法】 圆—⊙ 半径—r或R(在环形圆中外环半径表示的字母) 弧—⌒ 直径—d 扇形弧长/圆锥母线—l 周长—C 面积—S
圆和其他图形的位置关系
圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO<r。 直线与圆有3种位置关系:无公共点为相离;有两个公共点为相交,这条直线叫做圆的割线;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。以直线AB与圆O为例(设OP⊥AB于P,则PO是AB到圆心的距离):AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO<r。 两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R-r<P<R+r;内切P=R-r;内含P<R-r。
圆的面积与周长计算公式
在以下几个算式中,“C代表周长”,“S代表面积”,“R代表半径,“D代表直径”。 S圆=π×R² C圆=2πR或πD
编辑本段圆的平面几何性质和定理
一有关圆的基本性质与定理
⑴圆的确定:画一条线段,以线段长为半径以一端点为圆心画弧绕360度后得到圆。 圆与直线相切
圆的对称性质:圆是轴对称图形,其对称轴是任意一条通过圆心的直线。圆也是中心对称图形,其对称中心是圆心。 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。 ⑵有关圆周角和圆心角的性质和定理 在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。 一条弧所对的圆周角等于它所对的圆心角的一半。 直径所对的圆周角是直角。90度的圆周角所对的弦是直径。 如果一条弧的长是另一条弧的2倍,那么其所对的圆周角和圆心角是另一条弧的2倍。 ⑶有关外接圆和内切圆的性质和定理 ①一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等; ②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。 ③R=2S△÷L(R:内切圆半径,S:三角形面积,L:三角形周长) ④两相切圆的连心线过切点(连心线:两个圆心相连的直线) ⑤圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。 (4)如果两圆相交,那么连接两圆圆心的线段(直线也可)垂直平分公共弦。 (5)圆心角的度数等于它所对的弧的度数。 (6)圆周角的度数等于它所对的弧的度数的一半。 (7)弦切角的度数等于它所夹的弧的度数的一半。 (8)圆内角的度数等于这个角所对的弧的度数之和的一半。 (9)圆外角的度数等于这个等于这个角所截两段弧的度数之差的一半。
有关切线的性质和定理
圆的切线垂直于过切点的半径;经过半径的一端,并且垂直于这条半径的直线,是这个圆的切线。 切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线。 切线的性质:(1)经过切点垂直于这条半径的直线是圆的切线。(2)经过切点垂直于切线的直线必经过圆心。(3)圆的切线垂直于经过切点的半径。 切线长定理:从圆外一点到圆的两条切线的长相等,那点与圆心的连线平分切线的夹角。 〖有关圆的计算公式〗 1.圆的周长C=2πr=πd 2.圆的面积S=πr^2; 3.扇形弧长l=nπr/180 4.扇形面积S=(nπr^2)/360=lr/2(l为扇形的弧长)5.圆锥侧面积S=πrl 6.圆锥侧面展开图(扇形)的圆心角n=360r/l(r是底面半径,l是母线长) 切割线定理 圆的一条切线与一条割线相交于p点,切线交圆于C点,割线交圆于A B两点 , 则有pC^2=pA·pB 割线定理 与切割线定理相似 两条割线交于p点,割线m交圆于A1 B1两点,割线n交圆于A2 B2两点 则pA1·pB1=pA2·pB2
编辑本段圆的解析几何性质和定理
圆的解析几何方程
圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)^2+(y-b)^2=r^2。 圆的一般方程:把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是x^2+y^2+Dx+Ey+F=0(其中D^2+E^2-4F>0)。其中和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2-r^2。该圆圆心坐标为(-D/2,-E/2),半径r=0.5√D^2+E^2-4F。 圆的参数方程:以点O(a,b)为圆心,以r为半径的圆的参数方程是 x=a+r*cosθ, y=b+r*sinθ, (其中θ为参数) 圆的端点式:若已知两点A(a1,b1),B(a2,b2),则以线段AB为直径的圆的方程为 (x-a1)(x-a2)+(y-b1)(y-b2)=0 圆的离心率e=0,在圆上任意一点的曲率半径都是r。 经过圆 x^2+y^2=r^2上一点M(a0,b0)的切线方程为 a0*x+b0*y=r^2 在圆(x^2+y^2=r^2)外一点M(a0,b0)引该圆的两条切线,且两切点为A,B,则A,B两点所在直线的方程也为 a0*x+b0*y=r^2
圆与直线的位置关系判断
平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是: 1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0。利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下: 如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。 如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。 如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。 2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。令y=b,求出此时的两个x值x1、x2,并且规定x1<x2,那么: 当x=-C/A<x1或x=-C/A>x2时,直线与圆相离; 当x1<x=-C/A<x2时,直线与圆相交; 半径r,直径d 在直角坐标系中,圆的解析式为:(x-a)^2+(y-b)^2=r^2 x^2+y^2+Dx+Ey+F=0 => (x+D/2)^2+(y+E/2)^2=D^2/4+E^2/4-F => 圆心坐标为(-D/2,-E/2) 其实只要保证X方Y方前系数都是1 就可以直接判断出圆心坐标为(-D/2,-E/2) 这可以作为一个结论运用的 且r=根号(圆心坐标的平方和-F)
编辑本段圆知识点总结
定义:(1)平面上到定点的距离等于定长的所有点组成的图形叫做圆。 (2)平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。 圆心:(1)如定义(1)中,该定点为圆心 (2)如定义(2)中,绕的那一端的端点为圆心。 (3)圆任意两条对称轴的交点为圆心。 (4) 垂直于圆内任意一条弦且两个端点在圆上的线段的二分点为圆心。 注:圆心一般用字母O表示 直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。 半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。 圆的直径和半径都有无数条。圆是轴对称图形,每条直径所在的直线是圆的对称轴。在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=二分之d。 圆的半径或直径决定圆的大小,圆心决定圆的位置。 圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。 圆的周长与直径的比值叫做圆周率。 圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。计算时,通常取它的近似值,π≈3.14。 直径所对的圆周角是直角。90°的圆周角所对的弦是直径。 圆的面积公式:圆所占平面的大小叫做圆的面积。πr^2,用字母S表示。 一条弧所对的圆周角是圆心角的二分之一。 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。 在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。 在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角相等,所对的弧相等,所对的弦心距也相等。 周长计算公式 1.、已知直径:C=πd 2、已知半径:C=2πr 3、已知周长:D=c\π 4、圆周长的一半:1\2周长(曲线) 5、半圆的长:1\2周长+直径 面积计算公式: 1、已知半径:S=πr平方 2、已知直径:S=π(d\2)平方 3、已知周长:S=π(c\2π)平方
6. 圆周率是什么和什么的比值
圆周率是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。
圆周率是一个常数(约等于3.141592654),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。在日常生活中,通常都用3.14代表圆周率去进行近似计算。
2021年8月17日,美国趣味科学网站报道,瑞士研究人员使用一台超级计算机,历时108天,将着名数学常数圆周率π计算到小数点后62.8万亿位,创下该常数迄今最精确值记录。
国际圆周率日
2011年,国际数学协会正式宣布,将每年的3月14日设为国际数学节,来源则是中国古代数学家祖冲之的圆周率。
2009年,美国众议院正式通过一项无约束力决议,将每年的3月14日设定为“圆周率日”,3月14日是纪念圆周率日最合适的日子。
7. ∏数学符号是什么意思
∏是希腊字母,即π的大写形式在数学中表示求积运算或直积运算。
数学符号的发明及使用比数字要晚,但其数量却超过了数字现代数学常用的数学符号已超过了200个,其中每一个符号都有一段有趣的经历。
1、用法:
上下添加的为求乘积的初始值和终止值,例如:符号下面可写“i=1”,上面写“n”,就代表后面的求积式子中的i从1开始一直加到n。
2、希腊字母:
①∏是希腊字母,即π的大写形式,在数学中表示求积运算或直积运算,形式上类似于Σ。
②小写:π
数学中常指代圆周率。圆周率,一般以π来表示,是一个在数学及物理学普遍存在的数学常数。它定义为圆形之周长与直径之比。它也等于圆形之面积与半径平方之比。
大于号“>”和小于号“<”,是1631年英国着名代数学家赫锐奥特创用。至于“≥”、“≤”、“≠”这三个符号的出现,是很晚很晚的事了。大括号“{}”和中括号“[]”是代数创始人之一魏治德创造的。
任意号(全称量词)∀来源于英语中的Arbitrary一词,因为小写和大写均容易造成混淆,故将其单词首字母大写后倒置。同样,存在号(存在量词)∃来源于Exist一词中E的反写。
8. 圆的圆周率是什么
圆周率,一般以π来表示,是一个在数学及物理学普遍存在的数学常数。它定义为圆形之周长与直径之比。它也等于圆形之面积与半径平方之比。是精确计算圆周长、圆面积、球体积等几何形状的关键值。
在分析学上,π可以严格地定义为满足sin(x)
=
0的最小正实数x,这里的sin是正弦函数(采用分析学的定义)。
它等于3.14159265358979323846……,在实际运用中一般取它的近似值3.14。
9. 绘画 g笔尖和圆笔尖有什么区别啊,g笔能画圆笔尖的效果吗,圆尖笔风景好不
G笔尖是最常用的笔尖,一般用来人物轮廓描线。线条富有弹性、多变。
圆笔尖一般用来画头发、背景等细腻的地方。线条细腻,但想比G比少一点灵动性。
其实G笔尖真的比圆笔尖粗好多,特别是画多了以后笔尖会分开,就更粗了......看楼主你的画风了,如果你是画少年漫画的,就G笔尖多用;如果是少女漫画,一般多用圆笔尖。G笔当然也能画出细腻的画面,这就看水平了(反正我是不行了^^)。
交流一下我画的心得。我画的少女漫画,喜用圆笔尖勾人物(包括头发、轮廓),背景我是拿0.2的针管笔上的【我怕用圆笔画我会毁了好好的一个圆笔尖==】
这个真的看个人的,用的顺手就用哪个。希望楼主找到适合自己的笔尖哦~^^
10. 初三数学圆知识点归纳有哪些
数学几何中圆是比较重要的一部分,所以对圆进行复习是很有必要的。以下是我分享给大家的初三数学圆知识点归纳,希望可以帮到你!
初三数学圆知识点归纳
一、圆的相关概念
1、圆的定义
在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。
2、圆的几何表示
以点O为圆心的圆记作“⊙O”,读作“圆O”
二、弦、弧等与圆有关的定义
(1)弦
连接圆上任意两点的线段叫做弦。(如图中的AB)
(2)直径
经过圆心的弦叫做直径。(如途中的CD)
直径等于半径的2倍。
(3)半圆
圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。
(4)弧、优弧、劣弧
圆上任意两点间的部分叫做圆弧,简称弧。
弧用符号“⌒”表示,以A,B为端点的弧记作“ ”,读作“圆弧AB”或“弧AB”。
大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示)
三、垂径定理及其推论
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。
推论2:圆的两条平行弦所夹的弧相等。
垂径定理及其推论可概括为:
过圆心
垂直于弦
直径 平分弦 知二推三
平分弦所对的优弧
平分弦所对的劣弧
四、圆的对称性
1、圆的轴对称性
圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
2、圆的中心对称性
圆是以圆心为对称中心的中心对称图形。
五、弧、弦、弦心距、圆心角之间的关系定理
1、圆心角
顶点在圆心的角叫做圆心角。
2、弦心距
从圆心到弦的距离叫做弦心距。
3、弧、弦、弦心距、圆心角之间的关系定理
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等。
推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
六、圆周角定理及其推论
1、圆周角
顶点在圆上,并且两边都和圆相交的角叫做圆周角。
2、圆周角定理
一条弧所对的圆周角等于它所对的圆心角的一半。
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
七、点和圆的位置关系
设⊙O的半径是r,点P到圆心O的距离为d,则有:
d
d=r 点P在⊙O上;
d>r 点P在⊙O外。
八、过三点的圆
1、过三点的圆
不在同一直线上的三个点确定一个圆。
2、三角形的外接圆
经过三角形的三个顶点的圆叫做三角形的外接圆。
3、三角形的外心
三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。
4、圆内接四边形性质(四点共圆的判定条件)
圆内接四边形对角互补。
九、反证法
先假设命题中的结论不成立,然后由此经过推理,引出矛盾,判定所做的假设不正确,从而得到原命题成立,这种证明方法叫做反证法。
十、直线与圆的位置关系
直线和圆有三种位置关系,具体如下:
(1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点;
(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,
(3)相离:直线和圆没有公共点时,叫做直线和圆相离。
如果⊙O的半径为r,圆心O到直线l的距离为d,那么:
直线l与⊙O相交 d
直线l与⊙O相切 d=r;
直线l与⊙O相离 d>r;
十一、切线的判定和性质
1、切线的判定定理
经过半径的外端并且垂直于这条半径的直线是圆的切线。
2、切线的性质定理
圆的切线垂直于经过切点的半径。
十二、切线长定理
1、切线长
在经过圆外一点的圆的切线上,这点和切点之间的线段的长叫做这点到圆的切线长。
2、切线长定理
从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
十三、三角形的内切圆
1、三角形的内切圆
与三角形的各边都相切的圆叫做三角形的内切圆。
2、三角形的内心
三角形的内切圆的圆心是三角形的三条内角平分线的交点,它叫做三角形的内心。
十四、圆和圆的位置关系
1、圆和圆的位置关系
如果两个圆没有公共点,那么就说这两个圆相离,相离分为外离和内含两种。
如果两个圆只有一个公共点,那么就说这两个圆相切,相切分为外切和内切两种。
如果两个圆有两个公共点,那么就说这两个圆相交。
2、圆心距
两圆圆心的距离叫做两圆的圆心距。
3、圆和圆位置关系的性质与判定
设两圆的半径分别为R和r,圆心距为d,那么
两圆外离 d>R+r
两圆外切 d=R+r
两圆相交 R-r
两圆内切 d=R-r(R>r)
两圆内含 dr)
4、两圆相切、相交的重要性质
如果两圆相切,那么切点一定在连心线上,它们是轴对称图形,对称轴是两圆的连心线;相交的两个圆的连心线垂直平分两圆的公共弦。
十五、正多边形和圆
1、正多边形的定义
各边相等,各角也相等的多边形叫做正多边形。
2、正多边形和圆的关系
只要把一个圆分成相等的一些弧,就可以做出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。
十六、与正多边形有关的概念
1、正多边形的中心
正多边形的外接圆的圆心叫做这个正多边形的中心。
2、正多边形的半径
正多边形的外接圆的半径叫做这个正多边形的半径。
3、正多边形的边心距
正多边形的中心到正多边形一边的距离叫做这个正多边形的边心距。
4、中心角
正多边形的每一边所对的外接圆的圆心角叫做这个正多边形的中心角。
十七、正多边形的对称性
1、正多边形的轴对称性
正多边形都是轴对称图形。一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心。
2、正多边形的中心对称性
边数为偶数的正多边形是中心对称图形,它的对称中心是正多边形的中心。
3、正多边形的画法
先用量角器或尺规等分圆,再做正多边形。
十八、弧长和扇形面积
1、弧长公式
n°的圆心角所对的弧长l的计算公式为 2、扇形面积公式
其中n是扇形的圆心角度数,R是扇形的半径,l是扇形的弧长。
3、圆锥的侧面积
其中l是圆锥的母线长,r是圆锥的地面半径。
初中几何掌握知识点然后灵活应用比较重要,希望大家牢记知识点然后灵活应用。
初三数学重点知识点归纳
1 过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12 两直线平行,同位角相等
13 两直线平行,内错角相等
14 两直线平行,同旁内角互补
15 定理 三角形两边的和大于第三边
16 推论 三角形两边的差小于第三边
17 三角形内角和定理 三角形三个内角的和等于180°
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 全等三角形的对应边、对应角相等
22 边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25 边边边公理(SSS) 有三边对应相等的两个三角形全等
26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27 定理1 在角的平分线上的点到这个角的两边的距离相等
28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29 角的平分线是到角的两边距离相等的所有点的集合
30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33 推论3 等边三角形的各角都相等,并且每一个角都等于60°
34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35 推论1 三个角都相等的三角形是等边三角形
36 推论 2 有一个角等于60°的等腰三角形是等边三角形
37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38 直角三角形斜边上的中线等于斜边上的一半
39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等
40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42 定理1 关于某条直线对称的两个图形是全等形
43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44 定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45 逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46 勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
47 勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
48 定理 四边形的内角和等于360°
49 四边形的外角和等于360°
50 多边形内角和定理 n边形的内角的和等于(n-2)×180°
51 推论 任意多边的外角和等于360°
52 平行四边形性质定理1 平行四边形的对角相等
53 平行四边形性质定理2 平行四边形的对边相等
54 推论 夹在两条平行线间的平行线段相等
55 平行四边形性质定理3 平行四边形的对角线互相平分
56 平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
57 平行四边形判定定理2 两组对边分别相等的四边形是平行四边形
58 平行四边形判定定理3 对角线互相平分的四边形是平行四边形
59 平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
60 矩形性质定理1 矩形的四个角都是直角
61 矩形性质定理2 矩形的对角线相等
62 矩形判定定理1 有三个角是直角的四边形是矩形
63 矩形判定定理2 对角线相等的平行四边形是矩形
64 菱形性质定理1 菱形的四条边都相等
65 菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
66 菱形面积=对角线乘积的一半,即S=(a×b)÷2
67 菱形判定定理1 四边都相等的四边形是菱形
68 菱形判定定理2 对角线互相垂直的平行四边形是菱形
69 正方形性质定理1 正方形的四个角都是直角,四条边都相等
70 正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71 定理1 关于中心对称的两个图形是全等的
72 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73 逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称
74 等腰梯形性质定理 等腰梯形在同一底上的两个角相等
75 等腰梯形的两条对角线相等
76 等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形
77 对角线相等的梯形是等腰梯形
78 平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等
79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边
81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半
82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h
83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d
84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d
85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b
86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例
87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)
92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)
94 判定定理3 三边对应成比例,两三角形相似(SSS)
95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比
97 性质定理2 相似三角形周长的比等于相似比
98 性质定理3 相似三角形面积的比等于相似比的平方
99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值
100 任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值
初三数学期末易错点总结
函数部分:
易错点1:各个待定系数表示的的意义。
易错点2:熟练掌握各种函数解析式的求法,一般情况下有几个的待定系数就要几个点的坐标代入。
易错点3:利用图像求不等式的解集和方程(组)的解,利用图像性质确定增减性。
易错点4:利用函数图象进行分类(平行四边形、相似、直角三角形、等腰三角形)以及分类的求解方法。
易错点5:与坐标轴交点坐标一定要会求。面积最大值的求解方法,距离之和的最小值的求解方法,距离之差最大值的求解方法。
易错点6:数形结合思想方法的运用,还应注意结合图像性质解题。函数图象与图形结合学会从复杂图形分解为简单图形的方法,图形为图像提供数据或者图像为图形提供数据。
圆:
易错点1:对弧、弦、圆周角等概念理解不深刻,特别是弦所对的圆周角有两种情况要特别注意,两条弦之间的距离也要考虑两种情况。
易错点2:对垂径定理的理解不够,不会正确添加辅助线运用直角三角形进行解题。
易错点3:对切线的定义及性质理解不深,不能准确的利用切线的性质进行解题以及对切线的判定方法两种方法使用不熟练。
易错点4:与圆有关的位置关系把握好 d 与 R之间的关系求解。
易错点5:圆周角定理是重点,同弧(等弧)所对的圆周角相等,直径所对的圆周角是直角,90 度的圆周角所对的弦是直径,一条弧所对的圆周角等于它所对的圆心角的一半。
易错点6:圆的面积公式,圆周长公式,弧长,扇形面积,圆锥的侧面积以及全面积以及弧长与底面周长,母线长与扇形的半径之间的转化关系。
旋转与相似:
易错点1:对于常见旋转模型不熟悉,不能通过题目判断出旋转特征。
易错点2:相似对应关系不明确时注意分类讨论。
易错点3:线段乘积转比例时,注意比例的顺序。
易错点4:常见几何条件运用要熟练、比如中点、角平分线、垂直平分线、等腰直角三角形、等边三角形、线段的和差,角度的二倍关系、平行等条件,要熟记相应的辅助线。
易错点5:过于依赖图形,从图中看着像的结论揪住不放,但实际是错误的。
易错点6:旋转方向要看清楚,分清顺时针和逆时针。
锐角三角函数:
易错点1:应用三角函数定义时,要保证直角三角形这个前提.
易错点2:在求解直角三角形的有关问题时,要画出图形,以利于分析解决问题.
易错点3:选择关系式时,要尽量利用原始数据,以防止“累积误差”.
易错点4:遇到不是直角三角形的图形时,要添加适当的辅助线,将其转化为直角三角形求解.
猜你喜欢:
1. 中考数学知识点总结
2. 初三数学知识点整理
3. 初三数学重点知识点
4. 初中数学知识点归纳
5. 初三数学备战中考知识点大全