① 概率论与数理统计 这本书需要高数基础么
概率论与数理统计不需要高数基础,但是有高数基础的话,学起来会轻松一点。
概率论与数理统计是数学的一个有特色且又十分活跃的分支,一方面,它有别开生面的研究课题,有自己独特的概念和方法,内容丰富,结果深刻;另一方面,它与其他学科又有紧密的联系,是近代数学的重要组成部分。
概率论与数理统计的理论与方法已广泛应用于工业、农业、军事和科学技术中,如预测和滤波应用于空间技术和自动控制,时间序列分析应用于石油勘测和经济管理,同时又向基础学科、工科学科渗透,与其他学科相结合发展成为边缘学科,这是概率论与数理统计发展的一个新趋势。
题型总结
目前,大部分同学开始了概率论和数理统计的复习,本文主要想对同学们近期的复习做一个简单的指导。概率论与数理统计初步主要考查考生对研究随机现象规律性的基本概念、基本理论和基本方法的理解,以及运用概率统计方法分析和解决实际问题的能力。
② 如何学好概率论
�虼搜Ш谜庖谎Э剖鞘�种匾��.首先我们从历届考研成绩进行分析,观察一下高等数学与概率统计之间有什么差异。其一是概率统计的平均得分率往往低于高等数学平均得分率.其二高等数学的得分分布呈两头小中间大现象,即低分和高分比例小,而中间分数段比例大,而概率统计的得分率却是低分多,中间分数少,高分较多的现象.为什么会发生上述差异?经分析发现虽然高等数学与概率统计同属数学学科,但各有自己的特点.高等数学主要是通过学习极限、导数和积分等知识解决有关(一维或多维)函数的有关性质和图象的问题,它与中学的数学有着密切联系而且有着相同的思想方法和解题思路.因而在概念上理解比较容易接受(当然也有比较抽象的内容如中值定理等).另一方面由于涉及许多具体初等函数,在求导数和积分时有许多计算上的技巧,需要大量练习以熟练掌握这些技巧,因而部分学生即使概念不十分清楚,但仍能正确解答相当多的试题,在考研中得到一定的成绩.而在“概率论与数理统计”的学习中更注重的是概念的理解,而这正是广大学生所疏忽的,在考研复习时几乎有近一半以上学生对“什么是随机变量”、“为什么要引进随机变量”仍说不清楚.对于涉及随机变量的独立,不相关等概念更是无从着手,这一方面是因为高等数学处理的是“确定”的事件.如函数y=f(x),当x确定后y有确定的值与之对应.而概率论中随机变量X在抽样前是不确定的,我们只能由随机试验确定它落在某一区域中的概率,要建立用“不确定性”的思维方法往往比较困难,如果套用确定性的思维方法就会出错.由于基本概念没有搞懂,即使是十分简单的题目也难以得分.从而造成低分多的现象.另一方面由于概率论中涉及的计算技巧不多,除了古典概型,几何概型和计算二维随机变量的函数分布时如何确定积分上、下限有一些计算的难点,其他的只是数值或者积分、导数的计算.因而如果概念清楚,那么解题往往很顺利且易得到正确答案,这正是高分较多的原因.根据上面分析,启示我们不能把高等数学的学习方法照搬到“概率统计”的学习上来,而应按照概率统计自身的特点提出学习方法,才能取得“事半功倍”的效果.下面我们分别对“概率论”和“数理统计”的学习方法提出一些建议.一、学习“概率论”要注意以下几个要点 1、在学习“概率论”的过程中要抓住对概念的引入和背景的理解,例如为什么要引进“随机变量”这一概念。这实际上是一个抽象过程。随机变量X(即从样本空间到实轴的单值实函数)的引进使原先不同随机试验的随机事件的概率都可转化为随机变量落在某一实数集合B的概率,不同的随机试验可由不同的随机变量来刻画.此外若对一切实数集合B,知道P(X∈B).那么随机试验的任一随机事件的概率也就完全确定了.所以我们只须求出随机变量X的分布P(X∈B).就对随机试验进行了全面的刻画.它的研究成了概率论的研究中心课题.故而随机变量的引入是概率论发展历史中的一个重要里程碑.类似地,概率公理化定义的引进,分布函数、离散型和连续型随机变量的分类,随机变量的数学特征等概念的引进都有明确的背景,在学习中要深入理解体会.2.在学习“概率论”过程中对于引入概念的内涵和相互间的联系和差异要仔细推敲,例如随机变量概念的内涵有哪些意义:它是一个从样本空间到实轴的单值实函数X(w),但它不同于一般的函数,首先它的定义域是样本空间,不同随机试验有不同的样本空间.而它的取值是不确定的,随着试验结果的不同可取不同值,但是它取某一区间的概率又能根据随机试验予以确定的,而我们关心的通常只是它的取值范围,即对于实轴上任一B,计算概率P(X∈B),即随机变量X的分布.只有理解了随机变量的内涵,下面的概念如分布函数等等才能真正理解.又如随机事件的互不相容和相互独立两个概念通常会混淆,前者是事件的运算性质,后者是事件的概率性质,但它们又有一定联系,如果P(A)·P(B)>0,则A,B独立则一定相容.类似地,如随机变量的独立和不相关等概念的联系与差异一定要真正搞懂.3.搞懂了概率论中的各个概念,一般具体的计算都是不难的,如F(x)=P(X≤x),EX,DX等按定义都易求得.计算中的难点有古典概型和几何概型的概率计算,二维随机变量的边缘分布fx(x)=∫-∞∞f(x,y)dy,事件B的概率P((X,Y)∈B)=∫∫Bf(x,y)dxdy,卷积公式等的计算,它们形式上很简单,但是由于f(x,y)通常是分段函数,真正的积分限并不再是(-∞,∞)或B,这时如何正确确定事实上的积分限就成了正确解题的关键,要切实掌握.4.概率论中也有许多习题,在解题过程中不要为解题而解题,而应理解题目所涉及的概念及解题的目的,至于具体计算中的某些技巧基本上在高等数学中都已学过.因此概率论学习的关键不在于做许多习题,而要把精力放在理解不同题型涉及的概念及解题的思路上去.这样往往能“事半功倍”.二、学习“数理统计”要注意以下几个要点由于数理统计是一门实用性极强的学科,在学习中要紧扣它的实际背景,理解统计方法的直观含义.了解数理统计能解决哪些实际问题.对如何处理抽样数据,并根据处理的结果作出合理的统计推断,该结论的可靠性有多少要有一个总体的思维框架,这样,学起来就不会枯燥而且容易记忆.例如估计未知分布的数学期望,就要考虑到①如何寻求合适的估计量的途径,②如何比较多个估计量的优劣?
③ 考研数学中,概率论与数理统计难不难,应该怎么复习
2016考研数学概率统计部分出其不意,试题难度大,有2-3题计算复杂量大,这就很容易出错,因此新东方在线建议2017考生在复习时一定要抓计算能力,打好基础。具体复习方法如下,希望大家参考。
一、注重基础,构建知识体系
基本概念、基本方法、基本性质一直是考研数学的重点。概率统计的概念比较抽象,方法与性质也有相应的适用条件。有些同学在考场上,不知道试题要考查什么,该怎样下手,不知道该用哪个公式。我们建议考生在复习中一定要重视基础知识,要复习所有的定义、定理、公式,做足够多的基础题来帮助巩固基本知识。
概率统计的知识点是三大科目里较少的,以考查计算能力为主,其中的推导与证明也是计算性的。考生特别要根据历年概率统计考试的两个大题内容,找出所涉及到的概念与方法之间的联系与区别。例如:事件独立性与不相容的关系,随机变量独立与事件独立的关系;分布函数与概率密度之间的联系与差别;区间估计与假设检验之间的联系。掌握他们之间的联系与区别,对大家处理其他低分值试题也是有助益的。
二、参照大纲,提高综合能力
大纲作为指导性文件,对命题、应试双方都是有约束力的。数学的复习要强化基础,随时参考适当的教科书,比如浙江大学版的《概率统计》(第四版)。有的考生认为复习到这个阶段就可以抛开课本搞题海战术了,这是舍本逐末。建议大家要边看书、边做题,通过做题来巩固概念、方法。同时,考生最好选择一本考研复习资料参照着学习,这样有利于知识能力的迁移,有助于在全面复习的基础上掌握重点。
三、分类训练,培养应变能力
近十年特别是近三年的研究生入学考试试题,加强了对考生分析问题和解决问题能力的考核。在概率统计的两个大题中,基本上都是多个知识点的综合。从而达到对考生的运算能力、抽象概括能力、逻辑思维能力和综合运用所学知识解决实际问题的能力的考核。建议在打好基础的同时,加强常见题型的训练(历年真题是很好的训练材料),边做边总结,以加深对概念、性质内涵的理解和应用方法的掌握,这样才能够做到举一反三,全面地应付试题的变化。
此外,数学的学习不是看明白资料就行的,必须独立完成足够量的习题。此外,做完题后不要急不可耐地对答案,要养成勤于思考的习惯。拿到题时,应该整理出明确的思路,问问自己:命题人用这道题考什么,以前我在这个知识点上出错过吗?遇到一时无法独立解决的问题,应该有针对性地与学友讨论或者请教老师。
④ 怎样学会概率论与数理统计
<<返回学习交流
《概率论与数理统计》这门课啊,我说很好学,大家一定不会同意。我发现,许多甚至是专业的同学,都说概率不好学,统计更是摸不到边。以我看,是你没有掌握窍门。
我向来不喜欢讲“窍门”的,今天也要讲一点了。这门课,实际上一半是高等数学,一半是概率模型。这句话的意思是,高等数学学扎实了,概率统计就学好了一半。而概率模型呢?简单地说,就是将该概率的问题抽象出来,用高等数学建立概率的数学模型。
之所以学不好概率统计,大抵有两个原因:一是高等数学本身就学的不扎实,二是对数学模型的建立缺乏感受,理解困难:因为概率研究的对象是
“不确定”的事件的统计规律,
与我们以前所学的数学研究的确定的事件不同,方法也有异。
大家学高等数学啊,有一个明显的弊病:就是不求甚解。举一个例子,
比如用元素法(微元法)建立积分,这是积分的应用,也是它最有意思,最关键的部分。可是考试不要求啊,难度大啊,同学们就不重视了,分数至上嘛,这不知害死多少人。大家想想,元素法不正是积分的关键吗?定积分不定积分的那些方法,实际运用中大都是很机械的,用多了,谁都能掌握,我不是说它们不重要,但是,假如在应用中,你连积分式都列不出,还奢谈什么呢?
扯远了,回到概率。概率呢?实际上正是高数的一个典型应用!好家伙,到这个时候,大家又依赖套公式,将数学中最有意思的分析抛到脑后,这样学,一辈子也休想学好数学,只能越学越费劲。就好比搭积木,前面搭不平,勉强还可以搭几层,到后面就彻底垮了!
概率是怎么样和高数联系起来的呢?它先是根据实际情形建立一个公理化的概率的概念,大家要注意:针对实际应用的概念与纯理论的概念有所不同,它必须考虑到它和实际情形的吻合。从这个公理化概念,我们用集合中和元素给出样本空间,样本点等概念,然后用数学中的变量给出随机变量的概念,也就是将事件对应随机变量的一个取值范围,“随机变量”与以前数学的“变量”关键的不同在于,随机变量的取值是随机的,它每一个范围对应一个概率值。好,我们继而用函数给出随机变量的分布情况,就是给出随机变量对应的概率的整体的描述,我们只要得到了它,就可以求出随机变量在任意区间的概率值。大家说这是不是一个数学模型啊?针对离散型与连续型随机变量,我们给出不同的函数形式,离散型的函数我们称分布律或概率函数,针对连续型我们给出初等函数,总之都是函数的形式。
有了函数,求概率的事情就可以借助高数中函数的许多工具了。看,概率的分布函数F(x),是变量取值小于x的概率值,这样,是不是给出了概率和函数的对应?对函数概念理解深刻的人,可以欣赏到它的妙处:只要告诉我取值的区间,我就可以精确算出此区间的概率值。我们还可以将高数中的微积分引入概率:连续型的随机变量的概率密度反映了随机变量分布在个区间的密集程度,它和分布函数是这样的关系:分布函数的导数是概率密度,概率密度的定积分是分布函数!我们说导数是函数的变化率,用在这里就是分布函数的变化的快慢反映了随机变量在此处的分布的密集程度;我们说定积分的几何意义是函数对应的曲边梯形的面积,应用在这里就是将概率密度在某区间对应的曲边梯形的面积算出来就是再次区间的概率值!多么完美的微积分模型!这就是我说概率的一半是高数的原因。
有了这个模型,我们可以将高数的微积分的成果都搬过来。比如单调性、凹凸性、渐近线都可以用来描述概率密度函数;两个随机变量的分布情况我们可以借助多元函数的微积分;高数中的收敛可以在这里推广为依概率收敛;求随机变量函数的分布可以用变上限积分的求导……
。高数中的许多概念再这里都赋予新的意义,大家要深刻领会,做概率题将不再难!
关于统计学部分。数理统计与概率论的关系是:概率是统计的基础,统计是概率的直接应用。为什么统计要用到概率呢?因为统计不仅仅是将数据记录下来,我们还要根据统计的数据分析事物的性质。而我们统计的数据,往往不可能穷举,因此只是整体事物的一部分。我们要根据一部分的统计数据窥见整体的风貌,这一部分的取值是随机的,这就和概率联系上了。概率和统计最关键的枢纽就是大数定律,我原来做学生的时候没有十分的理解其重要性,其实,没有大数定律,概率论的整个大厦就崩溃了!大数定律讲的是当样本量达到足够大时,其均值依概率收敛于一个定值,正是这个定值,保证了我们前面概率论中队事件赋以一个概率值的意义所在,不然这样的赋值无法求出,概率的实际意义也就消失了!在这里我们更好地理解了概率是一个统计规律。统计规律嘛,就是我们不能看一时一事,而是要考虑大量的随机事件反映出来的一种整体规律!正是因为这一点,我们站在不同的时间点上,概率会发生质的变化,因此有了“先验”和“后验”的区别,没有什么奇怪的。
接着统计学讲到总体、样本、样本值的概念,对于概念,同学们还是不屑于理解,依我看你吃亏很大。只要你理解了三大概念的本质,我看统计就变成概率了!因为我们是用概率解决统计问题的嘛!只要你知道,总体是抽象整体、样本是随机的局部、样本值时样本取的具体值(如同随机变量取的值一样),这里体现了一种辩证的关系:普遍性寓于特殊性之中。正因为这个辩证关系,我们每一个简单样本的个体可以看成独立同分布的随机变量,同什么分布呢?就是同总体的分步嘛!因为普遍性寓于特殊性之中!我们从特殊的样本作为多个独立同分布随机变量,可以构造不同的函数(统计量),其分布就是抽样分布了!就可以开始研究各种统计规律了。有了这样的提纲契领,统计是不是就学好了一半?
基于上面的总则,我们将统计分成两部分:一是参数估计,一是假设检验。(实际上统计学远不止这些,这只是基础的常用的知识)参数估计讲的是知道总体分布,但是不知道其中的某些参数,因此需要抽样估计它,我们讲要构造适当的统计量,这个统计量估计的好不好,不是一两次碰巧可以算数的,靠的是其抽样分布的分析!这是科学啊,分析靠什么呢?就是概率,我们通过概率,就不需要靠多少次实验检验取得经验了,而是靠概率算出来,这样的计算最终和实验是会契合的,因为它是科学嘛!也正因为是估计,难免有误差,所以我们要给出一个衡量的方法,于是有了:置信度和置信区间。假设检验呢?就是先对参数进行假设,有原假设与备择假设,它们是两个互逆的假设。我们有点像做数学的反证法,我们呢先假设原假设成立,当实验数据与原假设相差甚远时,我们就认为原假设不对,从而支持备择假设。只要“证据不足”我们认为“不显着”,因此还是支持原假设。哈,说起来不难呢!但是实际操作上你必须拿数据说话啊!还是要用统计量的分布来说明问题。具体我就不深谈了。
以上是我多年的学习教学的体会,对初学者一定会有帮助的!这些话可以作为一个总原则,当学的具体时,你拿来好好体会一下,知识就容易贯通,贯通了,解一般的题目不在话下。有的同学觉得好难理解哦!当然啦,我也是经过教书3-5年后才领会其精髓的啊!没关系,慢慢来,学习就是水滴石穿!忠杰
请采纳答案,支持我一下。
⑤ 请问:考研数学概率统计该怎么复习有什么好的学习方法吗
2016考研数学概率部分出其不意,试题难度大,有2-3题计算复杂量大,这就很容易出错,因此新东方在线建议2017考生在复习时一定要抓计算能力,打好基础。具体学习方法如下,希望大家参考。
一、注重基础,构建知识体系
基本概念、基本方法、基本性质一直是考研数学的重点。概率统计的概念比较抽象,方法与性质也有相应的适用条件。有些同学在考场上,不知道试题要考查什么,该怎样下手,不知道该用哪个公式。我们建议考生在复习中一定要重视基础知识,要复习所有的定义、定理、公式,做足够多的基础题来帮助巩固基本知识。
概率统计的知识点是三大科目里较少的,以考查计算能力为主,其中的推导与证明也是计算性的。考生特别要根据历年概率统计考试的两个大题内容,找出所涉及到的概念与方法之间的联系与区别。例如:事件独立性与不相容的关系,随机变量独立与事件独立的关系;分布函数与概率密度之间的联系与差别;区间估计与假设检验之间的联系。掌握他们之间的联系与区别,对大家处理其他低分值试题也是有助益的。
二、参照大纲,提高综合能力
大纲作为指导性文件,对命题、应试双方都是有约束力的。数学的复习要强化基础,随时参考适当的教科书,比如浙江大学版的《概率统计》(第四版)。有的考生认为复习到这个阶段就可以抛开课本搞题海战术了,这是舍本逐末。建议大家要边看书、边做题,通过做题来巩固概念、方法。同时,考生最好选择一本考研复习资料参照着学习,这样有利于知识能力的迁移,有助于在全面复习的基础上掌握重点。
三、分类训练,培养应变能力
近十年特别是近三年的研究生入学考试试题,加强了对考生分析问题和解决问题能力的考核。在概率统计的两个大题中,基本上都是多个知识点的综合。从而达到对考生的运算能力、抽象概括能力、逻辑思维能力和综合运用所学知识解决实际问题的能力的考核。建议在打好基础的同时,加强常见题型的训练(历年真题是很好的训练材料),边做边总结,以加深对概念、性质内涵的理解和应用方法的掌握,这样才能够做到举一反三,全面地应付试题的变化。
此外,数学的学习不是看明白资料就行的,必须独立完成足够量的习题。此外,做完题后不要急不可耐地对答案,要养成勤于思考的习惯。拿到题时,应该整理出明确的思路,问问自己:命题人用这道题考什么,以前我在这个知识点上出错过吗?遇到一时无法独立解决的问题,应该有针对性地与学友讨论或者请教老师。
⑥ 概率论与数理统计如何复习
概率论与数理统计在数一、数三两个卷种中所占比例大概是22%,分值为33分。看似分值不大,但根据多年考研数学成绩统计,考生之间成绩差距主要在概率论与数理统计这门学科上,因此考研数学要想拿高分,一定要守住概率论这块阵地。
如何才能实现对概率论的有效复习呢?
关键在于:抓住命题特点,划分次重点复习。
寻找命题特点,把握出题规律
对比往年试题,明显会发现概率的命题特点:题型相对稳定,命题思路清晰。这一点尤其体现在根据知识点进行的大小题命题上,根据往年命题特点:随机变量函数的分布,多维分布(边缘分布和条件分布),矩估计和极大似然估计常出大题,其他知识点以选择填空这样的小题为主,如随机事件与概率,数字特征等。
伸入基础,稳扎稳打
要取得高分,基础是关键,根据以往的复习经验,在复习概率论的时候,考生往往容易陷入两个误区:
一是觉得概率论的基本概念很简单,花不了多少时间就可以倒背如流,而忽视了对基础内容的复习;
二是在复习概率论的时候,把概率论当成一个独立的学科单独复习,而忽视了它与高数之间的联系,这些都是错误的。
这样两种误区,直接导致的复习结果:一是基础不牢固,面对题目手足无措,二是遇到灵活题目,不会变通,题目做不出来。因此一定要重视基础,稳扎稳打。
这就要求基础阶段对大纲规定内容进行地毯式全方位复习,不放过每一个要考察的知识点,对每一个概念理解清楚透彻,并贯穿于题目当中,同时复习的过程中注意,概率论与其他学科的联系,提升综合思考的能力。
强化阶段,在大量题目练习的基础上,依旧要重视基本概念,重视概念理解。
全面复习,重点突出
概率论与数理统计复习到一定程度,尤其是到了强化阶段,就要把零散的知识点,串联起来,对考点进行总体把控。
在结合往年命题规律的基础上,有重点的进行复习,例如概率论第三、四、七章,每年考察的概率一般会在80%以上,而且常会以大题的形式出现,这部分就要加强复习,加大投入时间,而古典概型与几何概型这部分,一般只考一些简单的概率计算,因此只掌握一些简单的概率计算即可。
在强化以及冲刺阶段,通过做试题,要善于总结试题命题规律,全面复习的同时,突出重点,才能有效提高,取得高分。
除了上述几点,概率论在整体复习上,还要注意它与其他学科的联系,尤其是与高数之间的联系,概率结合高数联合考察,也是近几年常出现的情况。
总之,考研数学要想取得高分,各个科目的复习都不能忽视,保持谦卑之心,不忘初心,才能方得始终。
⑦ 医学生自学《概率论与数理统计》需要哪些学科基础
那要看你要学到什么程度,一般需要熟练的运用重积分才能学概率论,而重积分又是高等数学中比较高级的东西,也就是说要把《高等数学》基本上完全掌握才行。
概率论跟数理统计是完全不同的两个方面,只是数理统计会用到概率论的东西。
就拿概率论来说,可以分为三个级别。第一是古典概率论,把概率定义为频率的极限,不需要用到微积分的知识,初中知识基础就可以了。第二是近代概率论,需要用到微积分,大部分工科经管本科学到的就是这个层次,实用的话这样就差不多了。第三是现代概率论,从测度论出发,构建严谨的概率论体系,学会的话会有很多启发。
⑧ 学习 概率论与数理统计 需要什么基础
需要熟练的运用重积分才能学概率论,而重积分又是高等数学中比较高级的东西,也就是说要把《高等数学》基本上完全掌握才行。
高中知识加高等数学中的微积分就可以解决。还涉及一些和函数有关基本概念,连续,单调性,之后看教材就可以自学了,主要是抓住模型,和常用分布等。
概率与统计的一些概念和简单的方法,早期主要用于赌博和人口统计模型。随着人类的社会实践,人们需要了解各种不确定现象中隐含的必然规律性。
(8)概率论和数学统计要怎么学扩展阅读:
事件包括单位事件、事件空间、随机事件等。
在一次随机试验中可能发生的唯一的,且相互之间独立的结果被称为单位事件,用e表示。在随机试验中可能发生的所有单位事件的集合称为事件空间,用S来表示。例如在一次掷骰子的随机试验中,如果用获得的点数来表示单位事件,那么一共可能出现6个单位事件。
则事件空间可以表示为S={1,2,3,4,5,6}。 上面的事件空间是由可数有限单位事件组成,事实上还存在着由可数无限以及不可数单位事件组成的事件空间,比如在一次直到获得国徽面朝上的随机掷硬币试验中,其事件空间由可数无限单位事件组成。
⑨ 如何学好大学概率论与数理统计
在学习中,我们应该贴近其实际背景,理解统计方法的直观含义。理解数理统计可以解决这些实际问题。如何对抽样数据进行处理,并根据处理结果进行合理的统计推断,应该有一个整体的思维框架。这样,学习就不会枯燥,也不容易记住。