A. 数学思维十种思维方式是什么
1、公式法。
运用定律、公式、规则、法则来解决问题的方法。它体现的是由一般到特殊的演绎思维。公式法简便、有效,也是小学生学习数学必须学会和掌握的种方法。但一定要让学生对公式、定律、规则、法则有一个正确而深刻的理解,并能准确运用。
2、对照法。
如何正确地理解和运用数学概念?小学数学常用的方法就是对照法。根据数学题意,对照概念、性质、定律、法则、公式、名词、术语的含义和实质,依靠对数学知识的理解、记忆、辨识、再现、迁移来解题的方法叫做对照法。
这个方法的思维意义就在于,训练学生对数学知识的正确理解、牢固记忆、准确辨识。
例:三个连续自然数的和是18,则这三个自然数从小到大分别是多少。
对照自然数的概念和连续自然数的性质可以知道:三个连续自然数和的平均数就是这三个连续自然数的中间那个数。
3、比较法。
通过对比数学条件及问题的异同点,研究产生异同点的原因,从而发现解决问题的方法,叫比较法。
比较法要注意:
1、找相同点必找相异点,找相异点必找相同点,不可或缺,也就是说,比较要完整。
2、找联系与区别,这是比较的实质。
3、必须在同一种关系下(同-种标准)进行比较,这是“比较”的基本条件。
4、要抓住主要内容进行比较,尽量少用“穷举法”进行比较,那样会使重点不突出。
5、因为数学的严密性,决定了比较必须要精细,往往一个字,一个符号就决定了比较结论的对或错。
例:六年级同学种一批树,如果每人种5棵,则剩下75棵树没有种;如果每人种7棵,则缺少15棵树苗。六年级有多少学生。
这是两种方案的比较。相同点是:六年级人数不变;相异点是:两种方案中的条件不一样。
找联系:每人种树棵数变化了,种树的总棵数也发生了变化。
找解决思路:每人多种7-5=2(棵), 那么,全班就多种了75+15=90(棵),全班人数为90+2=45(人)。
4、分类法。
根据事物的共同点和差异点将事物区分为不同种类的方法,叫做分类法。分类是以比较为基础的。依据事物之间的共同点将它们合为较大的类,又依据差异点将较大的类再分为较小的类。
分类即要注意大类与小类之间的不同层次,又要故到大类之中的各小类不重复、不遗漏、不交叉。
例:自然数按约数的个数来分,可分成几类。
答:可分为三类。(1)只有一个约数的数,它是一个单位数,只有一个数1; (2)有两个约数的,也叫质数,有无数个; (3)有三个约数的,也叫合数,也有无数个。
5、分析法。
把整体分解为部分,把复杂的事物分解为各个部分或要素,并对这些部分或要素进行研究、推导的种思维方法叫做分析法。
依据:总体都是由部分构成的。
思路:为了更好地研究和解决总体,先把整体的各部分或要素割裂开来,再分别对照要求,从而理顺解决问题的思路。
也就是从求解的问题出发,正确选择所需要的两个条件,依次推导,-直到问题得到解决为止,这种解题模式是“由果溯因”。分析法也叫逆推法。常用“枝形图”进行图解思路。
例:玩具厂计划每天生产200件玩具,已经生产了6天,共生产1260件。问平均每天超过计划多少件。
思路:要求平均每天超过计划多少件,必须知道:计划每天生产多少件和实际每天生产多少件。计划每天生产多少件已知,实际每天生产多少件,题中没有告诉,还得求出来。要求实际每天生产多少件玩具,必须知道:实际生产多少天,和实际生产多少件,这两个条件题中都已知。
6、综合法。
把对象的各个部分或各个方面或各个要素联结起来,并组合成一个有机的整体来研究、推导和一种思维方法叫做综合法。
用综合法解数学题时,通常把各个题知看作是部分(或要素),经过对各部分(或要素)相互之间内在联系一层层分析,逐步推导到题目要求,所以,综合法的解题模式是执因导果,也叫顺推法。这种方法适用于己知条件较少,数量关系比较简单的数学题。
例:两个质数,它们的差是小于30的合数,它们的和即是11的倍数又是小于50的偶数。写出适合上面条件的各组数。
思路: 11的倍数同时小于50的偶数有22和44。两个数都是质数,而和是偶数,显然这两个质数中没有2。
和是22的两个质数有: 3和19, 5和17。它们的差都是小于30的合数吗?和是44的两个质数有: 3和41, 7和37, 13和31。它们的差是小于30的合数吗?这就是综合法的思路。
7、方程法。
用字母表示未知数,并根据等量关系列出含有字母的表达式(等式)。列方程是一个抽象概括的过程,解方程是一个演绎推导的过程。方程法最大的特点是把未知数等同于已知数看待。
参与列式、运算,克服了算术法必须避开求知数来列式的不足。有利于由已知向未知的转化,从而提高了解题的效率和正确率。
例:一个数扩大3倍后再增加100,然后缩小2倍后再减去36,得50。求这个数。
例:一桶油,第一次用去40%,第二次比第一次多用10千克,还剩余6千克。这桶油重多少千克。
这两题用方程解就比较容易。
8、参数法。
用只参与列式、运算而不需要解出的字母或数表示有关数量,并根据题意列出算式的-种方法叫做参数法。参数又叫辅助未知数,也称中间变量。参数法是方程法延伸、拓展的产物。
例: 一项工作,甲多带带做要4天完成,乙多带带做要5天完成。两人合做要多少天完成。
其实,把总工作量看作“1”,这个“1”就是参数,如果把总工作量看作“2、3、.....都可以,只不过看作“1”运算最方便。
9、排除法。
排除对立的结果叫做排除法。
排除法的逻辑原理是:任何事物都有其对立面,在有正确与错误的多种结果中,一切错误的结果都排除了,剩余的只能是正确的结果。这种方法也叫淘汰法、筛选法或反证法。这是一种不可缺少的形式思维方法。
例:为什么说除2外,所有质数都是奇数。
这就要用反证法:比2大的所有自然数不是质数就是合数。假设:比2大的质数有偶数,那么,这个偶数一定能被2整除,也就是说它一定有约数2。 一个数的约数除了1和它本身外,还有别的约数(约数2),这个数定是合数而不是质数。这和原来假定是质数对立(矛盾)。所以,原来假设错误。
10、特例法。
对于涉及一般性结论的题目,通过取特殊值或画特殊图或定特殊位置等特例来解题的方法叫做特例法。特例法的逻辑原理是:事物的一。般性存在于特殊性之中。
例:大圆半径是小圆半径的2倍,大圆周长是小圆周长的()倍,大圆面积是小圆面积的()倍。
可以取小圆半径为1,那么大圆半径就是2。计算一下,就能得出正确结果。
B. 第五题第一小题,什么是枝枝形图啊
C. 小学数学教学的教法和学法主要有哪些
选择和运用教学方法应该考虑以下几个主要原则:
1、坚持启发式教学,反对注入式教学
启发式教学就是指教师从学生的实际情况出发,把学生当成学习的主体,应用各种方式方法调动学生学习的积极性、主动性和能动性,引导学生通过自己积极的学习活动掌握知识、形成技能、发展能力和促进个性健康发展。
启发式教学的精神是尊重学生的主体人格,强调指导学生的学习方法,重视学生的技能形成、能力发展和个性展示。它把学生看成既是教育的对象,又是学习的主体,充分调动学生学习的主动性,激发他们的学习兴趣和求知欲,从而积极地开展思维活动,在理解的基础上掌握知识。这种教学有利于促进学生的智力,特别是思考力的发展和培养学生分析问题、解决问题的能力,是一种科学民主的教学方法。
注入式教学也称“填鸭式”或“灌输式”教学,是指教师从主观出发,把学生置于被动地位,忽视学生的主体能动性,把学生看成是单纯接受知识的“容器”,只注重教学过程的知识传授。可以看出,注入式教学是把学生看成被动的教育对象,不注意调动学生的主动性和积极性,教师只是把知识灌输给学生,使学生生吞活剥,不加咀嚼地呆读死记,抑制了学生的思考力和创新精神。注入式教学方式既不利于学生真正领会掌握知识,又不利于其智慧的发展,是一种不科学不民主的教学方法
2、体现教育价值的原则
小学数学教育的基本价值追求是什么?不同的理解将影响对具体数学教学方法的抉择与组合。如果将小学数学教育的价值简单地理解为就是掌握已经被发现的、最基础的数学知识,那么,可能更多地会考虑“采用什么样的方式讲解,学生更能听懂?”“通过哪些操练能使学生牢固掌握那些基础性的知识!”“如何考量学生是否已经掌握了那些规定性的基础知识?”等这样一些问题,则相应地,在抉择或组合教学方法的时候,可能会更多地集中在“叙述式讲解”、“重复性练习”、“结论性演示”等方法之上;如果将小学数学教育的价值理解为发展学生的数学素养的话,可能更多地会考虑“采用什么样的组织方式能更有利于学生经历一个探索与发现的过程?”“通过哪些获得能促进学生的知识和经验运用于现实情境?”“如何考量学生数学问题解决的能力”等这样一些问题,则相应地,在抉择或组合数学方法的时候,可能会更多地集中在“启发式对话”、“探索性实验”、“引发性问题解决”等方法之上。
3、目标导向原则
在任何一个数学教学活动开始前,教师都会(也必须)依据课程目标、学习任务以及学生特点等,设计出具体的教学目标。随着新课程的实施,教学目标的多元和整合已经深入人心,新课标把教学目标划分成“知识与技能,过程与方法,情感、态度和价值观”三个维度。这个目标就是将数学学习的任务具体化,它是整个课堂学习活动的基本导向,在课堂教学中主导着教与学的方法与过程,是教学的出发点和归宿。因此,教师对数学方法的抉择与组合,首先需要考虑的是,如何能最大限度地达成这个已经被确定的目标。
4、与教学内容相适应的原则
教学任务是通过教学内容的传授实现的。这里的教学内容是指学科性质和一节课的教材内容。教学内容是制约教学方法的重要条件,学科性质不同,教学方法也有不同。同一学科,由于各节课教材内容不同,其方法的选择也有区别。同是传授新知识,如是概念性内容,就要选用讲授法;如是阐明事物的特性、揭示事物发生发展变化的规律,则可选用演示法。所以要依据教学内容来选择与之相适应的教学方法。
5、促进儿童学习的原则
良好的教学方法应该是充分激发学生的学习动机,充分激励学生主动参与学习的一种程序结构。它应充分考虑学生是怎样学习的,怎样才能学得更好,要能充分地引起学生的注意,同时又尽可能地保持学生的这种注意,使学生始终能积极主动地参与学习过程;它不仅要关注教师行为的合理性和有效性,更要充分地关切学生的情绪状态,关切学生参与学习的程度,关切学生参与学习的过程中所遇到的问题或困难,关切学生可能会提出的各种各样的问题等;它要有助于形成和强化学生学习数学的自信心;它要能使学生在学习过程中获得最大可能的体验,并在这种体验下获得某种“成功”的满足。
教师应当通过各种各样的方式让学生明确自己的学习任务和学习目标;帮助学生依据学习内容确定自己的学习方式;注重儿童的个性、经验基础、兴趣导向和学习方式,宁可改变自己预设的教育教学计划;鼓励学生采用不同策略和方式参与学习;让学生运用各种各样方式去观察对象,预见结果,检验假设;将学生在学习过程中所呈现的不同反应整合进自己的教学方法之中。
6、兼顾差异性原则
首先,教师要认识到,不同年龄段的学生,其认知的心理水平和心理特点是不同的,例如,低年龄段的学生,更容易被一些新奇的对象所吸引,但对于一些复杂的情境,要能辨识出数学特征还是比较困难的,他们在学习过程中更多地依赖直观,因而对一些逻辑运算能力还比较弱。因此,在这个年龄段,可以多采用一些材料演示。操作实验等方法。而对稍高年段的学生来说,他们已经开始能从一个较为复杂的情境中辩识出某些数学特征,虽然数学思考仍主要依赖于直观,但已经建立了初步的语言和符号的逻辑运算能力,因此,就可以更多地采用一些启发式谈话、探究式发现、探索性实验等方法。
其次,教师要认识到,不同的学生,其认知结构以及学习风格也是不同的。一个专业成熟的教师,懂得如何依据不同的学生的认知结构特点和学习风格特点,选择有灵活性、开放性和多样性的适应性教学方法,特定的教学方法与特定的学生特征相联系,从而满足学生的学习需要。
最后,教师要认识到,不同年龄段的学生,其生活经历是不同的。即使是同一个年龄段的学生,其生活经验也是不同的。而学生已有的生活经历与相应累积的日常经验以及建立的那些日常概念,是学生实现现实问题数学化的一个基础。因此,在抉择和组合教学方法时,应兼顾这些差异。
D. 40+50用枝形图怎么算
40+50=90
如果你要用枝形图来进行计算的话,可以通过加法运算得到。
E. 盘点小学奥数解题方法
盘点小学奥数解题方法
整数拆分是小学奥数数论模块的重要知识点,小学奥数题所谓整数拆分就是把把一个自然数(0除外)拆成几个大于0的自然数相加的形式。下面我为大家分享一些盘点小学奥数解题方法,希望大家认真学习!
一、概念:把一个自然数(0除外)拆成几个大于0的'自然数相加的形式。
二、类型----方法
1、基本型
2、造数型
3、求加数最多
方法:1+2+3+……接近结果但是不超过已知数为止,再补差
4、两数型
(1)和不变:差小积大,差大积小
(2)积不变:差大和大,差小和小
5、拆数型
积最大(1)允许相同:多3少2没有1
(2)不允许相同:从2连续拆分2+3+4+……刚好超过目标数为止
1)超几就去几
2)多1去2,差1补尾
裂项与拆分
有40枚棋子分别放入8个盒子里,要使每个盒子里都有棋子,那么其中的一个盒子里,最多能有多少棋子?
考点:整数的裂项与拆分.
分析:要使每个盒子里都有棋子,那么每个盒子里面至少有1个球,即40=1+1+1+1+1+1+1+33,所以最多的盒子里面有33个球.
解答:解:因为要使每个盒子里都有棋子,那么每个盒子里面至少有1个球,而要使其中的一个盒子的球最多,则另外的7个盒子里面的球分别为1,
即40=1+1+1+1+1+1+1+33,所以最多的盒子里面有33个球.
答:其中的一个盒子里,最多能有33枚棋子.
小学奥数常用的解题方法
要想学好奥数,就要掌握其中的奥妙,知道它所用的方法。
下面举例说明:
一、从思考角度上:
可以分为正面思考、反面思考、极值思考、整体思考、有序思考和模糊思考六大类。
二、学习的工具和策略:
可以分为:线段图、距形图、韦恩图、枝形图、对阵图、列表法以及连线法
三、思考的技巧
可以分为假设法、归纳法、构造法、配对法、对应法、反证法、还原法、化归法、代数法、算法、扩缩法、代元法、消去法、 排除法、 染色法、方程法和附值法。
四、总结
把奥数中所有的方法与技巧总结了八个字:假设,转化,方法,规律。
;F. 小学学的数的枝形图
自然数:即正整数,从0、1、2、3、4、5、6.。。。。。。。
整数:包含正整数、0、负整数,..........-5、-4、-3、-2、-1、0、1、2、3、4、5........
有理数,包含整数及小数(不包含无限不循环小数),通俗理解就是可以写成分数形式的数,所有有理数都可以用分数表示。
无理数:即无限不循环小数,不可以用分数形式表示。如圆周率,根号2等。
实数:实数就是有理数和无理数的统称
G. 数学中直方图和条形图有什么区别
条形图是处理分类变量,比如男女,一年级二年级三年级。这类变量比如说男和女中间没有其他选项。但直方图是连续变量,这种变量是任何数都能取的,比如收入,挣3000和4000中间还有可能挣3500的,3000和3500中间还有3200的
H. 枝行图的口算怎么写
1、枝形图就是数学中像树枝一样的分解图形,首先把枝的形状画出来。
2、其次,再添枝加叶画一下,主要用于分析题目数量关系,便于理解。
3、最后列举的竖式一目了然,方便口算解答。
I. 数学中直方图和条形图有什么区别 直方统计图和条形统计图有什么区别忘了
直方统计图:一般表示一个整体中各部分(一般种类相同)所占的频数或频率. 条形统计图:一般表示同一数据随时间变化而变化的规律,或表示一个整体中各部分(一般种类不同)所占的 数量.
J. 三种抽象思维解题的方法
在 抽象思维 的解题 方法 中,运用概念、判断和推理来反映真实的思维过程称为抽象思维,也称为 逻辑思维 。那么,在抽象思维解题方法中,运用概念、判断、推理来反映现实的思维过程,抽象思维有哪些方法呢?以下就是我给大家整理的三种抽象思维解题的方法,希望对大家有所帮助!
对照法
如何正确地理解和运用数学概念?小学数学常用的方法就是对照法。根据数学题意,对照概念、性质、定律、法则、公式、名词、术语的含义和实质,依靠对数学知识的理解、记忆、辨识、再现、迁移来解题的方法叫做对照法。
这个方法的思维意义就在于,训练学生对数学知识的正确理解、牢固记忆、准确辨识。
例1:三个连续自然数的和是18,则这三个自然数从小到大分别是多少?
对照自然数的概念和连续自然数的性质可以知道:三个连续自然数和的平均数就是这三个连续自然数的中间那个数。
例2:判断题:能被2除尽的数一定是偶数。
这里要对照“除尽”和“偶数”这两个数学概念。只有这两个概念全理解了,才能做出正确判断。
分析法
把整体分解为部分,把复杂的事物分解为各个部分或要素,并对这些部分或要素进行研究、推导的一种思维方法叫做分析法。
依据:总体都是由部分构成的。
思路:为了更好地研究和解决总体,先把整体的各部分或要素割裂开来,再分别对照要求,从而理顺解决问题的思路。
也就是从求解的问题出发,正确选择所需要的两个条件,依次推导,一直到问题得到解决为止,这种解题模式是“由果溯因”。分析法也叫逆推法。常用“枝形图”进行图解思路。
例7:玩具厂计划每天生产200件玩具,已经生产了6天,共生产1260件。问平均每天超过计划多少件?
思路:要求平均每天超过计划多少件,必须知道:计划每天生产多少件和实际每天生产多少件。计划每天生产多少件已知,实际每天生产多少件,题中没有告诉, 还得求出来。要求实际每天生产多少件玩具,必须知道:实际生产多少天,和实际生产多少件,这两个条件题中都已知。
排除法
排除对立的结果叫做排除法。
排除法的逻辑原理是:任何事物都有其对立面,在有正确与错误的多种结果中,一切错误的结果都排除了,剩余的只能是正确的结果。这种方法也叫淘汰法、筛选法或反证法。这是一种不可缺少的形式思维方法。
例:为什么说除2外,所有质数都是奇数?
这就要用反证法:比2大的所有自然数不是质数就是合数。假设:比2大的质数有偶数,那么,这个偶数一定能被2整除,也就是说它一定有约数2。一个数的约 数除了1和它本身外,还有别的约数(约数2),这个数一定是合数而不是质数。这和原来假定是质数对立(矛盾)。所以,原来假设错误。
三种抽象思维解题的方法相关 文章 :
★ 小学数学11种抽象思维解题方法
★ 小学数学解题方法:10种抽象思维法
★ 什么是抽象思维
★ 什么叫具象思维与抽象思维比较
★ 常用的思维方法有哪些
★ 常见的几种创新思维方式八个
★ 什么是具象思维与抽象思维有什么关系
★ 幼儿的三大思维特点
★ 抽象思维和具象思维哪个好区别是什么
★ 少儿逻辑思维训练题与方法技巧