导航:首页 > 数字科学 > 环境数学模型需要学什么

环境数学模型需要学什么

发布时间:2022-10-21 22:41:29

1. 1.什么是数学模型数学建模的一般步骤是什么 2.数学建模需要具备哪些能力和知识 答的好悬赏加

数学建模是利用数学方法解决实际问题的一种实践.即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解.
数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题的能力的必备手段之一.
数学建模的一般方法和步骤
建立数学模型的方法和步骤并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性.建模的一般方法:
机理分析:根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义.
测试分析方法:将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型.测试分析方法也叫做系统辩识.
将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法.
在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定.机理分析法建模的具体步骤大致如下:
1、 实际问题通过抽象、简化、假设,确定变量、参数;
2、 建立数学模型并数学、数值地求解、确定参数;
3、 用实际问题的实测数据等来检验该数学模型;
4、 符合实际,交付使用,从而可产生经济、社会效益;不符合实际,重新建模.
数学模型的分类:
1、 按研究方法和对象的数学特征分:初等模型、几何模型、优化模型、微分方程模型、图论模型、逻辑模型、稳定性模型、统计模型等.
2、 按研究对象的实际领域(或所属学科)分:人口模型、交通模型、环境模型、生态模型、生理模型、城镇规划模型、水资源模型、污染模型、经济模型、社会模型等.
数学建模需要丰富的数学知识,涉及到高等数学,离散数学,线性代数,概率统计,复变函数等等基本的数学知识.同时,还要有广泛的兴趣,较强的逻辑思维能力,以及语言表达能力等等.

参加数学建模竞赛需知道的内容
一、全国大学生数学建模竞赛
二、数学建模的方法及一般步骤
三、重要的数学模型及相应案例分析
1、线性规划模型及经济模型案例分析
2、层次分析模型及管理模型案例分析
3、统计回归模型及案例分析
4、图论模型及案例分析
5、微分方程模型及案例分析
四、相关软件
1、Matlab软件及编程;2、Lingo软件;3、Lindo软件。
五、数模十大常用算法
1. 蒙特卡罗算法。2. 数据拟合、参数估计、插值等数据处理算法。3. 线性规划、整数规划、多元规划、二次规划等规划类算法。4. 图论算法。5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。6. 最优化理论的三大非经典算法。7. 网格算法和穷举法。8. 一些连续数据离散化方法。9. 数值分析算法。10. 图象处理算法。
六、如何查阅资料
七、如何写作论文
八、如何组织队伍:团队精神,配合良好,不断的提出问题和解决问题。
九、如何才能获奖:比较完整,有几处创新点。
十、如何信息处理:WORD、LaTeX,飞秋、QQ。
其实主要看下例子就可以了,知道一些基本的模型,我这里也有很多例子,各个学校的讲座都有要的话直接向我要

2. 初学者,数学建模需要准备些什么东西

数学建模应当掌握的十类算法
‍‍ 1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算 法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法) 2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要 处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题 属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、 Lingo软件实现) 4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉 及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计 中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是 用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实 现比较困难,需慎重使用) 7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛 题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好 使用一些高级语言作为编程工具) 8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只 认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非 常重要的) 9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常 用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调 用) 10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该 要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab 进行处理)
数学建模资料
竞赛参考书
l、中国大学生数学建模竞赛,李大潜主编,高等教育出版社(1998). 2、大学生数学建模竞赛辅导教材,(一)(二)(三),叶其孝主编,湖南教育 出版社(1993,1997,1998). 3、数学建模教育与国际数学建模竞赛 《工科数学》专辑,叶其孝主编, 《工科数学》杂志社,1994).
国内教材、丛书
1、数学模型,姜启源编,高等教育出版社(1987年第一版,1993年第二版,2003年第三版;第一版在 1992年国家教委举办的第二届全国优秀教材评选中获"全国优秀教材奖"). 2、数学模型与计算机模拟,江裕钊、辛培情编,电子科技大学出版社,(1989). 3、数学模型选谈(走向数学从书),华罗庚,王元着,王克译,湖南教育出版社;(1991). 4、数学建模--方法与范例,寿纪麟等编,西安交通大学出版社(1993). 5、数学模型,濮定国、 田蔚文主编,东南大学出版社(1994). 6..数学模型,朱思铭、李尚廉编,中山大学出版社,(1995) 7、数学模型,陈义华编着,重庆大学出版社,(1995) 8、数学模型建模分析,蔡常丰编着,科学出版社,(1995). 9、数学建模竞赛教程,李尚志主编,江苏教育出版社,(1996). 10、数学建模入门,徐全智、杨晋浩编,成都电子科大出版社,(1996). 11、数学建模,沈继红、施久玉、高振滨、张晓威编,哈尔滨工程大学出版社,(1996). 12、数学模型基础,王树禾编着,中国科学技术大学出版社,(1996). 13、数学模型方法,齐欢编着,华中理工大学出版社,(1996). 14、数学建模与实验,南京地区工科院校数学建模与工业数学讨论班编,河海大学 出版社,(1996). 15、数学模型与数学建模,刘来福、曾文艺编,北京师范大学出版杜(1997). 16. 数学建模,袁震东、洪渊、林武忠、蒋鲁敏编,华东师范大学出版社. 17、数学模型,谭永基,俞文吡编,复旦大学出版社,(1997). 18、数学模型实用教程,费培之、程中瑗层主编,四川大学出版社,(1998). 19、数学建模优秀案例选编(工科数学基地建设丛书),汪国强主编,华南理工大学出版社,(1998). 20、经济数学模型(第二版)(工科数学基地建设丛书),洪毅、贺德化、昌志华 编着,华南理工大学出版社,(1999). 21、数学模型讲义,雷功炎编,北京大学出版社(1999). 22、数学建模精品案例,朱道元编着,东南大学出版社,(1999), 23、问题解决的数学模型方法,刘来福,曾文艺编着、北京师范大学出版社,(1999). 24、数学建模的理论与实践,吴翔,吴孟达,成礼智编着,国防科技大学出版社, (1999). 25、数学建模案例分析,白其岭主编,海洋出版社,(2000年,北京). 26、数学实验(高等院校选用教材系列),谢云荪、张志让主编,科学出版社,(2000). 27、数学实验,傅鹏、龚肋、刘琼荪,何中市编,科学出版社,(2000). 28、数学建模与数学实验,赵静、但琦编,高等教育出版社,(2000).
国外参考书(中译本)
1、数学模型引论, E.A。Bender着,朱尧辰、徐伟宣译,科学普及出版社(1982). 2、数学模型,[门]近藤次郎着,官荣章等译,机械工业出版社,(1985). 3、微分方程模型,(应用数学模型丛书第1卷),[美]W.F.Lucas主编,朱煜民等 译,国防科技大学出版社,(1988). 4、政治及有关模型,(应用数学模型丛书第2卷),[美W.F.Lucas主编,王国秋 等译,国防科技大学出版社,(1996). 5、离散与系统模型,(应用数学模型丛书第3卷),[美w.F.Lucas主编,成礼智 等译,国防科技大学出版社,(1996). 6、生命科学模型,(应用数学模型丛书第4卷),[美1W.F.Lucas主编,翟晓燕等 译,国防科技大学出版社,(1996). 7、模型数学--连续动力系统和离散动力系统,[英1H.B.Grif6ths和A.01dknow 着,萧礼、张志军编译,科学出版社,(1996). 8、数学建模--来自英国四个行业中的案例研究,(应用数学译丛第4号), 英]D.Burglles等着,叶其孝、吴庆宝译,世界图书出版公司,(1997)
专业性参考书
(这方面书籍很多,仅列几本供参考) : 1、水环境数学模型,[德]W.KinZE1bach着,杨汝均、刘兆昌等编纂,中国建筑工 业出版社,(1987). 2、科技工程中的数学模型,堪安琦编着,铁道出版社(1988) 3、生物医学数学模型,青义学编着,湖南科学技术出版杜(1990). 4、农作物害虫管理数学模型与应用,蒲蛰龙主编,广东科技出版社(1990). 5、系统科学中数学模型,欧阳亮编着, E山东大学出版社,(1995). 6、种群生态学的数学建模与研究,马知恩着,安徽教育出版社,(1996) 7、建模、变换、优化--结构综合方法新进展,隋允康着,大连理工大学出版社, (1986) 8、遗传模型分析方法,朱军着,中国农业出版社(1997). (中山大学数学系王寿松编辑,2001年4月)
过程
模型准备
了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数学语言来描述问题。
模型假设
根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。
模型建立
在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构(尽量用简单的数学工具)。
模型求解
利用获取的数据资料,对模型的所有参数做出计算(或近似计算)。
模型分析
对所得的结果进行数学上的分析。
模型检验
将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。
模型应用
应用方式因问题的性质和建模的目的而异。

1、努力学习数学知识,完善自己的知识体系,尤其是与数学相关的知识体系,比如高等数学、工程数学和应用数学的相关知识;
2、扩充自己的知识面,你可以看到很多赛题都是很现实的社会热点问题,相关的背景知识是非常必要的;
3、多看一些案例分析的教程,在学习案例分析时的注意点是:如何考虑现实问题中的各个因素,综合运用所学知识,建立适当的模型;如何进行模型的优化;如何求解模型;如何解释模型的解。
还要逐步去理解数学建模中最难的三个问题,1、如何用学到的数学思想来表述所面对的问题,所谓的建模。2、应用学到的数学知识解刚刚建立的数学模型,并进行优化。3、将刚刚得到的数学上的解解释为现实问题中的现象或者是方法。这三个过程体现了一个“现实——>数学——>现实”的一个过程。这其实就是最难的地方。这需要你首先了解面临的实际问题,然后从现实中转入数学,再从数学中跳出来回到现实。
4、说到matlab,我建议你借一本matlab手册做参考书就行了!毕竟matlab只是实现你数学模型的基础,这不是说matlab不重要,其实matlab也很重要!
祝你快乐!

3. 环境工程(化学工程或者土木工程)需要学习哪些数学知识

概率论,线性代数

4. 环境科学对电脑要求

要用。
一般大学前两个学期会学习一门计算机语言,比如C,C++,VB。有的大学第一学期还会有一门大学计算机基础,主要讲office办公软件使用,然后再学习语言。而且有的学校还要求学习数据库的课程,比如ACCESS,SQL语言,还有设一些统计课程的,比如我们有一门叫做环境数学模型的课,要用到一个统计软件SAS,类似的统计软件还有SPSS,Matlab.
我们的环境科学专业涉及计算机的课程:
第一学期:面向对象程序设计,用VC++;
第二学期:面向对象程序设计,用VC++;
第四学期:数据库和软件基础,用VB,ACCESS;
第五学期:环境数学模型,用SAS软件。
再者,除了学习之外,还可能参加社团,做点海报,做点视频之类都用得到;寝室哥们儿们聚一起打打游戏之类,不能总去网吧,所以也要用到。
有的学校第一年不让学生带电脑,那样的话还是听学校的话吧,勤去学校机房几趟好了!

5. 大学的数学建模竞赛怎么准备

我在大二的时候就和室友一起参加过全国大学生数学建模竞赛,学校里也上过这方面的专业课,可以说对此有点自己的见解和建议。下面我想分享一下自己当时做的一些准备供你参考。


首先,肯定要学习数学模型方面的知识。

数学建模,顾名思义就是建立数学模型,需要你去了解一下常用的数学模型。有些同学可能会疑问,数学还有什么模型呢?不就是套套公式吗。其实不然,对于国赛,最常用的莫过于概率论与数理统计了。

当然,如果你学有余力的话,可以去学SPSS这种专业的统计软件,或者像Visio这样的绘图软件,在统计或者绘图等方面,用起来更加方面,图案也更加精美。


总而言之,对于大学的数学建模竞赛,还是需要好好准备的,无论是数学的专业知识还是算法的设计实现。如果能找到合适的队友,那么合作起来还是很轻松的,希望你能得到一个好成绩!

6. 数学建模涉及的内容或要求掌握那些知识

数学建模
数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包涵抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。

我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只懂数学不懂数学在实际中的应用的数学家)变成物理学家,生物学家,经济学家甚至心理学家等等的过程。

数学模型一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。

数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,进入20世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在即将进入21世纪的知识经济时代,数学科学的地位会发生巨大的变化,它正在从国或经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展,数学理伦与方法的不断扩充使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。培养学生应用数学的意识和能力已经成为数学教学的一个重要方面。

应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题。这就需要深厚扎实的数学基础,敏锐的洞察力和想象力,对实际问题的浓厚兴趣和广博的知识面。数学建模是联系数学与实际问题的桥梁,是数学在各个领械广泛应用的媒介,是数学科学技术转化的主要途径,数学建模在科学技术发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代科技工作者必备的重要能力之。为了适应科学技术发展的需要和培养高质量、高层次科技人才,数学建模已经在大学教育中逐步开展,国内外越来越多的大学正在进行数学建模课程的教学和参加开放性的数学建模竞赛,将数学建模教学和竞赛作为高等院校的教学改革和培养高层次的科技人才的个重要方面,现在许多院校正在将数学建模与教学改革相结合,努力探索更有效的数学建模教学法和培养面向21世纪的人才的新思路,与我国高校的其它数学类课程相比,数学建模具有难度大、涉及面广、形式灵活,对教师和学生要求高等特点,数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。为了改变过去以教师为中心、以课堂讲授为主、以知识传授为主的传统教学模式,数学建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。通过教学使学生了解利用数学理论和方法去分析和解决问题的全过程,提高他们分析问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力,使他们在以后的工作中能经常性地想到用数学去解决问题,提高他们尽量利用计算机软件及当代高新科技成果的意识,能将数学、计算机有机地结合起来去解决实际问题。数学建模以学生为主,教师利用一些事先设计好问题启发,引导学生主动查阅文献资料和学习新知识,鼓励学生 积极开展讨论和辩论,培养学生主动探索,努力进取的学风,培养学生从事科研工作的初步能力,培养学生团结协作的精神、形成一个生动活泼的环境和气氛,教学过程的重点是创造一个环境去诱导学生的学习欲望、培养他们的自学能力,增强他们的数学素质和创新能力,提高他们的数举素质,强调的是获取新知识的能力,是解决问题的过程,而不是知识与结果。接受参加数学建模竞赛赛前培训的同学大都需要学习诸如数理统计、最优化、图论、微分方程、计算方法、神经网络、层次分析法、模糊数学,数学软件包的使用等等“短课程”(或讲座),用的学时不多,多数是启发性的讲一些基本的概念和方法,主要是靠同学们自己去学,充分调动同学们的积极性,充分发挥同学们的潜能。培训中广泛地采用的讨论班方式,同学自己报告、讨论、辩论,教师主要起质疑、答疑、辅导的作用,竞赛中一定要使用计算机及相应的软件,如Mathemathmatica,Matlab,Mapple,甚至排版软件等。
数学建模的几个过程:
模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数学语言来描述问题。
模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。
模型建立:在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构。(尽量用简单的数学工具)
模型求解:利用获取的数据资料,对模型的所有参数做出计算(估计)。
模型分析:对所得的结果进行数学上的分析。
模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。
模型应用:应用方式因问题的性质和建模的目的而异。

全国大学生数学建模竞赛章程

(一九九七年十二月修订)
第一条 总则

全国大学生数学建模竞赛(以下简称竞赛)是国家教委高教司和中国工业与
应用数学学会共同主办的面向全国大学生的群众性科技活动,目的在于激励
学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际
问题的综合能力,鼓励广大学生踊跃参加课外科技活动,开拓知识面,培养
创造精神及合作意识,推动大学数学教学体系、教学内容和方法的改革。

第二条 竞赛内容

竞赛题目一般来源于工程技术和管理科学等方面经过适当简化加工的实际问题,
不要求参赛者预先掌握深入的专门知识,只需要学过普通高校的数学课程。题
目有较大的灵活性供参赛者发挥其创造能力。参赛者应根据题目要求,完成一
篇包括模型的假设、建立和求解、计算方法的设计和计算机实现、结果的分析
和检验、模型的改进等方面的论文(即答卷)。竞赛评奖以假设的合理性、建
模的创造性、结果的正确性和文字表述的清晰程度为主要标准。
第三条 竞赛形式、规则和纪律

1.全国统一竞赛题目,采取通讯竞赛方式,以相对集中的形式进行。
2.竞赛一般在每年9月末的三天内举行。
3.大学生以队为单位参赛,每队3人,专业不限。研究生不得参加。每队可设一名指
导教师(或教师组),从事赛前辅导和参赛的组织工作,但在竞赛期间必须回避参
赛队员,不得进行指导或参与讨论,否则按违反纪律处理。
4.竞赛期间参赛队员可以使用各种图书资料、计算机和软件,在国际互联网上浏览,
但不得与队外任何人(包括在网上)讨论。
5.
工作人员将密封的赛题按时启封发给参赛队员,参赛队在规定时间内完成答卷,
并准时交卷。
6 .参赛院校应责成有关职能部门负责竞赛的组织和纪律监督工作,保证本校竞赛
的规范性和公正性。
第四条 组织形式
1.竞赛由全国竞赛组织委员会主持,负责每年发动报名、拟定赛题、组织全国优秀
答卷的复审和评奖、印制获奖证书、举办全国颁奖仪式等。全国竞赛组委会每届
任期四年,其组成人员由国家教委高教司和中国工业与应用数学学会负责确定。
2.竞赛分赛区组织进行。原则上一个省(自治区、直辖市)为一个赛区,每个赛区
应至少有6所院校的20个队参加(每所院校至多10个队)。邻近的省可以合并成立
一个赛区。每个赛区建立组织委员会,负责本赛区的宣传发动及报名、监督竞赛纪
律和组织评阅答卷等工作。组委会成员由各省(自治区、直辖市)教委、工业与应
用数学学会的同志及有关人士组成(没有成立地方学会的,由各地教委与全国竞赛
组委会指定的院校协商确定),报全国竞赛组委会备案,并保持相对稳定。未成立
赛区的各省院校的参赛队可直接向全国竞赛组委会报名参赛。
3.设立组织工作优秀奖,表彰在竞赛组织工作中成绩优异或进步突出的赛区组委会,
以参赛(相对)校数和(绝对)队数、征题的数量和质量、无违纪现象、以及与
全国组委会的配合等为主要标准。
第五条 评奖办法
1.各赛区组委会聘请专家组成评阅委员会,评选本赛区的一等、二等奖(也可增设三等奖),
获奖比例一般不超过三分之一,其余凡完成合格答卷者获得成功参赛奖。
2.各赛区组委会按规定的比例将本赛区的优秀答卷送全国竞赛组委会。全国竞赛组委
会聘请专家组成全国评委会,按统一标准从各赛区送交的优秀答卷中评选出全国一等、
二等奖,获奖比例为全国参赛队数的百分之十左右。
3.全国与各赛区的一、二等奖均颁发获奖证书。竞赛成绩记入学生档案,对成绩优秀的参
赛学生,各院校在评优秀生、奖学金及报考(或免试直升)研究生时应予以适当考虑。
对指导教师的辛勤努力应予以表彰。
4.参赛队的指导教师一律不得参加本赛区及全国的评阅和决定获奖名次的工作。
5.对违反竞赛规则的参赛队,一经发现,取消参赛资格,成绩无效。对所在院校要予以
警告、通报,直至取消该校下一年度参赛资格。对违反评阅答卷和评奖工作规定的赛区,
全国竞赛组委会不承认其评奖结果。
6.设立异议期制度,具体内容见《全国大学生数学建模竞赛异议期制度的若干规定》。
第六条 经费
1.参赛队向各赛区组委会交纳报名费。
2.赛区组委会向全国组委会交纳一定数额的经费。
3.各级教育管理部门的资助。

http://mcm.ustc.e.cn/
http://www.shumo.com/home/

7. 如何学好数学建模

数学建模是使用数学模型解决实际问题。
对数学的要求其实不高。
我上大一的时候,连高等数学都没学就去参赛,就能得奖。
可见数学是必需的,但最重要的是文字表达能力
回答者:抉择415 - 童生 一级 3-13 14:48

数学模型
数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构。

简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数、图形、代数方程、微分方程、积分方程、差分方程等)来描述(表述、模拟)所研究的客观对象或系统在某一方面的存在规律。

数学建模
数学建模是利用数学方法解决实际问题的一种实践。即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解。

数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题的能力的必备手段之一。

数学建模的一般方法和步骤
建立数学模型的方法和步骤并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性。建模的一般方法:
机理分析:根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义。
测试分析方法:将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型。 测试分析方法也叫做系统辩识。
将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法。
在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定。机理分析法建模的具体步骤大致如下:
1、 实际问题通过抽象、简化、假设,确定变量、参数;
2、 建立数学模型并数学、数值地求解、确定参数;
3、 用实际问题的实测数据等来检验该数学模型;
4、 符合实际,交付使用,从而可产生经济、社会效益;不符合实际,重新建模。

数学模型的分类:
1、 按研究方法和对象的数学特征分:初等模型、几何模型、优化模型、微分方程模型、图论模型、逻辑模型、稳定性模型、统计模型等。
2、 按研究对象的实际领域(或所属学科)分:人口模型、交通模型、环境模型、生态模型、生理模型、城镇规划模型、水资源模型、污染模型、经济模型、社会模型等。

数学建模需要丰富的数学知识,涉及到高等数学,离散数学,线性代数,概率统计,复变函数等等 基本的数学知识
同时,还要有广泛的兴趣,较强的逻辑思维能力,以及语言表达能力等等

一般大学进行数学建模式从大二下学期开始,一般在九月份开始竞赛,一般三天时间,三到四人一组,合作完成!!!

数模网 :http://www.shumo.com/main/

阅读全文

与环境数学模型需要学什么相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:740
乙酸乙酯化学式怎么算 浏览:1406
沈阳初中的数学是什么版本的 浏览:1353
华为手机家人共享如何查看地理位置 浏览:1045
一氧化碳还原氧化铝化学方程式怎么配平 浏览:886
数学c什么意思是什么意思是什么 浏览:1411
中考初中地理如何补 浏览:1300
360浏览器历史在哪里下载迅雷下载 浏览:703
数学奥数卡怎么办 浏览:1388
如何回答地理是什么 浏览:1025
win7如何删除电脑文件浏览历史 浏览:1058
大学物理实验干什么用的到 浏览:1487
二年级上册数学框框怎么填 浏览:1701
西安瑞禧生物科技有限公司怎么样 浏览:976
武大的分析化学怎么样 浏览:1250
ige电化学发光偏高怎么办 浏览:1339
学而思初中英语和语文怎么样 浏览:1653
下列哪个水飞蓟素化学结构 浏览:1425
化学理学哪些专业好 浏览:1488
数学中的棱的意思是什么 浏览:1059