‘壹’ 相反数的定义和规则
相反数是一个数学术语,指绝对值相等,正负号相反的两个数互为相反数。下面整理了相反数的定义和规则,供参考。
相反数,指数值相反的两个数,其中一个数是另一个数的相反数。定义是只有符号不同的两个数互为相反数。相反数的性质是他们的绝对值相同。例如:-2与+2互为相反数。用字母表示a与-a是相反数,0的相反数是0。这里a便是任意一个数,可以是正数、负数,也可以是0。
1、正数的相反数是负数,负数的相反数就是正数。
2、0的相反数是0,也就是0的相反数是它本身。同时,相反数是它本身的数只有0。无理数也有相反数。
3、互为相反数的两个数的商为-1(0除外)。
4、实数a相反数的相反数,就是a本身。
5、a-b和b-a互为相反数。
6、负数和0的绝对值是它的相反数。
7、虚数没有相反数。
8、相反数不具有传递性,即如果x是y的相反数,y是z的相反数,那么x不一定是z的相反数(除非x=y=z=0)。
‘贰’ 相反数的定义 相反数的定义是什么
相反数是一个数学术语,指绝对值相等,正负号相反的两个数互为相反数。相反数的性质是他们的绝对值相同。例如:-2与+2互为相反数。用字母表示a与-a是相反数,0的相反数是0。这里a便是任意一个数,可以是正数、负数,也可以是0。
‘叁’ 相反数的定义
相反数是一个数学术语,指绝对值相等,正负号相反的两个数互为相反数。相反数的性质是他们的绝对值相同。例如:-2与+2互为相反数。用字母表示a与-a是相反数,0的相反数是0。这里a便是任意一个数,可以是正数、负数,也可以是0。
相反数的定义:
1、代数意义:只有符号不同的两个数,叫做互为相反数。注意:互为相反数是成对出现的,不能单独存在,例如+3的相反数是-3,零的相反数是0,。
2、几何意义:在数轴上,表示相反数(除零外)的两个点分别在原点0的两边,并且到原点的距离相等。
3、隐身意义:互为相反数的两个数的和为0。
相反数的规则:
正数的相反数是负数,负数的相反数就是正数。0的相反数是0,也就是0的相反数是它本身。同时,相反数是它本身的数只有0。无理数也有相反数。互为相反数的两个数的商为-1(0除外)。实数a相反数的相反数,就是a本身。a-b和b-a互为相反数。负数和0的绝对值是它的相反数。虚数没有相反数。相反数不具有传递性,即如果x是y的相反数,y是z的相反数,那么x不一定是z的相反数(除非x=y=z=0)。
‘肆’ 相反数的定义是什么
相反数是一个数学术语,指绝对值相等,正负号相反的两个数互为相反数。相反数的性质是他们的绝对值相同。例如:-2与+2互为相反数。用字母表示a与-a是相反数,0的相反数是0。这里a便是任意一个数,可以是正数、负数,也可以是0。
(4)数学中相反数表示的是什么扩展阅读:
规则
正数的相反数是负数,负数的相反数就是正数。
0的相反数是0,也就是0的相反数是它本身。同时,相反数是它本身的数只有0。无理数也有相反数。
互为相反数的两个数的商为-1(0除外)。
实数a相反数的相反数,就是a本身。
a-b和b-a互为相反数。
负数和0的绝对值是它的相反数。
虚数没有相反数。
相反数不具有传递性,即如果x是y的相反数,y是z的相反数,那么x不一定是z的相反数(除非x=y=z=0)。
如果您还不明白的话,请看下面几个例子:
非负数的相反数:0→01→-1 2→-2 3→-3 4→-4
非正数的相反数:0→0-1→1 -2→2 -3→3……………
无理数的相反数:π→-π
注解:
1、非负又称非负有理数,习惯上我们将“正有理数和零”称作非负有理数。
2、非正数又称非正有理数,习惯上我们将“负有理数和零”称为非正有理数。
3、无理数是实数的一种,习惯上将无限不循环小数叫做无理数。
‘伍’ 相反数的定义
相反数是一个数学术语,指绝对值相等,正负号相反的两个数互为相反数。
相反数的性质是他们的绝对值相同。例如:-2与+2互为相反数。用字母表示a与-a是相反数,0的相反数是0。这里a便是任意一个数,可以是正数、负数,也可以是0。
相反数的特性:
1、相反数特性:若a.b互为相反数,则a+b=0,反之若a+b=0,则a、b互为相反数。
2、零的相反数是0。
3、相反数是成对出现,不能单独出现。
4、要把"相反数“与”相反意义的量“区分开来,"相反数”不但是数的符号相反,而且符号后面的数字必须相同,如同:+5与-5,而“具有相反意义的量”只要符号相反即可,如+3与-7。
5、求一个数的相反数只需这个数前面加上一个负号就可以了,若原数带有符号(不论正负),则应先添括号。
6、数字a的相反数是-a,-a的相反数是a。这里的a不一定是正数,所以-a也不一定就是负数。
‘陆’ 相反数的定义是什么
相反数是一个数学术语,指绝对值相等,正负号相反的两个数互为相反数。下面整理了相反数的定义,供参考。
相反数是一个数学术语,指绝对值相等,正负号相反的两个数互为相反数。相反数的性质是他们的绝对值相同。例如:-2与+2互为相反数。用字母表示a与-a是相反数,0的相反数是0。这里a便是任意一个数,可以是正数、负数,也可以是0。
实数的相反数的意义和有理数的相反数的意义是一样的。定义为只有符号不同的两个数互为相反数,即实数a的相反数是-a。实数的a与b互为相反数,则a+b=0,反之也成立,反之a+b=0,则a,b互为相反数。
1、相反数的几何意义 在数轴上,到原点两边距离相等的两个点表示的两个数是互为相反数。
补充第1条:这对相反数一定为绝对值。
2、在数轴上,互为相反数(0除外)的两个点位于原点的两旁,并且关于原点对称。
3、此时,b的相反数为﹣b=﹣(﹣a)=a,那么我们就说“相反数具有互称性”。
注意“互为相反数”和“相反数”在概念上的区别。
互为相反数意义:只有符号不同的两个数叫做相反数。
相反数意义:把其中一个数叫做另一个的相反数。
‘柒’ 相反数的定义
相反数是一个数学术语,指绝对值相等,正负号相反的两个数互为相反数。
1、代数意义:只有符号不同的两个数,叫做互为相反数。
注意:互为相反数是成对出现的,不能单独存在,例如+3的相反数是-3,零的相反数是零