导航:首页 > 数字科学 > 具体图形到抽象图形数学思想是什么

具体图形到抽象图形数学思想是什么

发布时间:2022-10-20 03:41:57

1. 小学数学中常见的数学思想 - 草稿

数学抽象的思想

抽象思想,分类思想,结合思想,数形结合思想,对应思想,符号思想

1.抽象思想

在教材中没有出现这一名词,但是教材中经常会提及到。课标将抽象,推理,模型确立为三个基本思想

概念解读

抽象包括空间形式的抽象论证形式的抽象模拟形式的抽象数量关系的抽象,从小学数学的角度看,抽象主要包括数量与数量关系的抽象图形与图形关系的抽象。

教学建议

①从生活实际入手,多角度呈现逐步提高抽象能力

②通过数学直观进行教学,为建立逐步抽象做准备

2.分类思想

分类讨论是一种常用的研究方法。小学教材没有给分类定义,但不同知识领域学习中教材安排了丰富的分类活动,在数的认识中“把这些数分类”;在图形的认识中“你把下面图形分类”;在运算和解决问题中“这些方法分分类,在统计知识的学习中“把数据进行分类整理”,这些都充分体现了分类方法的运用在概念建立和解决问题中的重要作用。

概念解读

分类思想方法是建立在分类这一自然科学乃至社会科学研究中的基本逻辑方式的基础上的一种处理数学问题的思想科学的分类

一般遵循严格的逻辑原则

①变域明确原则,分类对象的集合即变域必须是明确的

②标准统一性原则,每一次分裂的标准必须是统一的

③不露原则分类必须是完整的,不出现遗漏

④不重复原则,所有的分类之间必须是互斥的。

教学建议

(1)在低年级分类的单元教学中,注重渗透分类思想和集合思想

(2)而客观的看待分类的多样化与优化的关系,逐步引导学生从数学的角度分类

(3)在各领域知识的学习和问题解决中进行渗透分类思想

3.集合思想

教学建议

明确集合思想在小学数学中的应用,在一年级,每个数字都有一张相应的结合图。

正确把握集合思想教学要求,指导学生看懂集合图会用图计算或者解决问题。

引导学生从构造结合的角度来研究概念和概念间的关系。在数的认识,数的性质,三角形的分类,四边形的认识,长方体和正方体的特征等知识的学习中,教师要抓住渗透集合思想的契机

4.数形结合思想

课标在几何直观进行阐述时指出:几何直观主要是指利用图形描述和分析问题,这也凸显了数形结合是几何直观的重要方法和手段

概念解读

数形结合思想方法的应用,具体体现在两个方面,一种是以形辅数,另一种是以数解形,其中以数解形,在中学数学中较多,小学数学学习中更多的是以形辅数的体现。

小学生的逻辑思维能力比较弱,他们对于抽象概念的理解,基本上借助感性的直观材料,因此,借助树形结合的思想中图形直观的手段特点,为学生的学习和解决问题提供较好的教学方法和解决问题的策略

教学建议

一,研读教材,整体把握树形结合思想方法的渗透点

二,加强型的价值体验,增强用图的意识和本领

4.对应思想

对应反映的是两个结合的元素间的关系,小学数学中的对应现象随处可见,如数和形的对应量和量的对应量和率的对应数量的变化规律都需要寻找对应的关系,利用对应的关系解决问题

教学建议

通过直观教学,加强学生对对应关系的理解

引导学生运用对应解决问题

5.符合思想

课标指出,符号意识主要是指能够理解,并且运用符号表示数数量关系和变化规律,知道使用符号可以进行运算和推理,得到结论具有一般性

符号是针对某具体事物对象而抽象概括出来的一种简洁的记号或代号,四月符号是进行空间形式和数量关系表示计算推理和解决问题的工具,是人们对客观事物运动规律的最直观,最简洁的表达方式,是交流与传播数学思想的媒介。

符号不仅是一种表达方式,更是与数学概念命题等具体内容相关,直接体现抽象推理和模型等基本思想的要求

①能够理解,并且运用符号表示数数量关系和变化规律,

②知道使用符号可以进行运算和推理,得到结论的具有一般性

③使学生理解符号的使用是数学表达和数学思想的重要形式

教学建议

数学学习无时无刻不在和数学符号打交道,在小学阶段渗透符号化思想,发展学生的符号意识,教师应把握以下几点

①结合概念,命题,公式的学习理解数学符号的意义

②重视用字母表示数的教学,初步发展学生用符号表达和运算,推理的能力。

6.数形结合思想

数形结合做一种数学思想方法,是指通过数和形之间的关对应关系和相互转化来解决问题的思想方法

课标在对几何直观进行阐述时指出:几何直观主要是指利用图形描述和分析问题,凸显了数形结合是几何直观的重要方法和手段。

概念解读

华罗庚先生的《谈谈与蜂房结构有关的数学问题》中的一首小诗形象地记录了数与形的关系,数与形本是相倚依,焉能分作两边飞,数无形时少直觉,形少数时难入微,数形结合百般好,隔离分家万事休,切莫忘,几何代数统一体,永远联系,切莫分离。数形结合思想方法应用,具体体现两种方式,一是以形辅数,另一种是以数解形。

教学建议

一、研读教材,整体把握数形结合思想方法的渗透点。

二、加强形的价值体验,增强用图的意识和本领。

7.类比思想

简单共存类比

因果类比

综合类比

教学建议

用联系和发展的眼光理解学习内容,挖掘教学内容中的类比思想,

在概念教学和解决问题中,经历类比的过程,掌握基本方法和步骤

8.极限思想

在圆面积公式的推导过程中,渗透了极限思想

极限思想的一般步骤可概括为对于被考察的未知量,先设法构思与一个与它有关的变量,确认这变量,通过无限逼近过程的结果就是所求的未知量,最后用极限计算来得到这结果。

教学建议

随时渗透积累数学经验,

抓住时机体位极限思想。

在教学循环小数的时候,也可以抓住时机,借助数学故事渗透极限思想。

9.代换思想

等量代换,是指一个量用于它相等的量代替,是数学中的一种基本思想方法,也是代数思想方法的基础。

概念解读

代换思想也可以理解成为换元法,一般意义是将有一个或几个变元构成的数学表达式中的一部分,用心的变元表示也利于问题的解决。

教学建议

等量代换是一种很抽象的数学思想,只有以学生可理解的简单形式,将它生动有趣的呈现出来,他们才有可能感知、领悟

一、关注学生兴趣,激发学习欲望

二、联系生活经验,引导学生探究新知,感悟等量代换的意义。

2. 什么是数形结合思想

数形结合思想是一种数学思想方法。数与形是数学中的两个最古老,也是最基本的研究对象,它们在一定条件下可以相互转化。中学数学研究的对象可分为数和形两大部分,数与形是有联系的,这个联系称之为数形结合,或形数结合。

数形结合的应用大致又可分为两种情形:或者借助于数的精确性来阐明形的某些属性,或者借助形的几何直观性来阐明数之间某种关系,即数形结合包括两个方面:第一种情形是“以数解形”,而第二种情形是“以形助数”。“以数解形”就是有些图形太过于简单,直接观察却看不出什么规律来,这时就需要给图形赋值,如边长、角度等。

基本思想是:我国着名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事休。”“数”与“形”反映了事物两个方面的属性。数形结合,主要指的是数与形之间的一一对应关系。数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过“以形助数”或“以数解形”即通过抽象思维与形象思维的结合,可以使复杂问题简单化,抽象问题具体化,从而实现优化解题途径的目的。

(2)具体图形到抽象图形数学思想是什么扩展阅读

数形结合应用要点

1、 数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷。

2、 所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,实现数形结合 。

3、纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。

4、数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域、最值问题中,在求复数和三角函数解题中,运用数形结思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图见数想图,以开拓自己的思维视野。

5、数形结合思想的论文:数形结合思想简而言之就是把数学中“数”和数学中“形”结合起来解决数学问题的一种数学思想。数形结合具体地说就是将抽象数学语言与直观图形结合起来,使抽象思维与形象思维结合起来,通过“数”与“形”之间的对应和转换来解决数学问题。在中学数学的解题中,主要有三种类型:以“数”化“形”、以“形”变“数”和“数”“形”结合。

参考资料来源:网络-数形结合

3. 数学中什么是抽象图形

数学的抽象性是数学]的一个最基本特征,无论是数学概念,还是数学方法都是抽象的。数学抽象方法是数学研究中的一种基本方法,下面我们根据某些数学家研究结果,简要叙述一下数学抽象方法的涵义、特征和类型。

一、 何谓数学抽象方法

数学抽象方法是一种科学抽象方法。它是从考虑的问题出发,通过对各种经验事实的

观察、分析、综合和比较,在人们的思维中撇开事物现象的、外部的、偶然的东西,抽出事物本质的、内在的、必然的东西,从空间形式和数量关系上揭示客观对象的本质和规律,或者在已有数学知识的基础上,抽出其某一种属性作为新的数学对象,以此达到认识事物本质和规律的目的的一种数学研究方法。例如,几何中的“点”的概念是从现实世界中的水点、雨点、起点、终点等具体事物中抽象出来的,它舍弃了事物的各种物理、化学等性质,不考虑其大小、仅仅保留其表示位置的性质。

二、数学抽象的基本特征

数学抽象有三个基本特征:

1. 在数学抽象中,舍弃了客观对象的其他各个属性而仅保留其量的属性。在这里量的

概念是随着人类实践的发展,其包含的内容越来越丰富。古典数学中所谓的量通常是指“形”和“数”这两个基本含义,现代数学中的量通常是指数学的关系结构系统。

2. 数学抽象是一种构造性活动,即借助于明确的定义“构造”出了相应的数学对象,

称之为数学对象的“逻辑建构”。只有通过这种逻辑建构,数学对象才能由内在的思维活动转化为“外部的”独立存在,相应的数学结论也才能摆脱思维活动所必然具有的“个体性”,并获得作为科学知识所必须具有的“普遍性”。例如,垂直这一概念对于不同的人来说可能具有不同的心理图像,但是在数学中所研究的则是有这一概念的定义所能推出的逻辑结论,从而这就是一种客观知识。

3. 数学抽象有着丰富的层次性,它可以从现实世界客观事物中抽象,又可以在已有数

学知识的基础上进行抽象,其抽象所达到的高度远远超出了其他科学的一般抽象。现代数学发展的一个重要特点就在于它的研究对象已经从具有直观意义的量的关系和形式扩展到了可能的量的关系和形式。这表明了数学抽象所达到的特殊高度。这些高度抽象的概念,与真实世界的距离如此遥远,以致常常被称为“思维的自由想象与创造”物。

三、数学抽象的类型

数学抽象的常用方法有理想化抽象、等价抽象、强抽象和弱抽象等,现分述如下:

1. 理想化抽象

理想化抽象是一种特殊的数学抽象,它是对客观事物或现象从量的方面进行简单化、完

善化的加工处理,使其实际现实中客观事物或现象所必须固有的量的性质和关系的抽象化,并把原则上不可能属于其现实原像的量的特征引用于被构成概念的内涵之中。例如,几何中点、线、面等基本概念的引进,就是进行理想化抽象的结果。

通过理想化抽象得到的数学概念未必与原型相符。例如,在现实世界重,根本找不到没有大小的点、没有厚度和宽度的线、没有厚度的面。但这些点、线、面的数学概念更加深刻、正确、完全地反映了客观事物的属性,因此,它不是远离事物,而是更加接近事物。由此看出,理想化抽象是主观的抽象形式与客观的具体内容的辩证的统一。这种方法不仅对于数学概念是十分重要的,而且对于建立数学模型也是必不可少的。 欧拉把哥尼斯堡七桥问题转化为一笔画问题的数学模型就是利用了理想化抽象的方法。

理想化抽象的结果在数学中表现出各种不同的结构形式,既有图形又有解析表达式;既有具体的数学,又有一般的抽象符号系统等。

2. 等价抽象

等价抽象是借助于等价关系给出已知集合的一个划分,然后将其中等价的元素“同一化”

而得到一个新集合的一种方法。其具体含义是,如果集合 中的一个二元关系 满足下述三条:

(1)自反性 对任意的 , 和 有关系 ,即 ;

(2)对称性 若 ,则 ,其中 ;

(3)传递性 若 , ,则 ,其中 ,

则称 为 上的一个等价关系。由此可以看出得到 的一个划分,使得 被表成若干个“等价类” 的并。等价的元素位于同一等价类,不等价的元素位于不同的等价类之中。然后将同一等价类中的元素“同一化”,即将等价的元素在抽象意义下看作同一个东西,这样,一个等价类形象上凝聚了一个新的抽象元素。由所有这些元素就构成了一个新集合,即 关于 的商集 。由 到 的过程便是等价抽象的过程。例如,在初等数论中,若整数 和 用 除,有相同的余数,则称 和 是对模 同余的,记作 。显然,同余关系是建立在整数系统上的等价关系。再如,有理数可以看作整数偶的等价类。

等价抽象方法是建立在新的数学系统的常用手段之一,在数学研究中有着广泛的应用,数学中很多重要概念的出现都是由此而导致的,这种方法在解题中往往亦可发挥其效力。

3. 强抽象

强抽象亦称为强化结构式抽象。它是指通过引入新特征强化原结构来完成抽象,从而所

获得的新结构为原结构的特例。也就是说,强抽象是通过扩大原概念的内涵,来建立新概念的抽象方法。例如,由任意三角形概念出发,若加强对“边”的属性限制,要求二边相等或三边相等,这样就获得等腰三角形或等边三角形的两个新概念;若加强对“角”的属性的限制、,比如,要求一个角为直角,通过这样的强抽象,就可以获得]直角三角形的概念。再如,在函数概念中引进连续性概念,就构成连续函数概念。

4. 弱抽象

若抽象亦称概念的扩张式抽象。它是指从原型中选取某一特征,并减弱这一特征的限制

加以抽象,从而获得比原结构更广泛的结构过程。原型是其弱抽象的特例。弱抽象是通过缩小原概念的内涵,来建立新概念的数学抽象方法。例如,全等形具有面积相等,形状相似的性质,如果从这一概念出发,减弱对“面积相等”的限制,保留“形状相似”的属性,利用弱抽象法,就可以获得相似形的概念。

一般地,最先被人们认识的一些较具体、较直观的事物对象,如果其内容结构非常丰富,这时就可以采用弱抽象方法,引入新概念。

一般地说,如果人们认识的事物对象其内容结构形式非常贫乏,、或不够丰富,这时可采用强抽象方法引入新概念。当然,还可以根据与弱抽象思维方式完全相反的特点,用来分析数学概念的层次结构,理解数学知识间的相互关系。例如,在四边形中,增加“两组对便分别平行”这个条件,通过强抽象可得平行四边形的概念;从平行四边形的概念去掉“两组对边分别平行”的限制,有弱抽象便可得到四边形的概念。可见,初等几何中平行四边形的概念在各种四边形的概念中占有中特别重要的地位:它既是对任意四边形、梯形等强抽象的结果,又是另外一些概念如矩形,菱形、正方形等强抽象的出发点。同时,它还是梯形、四边形等弱抽象的出发点。

4. 你认为什么是数形结合的数学思想 百字答案

答:所谓数形结合是将数学中抽象的数学语言、数量关系与具体直观的图像结合起来,利用抽象思维与形象思维的有机结合,借助形的具体明确来反映数量之间的关系,借助数来具体描述形的本质内涵。它的实质是把抽象的数学语言、数量关系和直观的图形结合起来,它包括“以形助数”和“以数辅形”两个方面。用这种思想来解决数学问题往往可以使复杂的问题简单化、抽象问题具体化。数形结合思想既能发挥代数的优势,又可以充分利用图形的直观性,从多个角度探索问题,对思维能力的提升大有益处。

5. 数学中什么是抽象图形

数学中抽象图形是对点、线、面与图像构成知识的综合表达。

6. 哪些数学定义中类似的从具体到抽象定义特征

数学抽象定义的特点:
关于数学所具有的特点,可以把数学和其他学科相比较,这种特点就十分明显了。
同其他学科相比,数学是比较抽象的。数学的抽象性表现在哪里呢?那就是暂时撇开事物的具体内容,仅仅从抽象的数方面去进行研究。比如在简单的计算中,2+3既可以理解成两棵树加三棵树,也可以理解成两部机床加三台机床。在数学里,我们撇开树、机床的具体内容,而只是研究2+3的运算规律,掌握了这个规律,那就不论是树、机床,还是汽车或者别的什么事物都可以按加法的运算规律进行计算。乘法、除法等运算也都是研究抽象的数,而撇开了具体的内容。
数学中的许多概念都是从现实世界抽象出来的。比如几何学中的“直线”这一概念,并不是指现实世界中的拉紧的线,而是把现实的线的质量、弹性、粗细等性质都撇开了,只留下了“向两方无限伸长”这一属性,但是现实世界中是没有向两方无限伸长的线的。几何图形的概念、函数概念都是比较抽象的。但是,抽象并不是数学独有的属性,它是任何一门科学乃至全部人类思维都具有的特性。只是数学的抽象性有它不同于其他学科抽象的特征罢了。
数学的抽象性具有下列三个特征:第一,它保留了数量关系或者空间形式。第二,数学的抽象是经过一系列的阶段形成的,它达到的抽象程度大大超过了自然科学中的一般抽象。从最原始的概念一直到像函数、复数、微分、积分、泛函、n维甚至无限维空间等抽象的概念都是从简单到复杂、从具体到抽象这样不断深化的过程。当然,形式是抽象的,但是内容却是非常现实的。正如列宁所说的那样:“一切科学的(正确的、郑重的、不是荒唐的)抽象,都更深刻、更正确、更完全地反映着自然。”(《黑格尔〈逻辑学〉一书摘要》,《列宁全集》第38卷第181页)第三,不仅数学的概念是抽象的,而数学方法本身也是抽象的。物理或化学家为了证明自己的理论,总是通过实验的方法;而数学家证明一个定理却不能用实验的方法,必须用推理和计算。比如虽然我们千百次地精确测量等腰三角形的两底角都是相等的,但是还不能说已经证明了等腰三角形的底角相等,而必须用逻辑推理的方法严格地给予证明。在数学里证明一个定理,必须利用已经学过或者已经证过的概念、定理用推理的方法导出这个新定理来。我们都知道数学归纳法,它就是一种比较抽象的数学证明方法。它的原理是把研究的元素排成一个序列,某种性质对于这个序列的首项是成立的,假设当第k项成立,如果能证明第k+1项也能成立,那么这一性质对这序列的任何一项都是成立的,即使这一序列是无穷序列。
数学的第二个特点是准确性,或者说逻辑的严密性,结论的确定性。
数学的推理和它的结论是无可争辩、毋容置疑的。数学证明的精确性、确定性从中学课本中就充分显示出来了。
欧几里得的几何经典着作《几何原本》可以作为逻辑的严密性的一个很好的例子。它从少数定义、公理出发,利用逻辑推理的方法,推演出整个几何体系,把丰富而零散的几何材料整理成了系统严明的整体,成为人类历史上的科学杰作之一,一直被后世推崇。两千多年来,所有初等几何教科书以及19世纪以前一切有关初等几何的论着都以《几何原本》作为根据。“欧几里得”成为几何学的代名词,人们并且把这种体系的几何学叫做欧几里得几何学。
但是数学的严密性不是绝对的,数学的原则也不是一成不变的,它也在发展着。比如,前面已经讲过《几何原本》也有不完美的地方,某些概念定义得不明确,采用了本身应该定义的概念,基本命题中还缺乏严密的逻辑根据。因此,后来又逐步建立了更严密的希尔伯特公理体系。
第三个特点是应用的广泛性。
我们几乎每时每刻都要在生产和日常生活中用到数学,丈量土地、计算产量、制订计划、设计建筑都离不开数学。没有数学,现代科学技术的进步也是不可能的,从简单的技术革新到复杂的人造卫星的发射都离不开数学。
而且,几乎所有的精密科学、力学、天文学、物理学甚至化学通常都是以一些数学公式来表达自己的定律的,并且在发展自己的理论的时候,广泛地应用数学这一工具。当然,力学、天文学和物理学对数学的需要也促进了数学本身的发展,比如力学的研究就促使了微积分的建立和发展。
数学的抽象性往往和应用的广泛性紧密相连,某一个数量关系,往往代表一切具有这样数量关系的实际问题。比如,一个力学系统的振动和一个电路的振荡等用同一个微分方程来描述。撇开具体的物理现象中的意义来研究这一公式,所得的结果又可用于类似的物理现象中,这样,我们掌握了一种方法就能解决许多类似的问题。对于不同性质的现象具有相同的数学形式,就是相同的数量关系,是反映了物质世界的统一性,因为量的关系不只是存在于某一种特定的物质形态或者它的特定的运动形式中,而是普遍存在于各种物质形态和各种运动形式中,所以数学的应用是很广泛的。
正因为数学来自现实世界,正确地反映了客观世界联系形式的一部分,所以它才能被应用,才能指导实践,才表现出数学的预见性。比如,在火箭、导弹发射之前,可以通过精密的计算,预测它的飞行轨道和着陆地点;在天体中的未知行星未被直接观察到以前,就从天文计算上预测它的存在。同样的道理也才使得数学成为工程技术中的重要工具。
下面举几个应用数学的光辉例子。
第一,海王星的发现。太阳系中的行星之一的海王星是在1846年在数学计算的基础上发现的。1781年发现了天王星以后,观察它的运行轨道总是和预测的结果有相当程度的差异,是万有引力定律不正确呢,还是有其他的原因?有人怀疑在它周围有另一颗行星存在,影响了它的运行轨道。1844年英国的亚当斯(1819—1892)利用引力定律和对天王星的观察资料,推算这颗未知行星的轨道,花了很长的时间计算出这颗未知行星的位置,以及它出现在天空中的方位。亚当斯于1845年9~10月把结果分别寄给了剑桥大学天文台台长查理士和英国格林尼治天文台台长艾里,但是查理士和艾里迷信权威,把它束之高阁,不予理睬。
1845年,法国一个年轻的天文学家、数学家勒维烈(1811—1877)经过一年多的计算,于1846年9月写了一封信给德国柏林天文台助理员加勒(1812—1910),信中说:“请你把望远镜对准黄道上的宝瓶星座,就是经度326°的地方,那时你将在那个地方1°之内,见到一颗九等亮度的星。”加勒按勒维烈所指出的方位进行观察,果然在离所指出的位置相差不到1°的地方找到了一颗在星图上没有的星——海王星。海王星的发现不仅是力学和天文学特别是哥白尼日尔爾心学说的伟大胜利,而且也是数学计算的伟大胜利。
第二,谷神星的发现。1801年元旦,意大利天文学家皮亚齐(1746—1826)发现了一颗新的小行星——谷神星。不过它很快又躲藏起来,皮亚齐只记下了这颗小行星是沿着9°的弧运动的,对于它的整个轨道,皮亚齐和其他天文学家都没有办法求得。德国的24岁的高斯根据观察的结果进行了计算,求得了这颗小行星的轨道。天文学家们在这一年的12月7日在高斯预先指出的方位又重新发现了谷神星。
第三,电磁波的发现。英国物理学家麦克斯韦(1831—1879)概括了由实验建立起来的电磁现象,呈现为二阶微分方程的形式。他用纯数学的观点,从这些方程推导出存在着电磁波,这种波以光速传播着。根据这一点,他提出了光的电磁理论,这理论后来被全面发展和论证了。麦克斯韦的结论还推动了人们去寻找纯电起源的电磁波,比如由振动放电所发射的电磁波。这样的电磁波后来果然被德国物理学家赫兹(1857—1894)发现了。这就是现代无线电技术的起源。
第四,1930年,英国理论物理学家狄拉克(1902—1984)利用数学演绎法和计算预言了正电子的存在。1932年,美国物理学家安德逊在宇宙射线实验中发现了正电子。类似的例子不胜枚举。总之,在天体力学中,在声学中,在流体力学中,在材料力学中,在光学中,在电磁学中,在工程科学中,数学都作出了异常准确的预言。

7. 浅谈几种常见的数学思想方法

摘要:数学思想方法以数学知识为载体,蕴涵于知识之中,是数学的精髓。文章主要介绍四种常见的数学思想方法:函数与方程思想、分类与整合的思想、数形结合的思想、化归与转化的思想。在教学过程中渗透数学思想方法,能提高教学效果,提高学生数学素养。

1对数学思想方法的认识

在数学教学和数学教育领域,数学知识、数学方法、数学思想是数学知识体系的三个层次,它们相互联系,共同发展。数学知识是数学思想方法解决问题所依附的材料;数学方法是解决问题的手段和途径,是数学思想发展的前提;数学思想是对数学对象的本质认识,是从某些具体的数学内容(概念、命题、定理)和数学认识过程中提炼出来的基本观点和想法,是数学方法的灵魂,是解决问题的指导思想,对数学活动具有指导意义。数学思想和数学方法是紧密联系的,数学思想方法通常从“数学思想”和“数学方法”两个角度进行阐述。

数学中常用的数学思想方法,概括起来可以分为两类。一类是科学思想在数学中的应用,如分析与综合、分类讨论、类比、化归、归纳与演绎思想等;另一类是数学学科特有的思想方法,如集合与对应、数学建模、数形结合、函数与方程、极限、概率统计的思想方法等。

2教学中主要的数学思想方法

数学思想方法的学习和领悟能帮助学生构建知识体系,使学生所学的知识不再是零散的知识点,能提高学生数学思维能力,提高学习效果。因此,在教学过程中必须重视数学思想方法的教学。

数学思想方法以数学知识为载体,蕴涵于知识之中,是数学的精髓,它支撑和统率着数学知识。教师在讲授概念、性质、定理的过程中应不断渗透与之相关的数学思想方法,让学生在掌握知识的`同时,又能领悟到数学思想,从而提升学生思维能力。在教学过程中,要引导学生主动参与结论的探索、发现及推导过程,搞清知识点间的联系及其因果关系,让学生亲身体验蕴含在知识中的数学思想和方法。

2.1 分类与整合的思想分类是通过比较数学对象本质属性的相同点和差异点,然后根据某一种属性将数学对象区分为不同种类的思想方法。分类讨论既是是一个重要的数学方法,又一个重要的数学思想,在解题时,它能避免思维的片面性,保证不遗不漏。

整合就是考虑数学问题时把注意力和重点放在问题的整体结构上,通过对其全面深刻的观察和分析,从整体上认识问题的实质,把中间相互紧密联系着的量作为整体来处理的思想方法。

解题时,我们常常遇到这种情况,解到某一步时,被研究的问题包含了多种情况,我们不能再按照统一标准进行下去,这就需要把条件所给出的总区域划分成若干个子区域,然后分别在各个子区域内进行解题,当分类解决完这个问题后,再把它们整合在一起,这就是分类与整合的思想。有分有合,先分后合,不仅是分类与整合的思想解决问题的主要过程,也是这种思想方法的本质属性。

这就需要我们在学习中认识到以下几点:什么样的问题需要分类研究;为什么要分类;如何分类;分类后如何研究与最后如何整合等。例如:等比数列的求和公式就分为q=1和q≠1两种情况;对数函数的单调性就分为a>1,0 2.2 数形结合的思想数学研究的对象是数量关系和空间形式,即“数”与“形”两个方面。“数”与“形”之间不是孤立存在的,而是有着密切的联系。数量关系的研究可以转化为图形性质的研究,反之,图形性质的研究可以转化为数量关系的研究,这种解决数学问题过程中“数”与“形”相互转化的思维策略,即是数形结合的思想。

数形结合的思想,既是一个重要的数学思想,也是一种常用的数学方法,为解决问题提供了方便,是解决问题的一个捷径。数形结合思想一方面,能使数量关系的抽象概念和解析式通过图形变得直观形象;另一方面,能使一些图形的属性通过对数量关系的研究,更精准、更深刻地得出图形的性质。这种“数”与“形”的相互转换,相互渗透,不仅可以使一些题目的解决简捷明快,同时还可大大拓宽我们的解题思路。华罗庚先生曾作过精辟的论述:“数与形,本是相倚依,焉能分作两边飞。数缺形时少直觉,形少数时难人微,数形结合百般好,隔裂分家万事非。切莫忘,几何代数统一体,永远联系切莫离”。它的运用,往往展现出“柳暗花明又一村”般的数形和谐完美结合的境地。

数形结合在数学解题时应用也比较广泛。例如:不连续函数讨论增减性问题,函数求最值问题;根的分布问题及数形结合在不等式中、在数列中、在解析几何中的应用等。这些都是数形结合的思想方法的体现。

2.3 化归与转化的思想化归与转化的思想就是将未知解法或难以解决的问题,通过观察、分析、类比、联想等思维过程,选择运用恰当的数学方法进行变换,化归为在已知知识范围内已经解决或容易解决的问题的思想方法。化归与转化思想的实质是揭示联系,实现转化。

化归与转化的思想是解决数学问题的根本思想,大部分数学问题的解决都是通过转化实现的。从某种意义上讲,解决数学问题就是从未知向已知转化的过程,解题的过程实际上就是一步步转化的过程。要想熟练运用化归与转化思想,就要积极主动地去挖掘问题之间的联系,要有丰富的联想、机敏细微的观察,要熟练、扎实地掌握基础知识、基本技能和基本方法。在学习中我们要对公式、定理、法则有深刻理解,并对典型例题和习题进行总结和提炼。人们常说:“抓基础,重转化”是学好数学的金钥匙,学习中一定要用好这把金钥匙。运用化归与转化思想的例子比比皆是,如:未知向已知的转化,复杂问题向简单问题的转化,新知识向旧知识的转化,数与形的转化,空间向平面的转化,命题之间的转化,高维向低维的转化,多元向一元的转化,函数与方程的转化等都是转化思想的体现。

2.4 函数与方程的思想函数的思想是用运动、变化的观点,分析研究具体问题中的数量关系,通过函数形式把这种数量关系刻划出来并加以研究,从而解决问题的方法。

方程的思想就是突出研究已知量与未知量之间的等量关系,通过设未知数、列方程或方程组,解方程或方程组等步骤,达到求值目的解题思路和策略。

函数与方程的思想,既是函数思想与方程思想的体现,也是两种思想综合运用的体现,,是对知识在更高层次上的抽象、概括与提炼,是研究变量与函数之间的内在联系,并从函数与方程各部分的内在联系出发来考虑问题,研究问题和解决问题的数学思想。

着名数学家克莱因说:“一般受教育者在数学课上应该学会的重要事情是用变量和函数来思考”。一个学生仅仅学习了函数的知识,他在解决问题时往往是被动的,而建立了函数思想,才能主动地去思考一些问题。

在解题时,要学会思考这些问题:①是不是需要把字母看作变量?②是不是需要把代数式看作函数?如果是函数它具有哪些性质?③是不是需要构造一个函数,把表面上不是函数的问题化归为函数问题?④能否把一个等式转化为一个方程?等等。我们常见的运用函数思想的例子有:数列问题借助于函数思想,用函数方法来解决;遇到变量时构造函数关系式来解题;有关的最大、最值问题,可利用函数观点加以分析;实际应用问题,转化成数学语言,建立数学模型和函数关系式,应用函数相关性质来解决等。

参考文献:

[1]钱佩玲.数学思想方法与中学数学(第2版).北京师范大学出版社,2008.

[2]张顺燕.数学的思想、方法和应用.北京大学出版社,2009.

8. 数学四大思想八大方法是什么

数学思想是指人们对数学理论和内容的本质的认识,数学方法是数学思想的具体化形式实际上两者的本质是相同的,差别只是站在不同的角度看问题,通常混称为数学思想方法。数学四大思想八大方法是代数思想、数形结合、转化思想、对应思想方法、假设思想方法、比较思想方法、符号化思想方法、极限思想方法。

数学思想方法

数形结合是一个数学思想方法,包含以形助数和以数辅形两个方面,其应用大致可以分为两种情形,或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质。

或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。

数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。

9. 四大数学思想是什么

1、数形结合思想
数形结合思想,其“数”与“形”结合,相互渗透,把代数式的精确刻画与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合. 应用数形结合思想,就是充分考查数学问题的条件和结论之间的内在联系,既分析其代数意义又揭示其几何意义,将数量关系和空间形式巧妙结合,来寻找解题思路,使问题得到解决. 运用这一数学思想,要熟练掌握一 些概念和运算的几何意义及常见曲线的代数特征.

应用数形结合的思想,应注意以下数与形的转化:(1)集合的运算及韦恩图;(2)函数及其图像;(3)数列通项及求和公式的函数特征及函数图像;(4)方程(多指二元方程)及方程的曲线。
以形助数常用的有:借助数轴;借助函数图像;借助单位圆;借助数式的结构特征;借助于解析几何方法. 以数助形常用的有:借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合.

2、分类讨论思想

分类讨论思想就是根据所研究对象的性质差异,分各种不同的情况予以分析解决. 分类讨论题覆盖知识点较多,利于考查学生的知识面、分类思想和技巧;同时方式多样,具有较高的逻辑性及很强的综 合性,树立分类讨论思想,应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的 标准,分层别类不重复、不遗漏的分析讨论”.

应用分类讨论思想方法解决数学问题的关键是如何正确分类,即正确选择一个分类标准,确保分类的科学,既不重复,又不遗漏. 如何实施正确分类,解题时需要我们首先明确讨论对象和需要分类的全体,然后确定分 类标准与分类方法,再逐项进行讨论,最后进行归纳小结.

常见的分类情形有:按数分类;按字母的取值范围分类;按事件的可能情况分类;按图形的位置特征分类等. 分类讨论思想方法依据一定的标准,对问题分类、求解,要特别注意 分类必须满足互斥、无漏、最简的原则.

3、函数与方程思想

函数与方程思想是最重要的一种数学思想,综合知识多、题型多、应 用技巧多. 函数思想简单,即将所研究的问题借助建立函数关系式亦或构造中间函数,结合初等函数的图像与性质,加以分析、转化、解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;方程思想即将问题中的数量关系运用数学语言转化为方程模型加以解决. 运用函数与方程的思想时,要注意函数,方程与不等式之间的相互联系和转化,应做到:(1)深刻理解函数 f(x)的性质(单调性、奇偶性、周期性、最值和图像变换),熟练掌握基本初等函数的 性质,这是应用函数思想解题的基础.(2)掌握二次函数基本性质,二次方程实根分布条件,二次不等式的转化。
4、转化与化归思想

化归与转化的思想,就是在研究和解决数学问题时采用某种方式,借助某种函数性质、图像、公式或已知条件将,问题通过变换加以转化,进而达到解决问题的思想.

转化是将数学命题由一种形式向另一种形式的变换过程,化归是把待解决的问题通过某种转化过程归结为一类已经解决或比较容易解决的问题. 转化与化归思想是中学数学最基本的思想方法,堪称数学思想的精髓,它渗透到了数学教学内容的各个领域和解 题过程的各个环节中. 转化有等价转化与不等价转化. 等价转化后的新问题与原问题实质是一样的. 不等价转 化则部分地改变了原对象的实质,需对所得结论进行必要的修正. 应用转化与化归思想解题的原则应是化难为易、化生为熟、化繁为简,尽量是等价转化.

常见的转化有: 正与反的转化、数与形的转化、相等与不等的转化、整体与局部的转化、空间与平面相互转化、复数与实数相互转化、常量与变量的转化、数学语言的转化.

阅读全文

与具体图形到抽象图形数学思想是什么相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:740
乙酸乙酯化学式怎么算 浏览:1406
沈阳初中的数学是什么版本的 浏览:1353
华为手机家人共享如何查看地理位置 浏览:1045
一氧化碳还原氧化铝化学方程式怎么配平 浏览:886
数学c什么意思是什么意思是什么 浏览:1411
中考初中地理如何补 浏览:1300
360浏览器历史在哪里下载迅雷下载 浏览:703
数学奥数卡怎么办 浏览:1388
如何回答地理是什么 浏览:1025
win7如何删除电脑文件浏览历史 浏览:1058
大学物理实验干什么用的到 浏览:1487
二年级上册数学框框怎么填 浏览:1701
西安瑞禧生物科技有限公司怎么样 浏览:976
武大的分析化学怎么样 浏览:1250
ige电化学发光偏高怎么办 浏览:1339
学而思初中英语和语文怎么样 浏览:1653
下列哪个水飞蓟素化学结构 浏览:1425
化学理学哪些专业好 浏览:1488
数学中的棱的意思是什么 浏览:1059