① 小学数学知识点总结
小学数学知识点总结
总结就是把一个时段的学习、工作或其完成情况进行一次全面系统的总结,通过它可以正确认识以往学习和工作中的优缺点,为此要我们写一份总结。但是却发现不知道该写些什么,下面是我收集整理的小学数学知识点总结,欢迎阅读,希望大家能够喜欢。
(一)数的读法和写法
1.整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。
2.整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。
3.小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。
4.小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。
5.分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。
6.分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。
7.百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。
8.百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。
(二)数的改写
一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。
1.准确数 :在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数是原数的准确数。例如把1254300000改写成以万做单位的数是125430万;改写成以亿做单位的数12.543亿。
2.近似数 :根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。例如:1302490015省略亿后面的尾数是13亿。
3.四舍五入法 :要省略的尾数的最高位上的数是4或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。例如:省略345900万后面的'尾数约是35万。省略4725097420亿后面的尾数约是47亿。
4.大小比较
(1)比较整数大小:比较整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。
(2)比较小数的大小:先看它们的整数部分,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大……
(3)比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。分数的分母和分子都不相同的,先通分,再比较两个数的大小。
;② 数学的知识点总结
集合的运算也遵循一般的代数式运算规律,也有着自己的法则和定理。下面是我整理的数学集合的知识点总结,欢迎参考阅读!
一、集合有关概念
1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合的中元素的三个特性:
①.元素的确定性; ②.元素的互异性; ③.元素的无序性
说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
(4)集合元素的三个特性使集合本身具有了确定性和整体性。
3、集合的分类:
1.有限集 含有有限个元素的集合
2.无限集 含有无限个元素的集合
3.空集 不含任何元素的集合 例:{x|x2=-5}
4、集合的表示:{ } 如{我校的篮球队员},{太平洋大西洋印度洋北冰洋}
1. 用拉丁字母表示集合:A={我校的篮球队员}B={12345}
2.集合的表示方法:列举法与描述法。
注意啊:常用数集及其记法:
非负整数集(即自然数集) 记作:N
正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R
关于属于的概念
集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作 aA ,相反,a不属于集合A 记作 a?A
列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的'方法。
①语言描述法:例:{不是直角三角形的三角形}
②数学式子描述法:例:不等式x-32的解集是{x?R| x-32}或{x| x-32}
二、集合间的基本关系
1.包含关系子集
注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之: 集合A不包含于集合B或集合B不包含集合A记作A B或B A
2. 不含任何元素的集合叫做空集,记为
规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
3.相等关系(55,且55,则5=5)
实例:设 A={x|x2-1=0} B={-11} 元素相同
结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B
① 任何一个集合是它本身的子集。A?A
②真子集:如果A?B且A? B那就说集合A是集合B的真子集,记作A B(或B A)
③如果 A?B B?C 那么 A?C
④ 如果A?B 同时 B?A 那么A=B
三、集合的运算
1、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做AB的并集。记作:AB(读作A并B),即AB={x|xA,或xB}.
2.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合叫做AB的交集.
记作AB(读作A交B),即AB={x|xA,且xB}.
3、全集与补集
(1)补集:设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)
记作: CSA 即 CSA ={x ? x?S且 x?A}
(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。
(3)性质:⑴CU(C UA)=A ⑵(C UA) ⑶(CUA)A=U
4、交集与并集的性质:AA = A A= B = BA,AA = A
A= A AB = BA.
③ 数学如何学会总结
目前学校的教学方法,最主要的就是教会学生“总结”。而总结的核心,就是“分类”。目前的这种以分类为核心的总结方法,由于过于僵化,所以,随着分类不断细化,思维就必然越来越僵化。
比如某个学生本来又会做三角函数的题目,也会做一元二次方程的题目,也会用一元二次方程的方法解决很多三角函数的题目,而且做题速度很快。但老师教会他“总结”后,他把三角函数的题目分成好几类,每一类又分成了好几类,等等不断的细分下去。
然后,在分类过程中,进行说明,比如这类题目应该用一元二次方程,另外一类题目不该用一元二次方程,等等。经过这么细致的分类之后,他确实有能会做了一些新的类型的题目,但原来的快速解题能力明显的下降了。而且,以前做题的那种轻松、流畅的感觉,彻底消失了。
那么,如何解决“分类”与“灵活”的矛盾呢?
其实方法很简单,就是在“分类”的过程中,你的进一步的“分类”,不要受其他人的已有的分类的限制,也不要被自己的分类所限制,也不要被自己的总结的各种方法所限制。你可以横向分类、竖向分类、正向分类、反向分类,分类之后再分类,不同的分类之间进行分类,等等。
对于数学,还有一些方法:你总结出很多解题技巧之后,进行分类。例如你总结出某种解题技巧可解决哪些题型,而哪些题型可以变化成另外的题型,等等。总结这些东西到一定程度之后,你就尝试着“自己出题”,在自己出题的过程中,针对某一个题型,找“一题多解”类参考书,尤其是一种题型有几十种以上解题技巧的,专门找超出你分类范围之外的,这样,你的大脑和笔记本中的“解题技巧体系”就得到进一步扩充了。
从“原理”的角度,“分类”是“思维支脚”的形成和细化的一个重要方法这个过程中,你的大脑中的“思维海”被强行“犁”出了很多“思维缝隙”,这些“思维缝隙”有可能把原有的“思维钩子”给弄断掉了。所以,你需要重塑或者新建一些“思维钩子”(把断掉的“思维钩子”再连接起来,那是不可能的,“思维钩子”可不是现实生活中的绳子)。
④ 数学初中知识点整理总结
为了方便大家系统的复习初中数学知识,这篇文章我给大家总结归纳了中考数学的重要知识点,希望对同学们有帮助。
1.定义:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。
2.数轴:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴。
3.相反数:相反数是一个数学术语,指绝对值相等,正负号相反的两个数互为相反数。
4.绝对值:绝对值是指一个数在数轴上所对应点到原点的距离。正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。
5.有理数的加减法
同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。
6.有理数的乘法
两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数与0相乘,积为0。例:0×1=0。
7.有理数的除法
除以一个不为0的数,等于乘这个数的倒数。
两数相除,同号得正,异号得负,并把绝对值相除。0除
以任何一个不为0的数,都得0。
8.有理数的乘方
求n个相同因数乘积的运算,叫做乘方,乘方的结果叫做幂。其中,a叫做底数,n叫做指数。当aⁿ看作a的n次乘方的结果时,也可读作“a的n次幂”或“a的n次方”。
1.只含有一个未知数(元),未知数的指数都是1(次),这样的方程叫做一元一次方程。
2.等式的性质
性质一:等式两边加(或减)同一个数(或式子),结果仍相等。
性质二:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
3.解方程就是要求出其中的未知数(例如x),通过去分母、去括号、移项、合并、系数化为1等步骤,就可以使一元一次方程逐步向着x=a的形式转化,这个过程主要依据等式的性质和运算律等。
⑴具体做法:方程两边都乘各分母的最小公倍数。
⑵依据:等式性质2。
⑶注意事项:①分子打上括号;②不含分母的项也要乘。
1.定义:含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程。
2.二元一次方程组的解法
(1)代入法
由一个二次方程和一个一次方程所组成的方程组通常用代入法来解,这是基本的消元降次方法。
(2)因式分解法
在二元二次方程组中,至少有一个方程可以分解时,可采用因式分解法通过消元降次来解。
(3)配方法
将一个式子,或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和。
(4)韦达定理法
通过韦达定理的逆定理,可以利用两数的和积关系构造一元二次方程。
(5)消常数项法
当方程组的两个方程都缺一次项时,可用消去常数项的方法解。
1.整式:整式为单项式和多项式的统称,是有理式的一部分,在有理式中可以包含加,减,乘,除、乘方五种运算,但在整式中除数不能含有字母。
2.乘法
(1)同底数幂相乘,底数不变,指数相加。
(2)幂的乘方,底数不变,指数相乘。
(3)积的乘方,先把积中的每一个因数分别乘方,再把所得的幂相乘。
3.整式的除法
(1)同底数幂相除,底数不变,指数相减。
(2)任何不等于零的数的零次幂为1。
1.因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化。
2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”。
3.公因式的确定:系数的最大公约数·相同因式的最低次幂。
注意公式:a+b=b+a;a-b=-(b-a);(a-b)2=(b-a)2;(a-b)3=-(b-a)3。
4.因式分解的公式:
(1)平方差公式:a2-b2=(a+b)(a-b);
(2)完全平方公式:a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2。
5.因式分解的注意事项:
(1)选择因式分解方法的一般次序是:一提取、二公式、三分组、四十字;
(2)使用因式分解公式时要特别注意公式中的字母都具有整体性;
(3)因式分解的最后结果要求分解到每一个因式都不能分解为止;
(4)因式分解的最后结果要求每一个因式的首项符号为正;
(5)因式分解的最后结果要求加以整理;
(6)因式分解的最后结果要求相同因式写成乘方的形式。
6.因式分解的解题技巧:
(1)换位整理,加括号或去括号整理;(2)提负号;
(3)全变号;(4)换元;(5)配方;
(6)把相同的式子看作整体;(7)灵活分组;
(8)提取分数系数;(9)展开部分括号或全部括号;
(10)拆项或补项。
⑤ 初中数学知识点总结
初中数学知识点总结
一、基本知识
一、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数
数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴.②任何一个有理数都可以用数轴上的一个点来表示.③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数.在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等.④数轴上两个点表示的数,右边的总比左边的大.正数大于0,负数小于0,正数大于负数.
绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值.②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0.两个负数比较大小,绝对值大的反而小.
有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加.②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值.③一个数与0相加不变.
减法:减去一个数,等于加上这个数的相反数.
乘法:①两数相乘,同号得正,异号得负,绝对值相乘.②任何数与0相乘得0.③乘积为1的两个有理数互为倒数.
除法:①除以一个数等于乘以一个数的倒数.②0不能作除数.
乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数.
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的.
2、实数 无理数:无限不循环小数叫无理数
平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根.②如果一个数X的平方等于A,那么这个数X就叫做A的平方根.③一个正数有2个平方根/0的平方根为0/负数没有平方根.④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数.
立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根.②正数的立方根是正数、0的立方根是0、负数的立方根是负数.③求一个数A的立方根的运算叫开立方,其中A叫做被开方数.
实数:①实数分有理数和无理数.②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样.③每一个实数都可以在数轴上的一个点来表示.
3、代数式
代数式:单独一个数或者一个字母也是代数式.
合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项.②把同类项合并成一项就叫做合并同类项.③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变.
4、整式与分式
整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式.②一个单项式中,所有字母的指数和叫做这个单项式的次数.③一个多项式中,次数最高的项的次数叫做这个多项式的次数.
整式运算:加减运算时,如果遇到括号先去括号,再合并同类项.
幂的运算:AM+AN=A(M+N)
(AM)N=AMN
(A/B)N=AN/BN 除法一样.
整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式.②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加.③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.
公式两条:平方差公式/完全平方公式
整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式.②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.
分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式.
方法:提公因式法、运用公式法、分组分解法、十字相乘法.
分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0.②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变.
分式的运算:
乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.
除法:除以一个分式等于乘以这个分式的倒数.
加减法:①同分母分式相加减,分母不变,把分子相加减.②异分母的分式先通分,化为同分母的分式,再加减.
分式方程:①分母中含有未知数的方程叫分式方程.②使方程的分母为0的解称为原方程的增根.
B、方程与不等式
1、方程与方程组
一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程.②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式.
解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1.
二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程.
二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组.
适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解.
二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解.
解二元一次方程组的方法:代入消元法/加减消元法.
一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程
1)一元二次方程的二次函数的关系
大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y的0的时候就构成了一元二次方程了.那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X轴的交点.也就是该方程的解了
2)一元二次方程的解法
大家知道,二次函数有顶点式(-b/2a,4ac-b2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解
(1)配方法
利用配方,使方程变为完全平方公式,在用直接开平方法去求出解
(2)分解因式法
提取公因式,套用公式法,和十字相乘法.在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解
(3)公式法
这方法也可以是在解一元二次方程的万能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a
3)解一元二次方程的步骤:
(1)配方法的步骤:
先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式
(2)分解因式法的步骤:
把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式
(3)公式法
就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c
4)韦达定理
利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a
也可以表示为x1+x2=-b/a,x1x2=c/a.利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用
5)一元一次方程根的情况
利用根的判别式去了解,根的判别式可在书面上可以写为“△”,读作“diao ta”,而△=b2-4ac,这里可以分为3种情况:
I当△>0时,一元二次方程有2个不相等的实数根;
II当△=0时,一元二次方程有2个相同的实数根;
III当△<0时,一元二次方程没有实数根(在这里,学到高中就会知道,这里有2个虚数根)
2、不等式与不等式组
不等式:①用符号〉,=,〈号连接的式子叫不等式.②不等式的两边都加上或减去同一个整式,不等号的方向不变.③不等式的两边都乘以或者除以一个正数,不等号方向不变.④不等式的两边都乘以或除以同一个负数,不等号方向相反.
不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解.②一个含有未知数的不等式的所有解,组成这个不等式的解集.③求不等式解集的过程叫做解不等式.
一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式.
一元一次不等式组:①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组.②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集.③求不等式组解集的过程,叫做解不等式组.
一元一次不等式的符号方向:
在一元一次不等式中,不像等式那样,等号是不变的,他是随着你加或乘的运算改变.
在不等式中,如果加上同一个数(或加上一个正数),不等式符号不改向;例如:A>B,A+C>B+C
在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;例如:A>B,A-C>B-C
在不等式中,如果乘以同一个正数,不等号不改向;例如:A>B,A*C>B*C(C>0)
在不等式中,如果乘以同一个负数,不等号改向;例如:A>B,A*C<b*c(c<0)
如果不等式乘以0,那么不等号改为等号
所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;
3、函数
变量:因变量,自变量.
在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量.
一次函数:①若两个变量X,Y间的关系式可以表示成Y=KX+B(B为常数,K不等于0)的形式,则称Y是X的一次函数.②当B=0时,称Y是X的正比例函数.
一次函数的图象:①把一个函数的自变量X与对应的因变量Y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.②正比例函数Y=KX的图象是经过原点的一条直线.③在一次函数中,当K〈0,B〈O,则经234象限;当K〈0,B〉0时,则经124象限;当K〉0,B〈0时,则经134象限;当K〉0,B〉0时,则经123象限.④当K〉0时,Y的值随X值的增大而增大,当X〈0时,Y的值随X值的增大而减少.
二空间与图形
A、图形的认识
1、点,线,面
点,线,面:①图形是由点,线,面构成的.②面与面相交得线,线与线相交得点.③点动成线,线动成面,面动成体.
展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体.②N棱柱就是底面图形有N条边的棱柱.
截一个几何体:用一个平面去截一个图形,截出的面叫做截面.
视图:主视图,左视图,俯视图.
多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形.
弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形.②圆可以分割成若干个扇形.
2、角
线:①线段有两个端点.②将线段向一个方向无限延长就形成了射线.射线只有一个端点.③将线段的两端无限延长就形成了直线.直线没有端点.④经过两点有且只有一条直线.
比较长短:①两点之间的所有连线中,线段最短.②两点之间线段的长度,叫做这两点之间的距离.
角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点.②一度的1/60是一分,一分的1/60是一秒.
角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的.②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角.始边继续旋转,当他又和始边重合时,所成的角叫做周角.③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.
平行:①同一平面内,不相交的两条直线叫做平行线.②经过直线外一点,有且只有一条直线与这条直线平行.③如果两条直线都与第3条直线平行,那么这两条直线互相平行.
垂直:①如果两条直线相交成直角,那么这两条直线互相垂直.②互相垂直的两条直线的交点叫做垂足.③平面内,过一点有且只有一条直线与已知直线垂直.
垂直平分线:垂直和平分一条线段的直线叫垂直平分线.
垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点.
垂直平分线定理:
性质定理:在垂直平分线上的点到该线段两端点的距离相等;
判定定理:到线段2端点距离相等的点在这线段的垂直平分线上
角平分线:把一个角平分的射线叫该角的角平分线.
定义中有几个要点要注意一下的,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点
性质定理:角平分线上的点到该角两边的距离相等
判定定理:到角的两边距离相等的点在该角的角平分线上
正方形:一组邻边相等的矩形是正方形
性质:正方形具有平行四边形、菱形、矩形的一切性质
判定:1、对角线相等的菱形2、邻边相等的矩形
二、基本定理
1、过两点有且只有一条直线
2、两点之间线段最短
3、同角或等角的补角相等
4、同角或等角的余角相等
5、过一点有且只有一条直线和已知直线垂直
6、直线外一点与直线上各点连接的所有线段中,垂线段最短
7、平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8、如果两条直线都和第三条直线平行,这两条直线也互相平行
9、同位角相等,两直线平行
10、内错角相等,两直线平行
11、同旁内角互补,两直线平行
12、两直线平行,同位角相等
13、两直线平行,内错角相等
14、两直线平行,同旁内角互补
15、定理 三角形两边的和大于第三边
16、推论 三角形两边的差小于第三边
17、三角形内角和定理 三角形三个内角的和等于180°
18、推论1 直角三角形的两个锐角互余
19、推论2 三角形的一个外角等于和它不相邻的两个内角的和
20、推论3 三角形的一个外角大于任何一个和它不相邻的内角
21、全等三角形的对应边、对应角相等
22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23、角边角公理( ASA)有两角和它们的夹边对应相等的 两个三角形全等
24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25、边边边公理(SSS) 有三边对应相等的两个三角形全等
26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27、定理1 在角的平分线上的点到这个角的两边的距离相等
28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29、角的平分线是到角的两边距离相等的所有点的集合
30、等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33、推论3 等边三角形的各角都相等,并且每一个角都等于60°
34、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35、推论1 三个角都相等的三角形是等边三角形
36、推论 2 有一个角等于60°的等腰三角形是等边三角形
37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38、直角三角形斜边上的中线等于斜边上的一半
39、定理 线段垂直平分线上的点和这条线段两个端点的距离相等
40、逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42、定理1 关于某条直线对称的两个图形是全等形
43、定理 2 如果两个图形于某直线对称,那么对称轴是对应点连线的垂直平分线
44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45、逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46、勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2
47、勾股定理的逆定理 如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形
48、定理 四边形的内角和等于360°
49、四边形的外角和等于360°
50、多边形内角和定理 n边形的内角的和等于(n-2)×180°
51、推论 任意多边的外角和等于360°
52、平行四边形性质定理1 平行四边形的对角相等
53、平行四边形性质定理2 平行四边形的对边相等
54、推论 夹在两条平行线间的平行线段相等
55、平行四边形性质定理3 平行四边形的对角线互相平分
56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
57、平行四边形判定定理2 两组对边分别相等的四边 形是平行四边形
58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形
59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
60、矩形性质定理1 矩形的四个角都是直角
61、矩形性质定理2 矩形的对角线相等
62、矩形判定定理1 有三个角是直角的四边形是矩形
63、矩形判定定理2 对角线相等的平行四边形是矩形
64、菱形性质定理1 菱形的四条边都相等
65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
66、菱形面积=对角线乘积的一半,即S=(a×b)÷2
67、菱形判定定理1 四边都相等的四边形是菱形
68、菱形判定定理2 对角线互相垂直的平行四边形是菱形
69、正方形性质定理1 正方形的四个角都是直角,四条边都相等
70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71、定理1 关于中心对称的两个图形是全等的
72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73、逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称
74、等腰梯形性质定理 等腰梯形在同一底上的两个角相等
75、等腰梯形的两条对角线相等
76、等腰梯形判定定理 在同一底上的两个角相等的梯 形是等腰梯形
77、对角线相等的梯形是等腰梯形
78、平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等
79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
80、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边
81、三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半
82、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h
83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc 如果 ad=bc ,那么a:b=c:d
84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d
85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),
那么(a+c+…+m)/(b+d+…+n)=a/b
86、平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例
87、推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88、定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89、平行于三角形的一边,并且和其他两边相交的直线, 所截得的三角形的三边与原三角形三边对应成比例
90、定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)
92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)
94、判定定理3 三边对应成比例,两三角形相似(SSS)
95、定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比
97、性质定理2 相似三角形周长的比等于相似比
98、性质定理3 相似三角形面积的比等于相似比的平方
99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值
100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值
101、圆是定点的距离等于定长的点的集合
102、圆的内部可以看作是圆心的距离小于半径的点的集合
103、圆的外部可以看作是圆心的距离大于半径的点的集合
104、同圆或等圆的半径相等
105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线
107、到已知角的两边距离相等的点的轨迹,是这个角的平分线
108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线
109、定理 不在同一直线上的三点确定一个圆.
110、垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111、推论1
①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112、推论2 圆的两条平行弦所夹的弧相等
113、圆是以圆心为对称中心的中心对称图形
114、定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
115、推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
116、定理 一条弧所对的圆周角等于它所对的圆心角的一半
117、推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
118、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
119、推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
120、定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
121、①直线L和⊙O相交 d<r
②直线L和⊙O相切 d=r
③直线L和⊙O相离 d>r
122、切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
123、切线的性质定理 圆的切线垂直于经过切点的半径
124、推论1 经过圆心且垂直于切线的直线必经过切点
125、推论2 经过切点且垂直于切线的直线必经过圆心
126、切线长定理 从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角
127、圆的外切四边形的两组对边的和相等
128、弦切角定理 弦切角等于它所夹的弧对的圆周角
129、推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
130、相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等
131、推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项
132、切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项
133、推论 从圆外一点引圆的两条割线,这一点到每条 割线与圆的交点的两条线段长的积相等
134、如果两个圆相切,那么切点一定在连心线上
135、①两圆外离 d>R+r ②两圆外切 d=R+r③两圆相交 R-r<d<R+r(R>r)
④两圆内切 d=R-r(R>r) ⑤两圆内含 d<R-r(R>r)
136、定理 相交两圆的连心线垂直平分两圆的公共弦
137、定理 把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
138、定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
139、正n边形的每个内角都等于(n-2)×180°/n
140、定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
141、正n边形的面积Sn=pnrn/2 p表示正n边形的周长
142、正三角形面积√3a/4 a表示边长
143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
144、弧长计算公式:L=n兀R/180
145、扇形面积公式:S扇形=n兀R^2/360=LR/2
146、内公切线长= d-(R-r) 外公切线长= d-(R+r)</b*c(c<0)
⑥ 初中数学知识点之基础知识点总结
初中数学知识点之基础知识点总结
在年少学习的日子里,很多人都经常追着老师们要知识点吧,知识点是传递信息的基本单位,知识点对提高学习导航具有重要的作用。想要一份整理好的知识点吗?下面是我帮大家整理的初中数学知识点之基础知识点总结,欢迎大家分享。
一、数与代数A、数与式:1、有理数:①整数→正整数/0/负整数②分数→正分数/负分数
数轴:
①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。
绝对值:
①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。
有理数的运算:加法:
①同号相加,取相同的符号,把绝对值相加。
②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。
除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。
乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
2、实数无理数:无限不循环小数叫无理数
平方根:
①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。
②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。
③一个正数有2个平方根/0的平方根为0/负数没有平方根。
④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:
①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。
②正数的立方根是正数、0的立方根是0、负数的立方根是负数。
③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。
实数:
①实数分有理数和无理数。
②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。
③每一个实数都可以在数轴上的一个点来表示。
3、代数式
代数式:单独一个数或者一个字母也是代数式。
合并同类项:
①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。
②把同类项合并成一项就叫做合并同类项。
③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。
4、整式与分式
整式:
①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。
②一个单项式中,所有字母的指数和叫做这个单项式的次数。
③一个多项式中,次数最高的项的次数叫做这个多项式的次数。
整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。
幂的运算:AM+AN=A(M+N)
(AM)N=AMN
(A/B)N=AN/BN除法一样。
整式的乘法:
①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。
②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
公式两条:平方差公式/完全平方公式
整式的除法:
①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。
②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。
方法:提公因式法、运用公式法、分组分解法、十字相乘法。
分式:
①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。
②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。
初中数学知识点:直线的位置与常数的关系
①k>0则直线的倾斜角为锐角
②k<0则直线的倾斜角为钝角
③图像越陡,|k|越大
④b>0直线与y轴的`交点在x轴的上方
⑤b<0直线与y轴的交点在x轴的下方
1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。
2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。
3.一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1……(检验方程的解)。
4.列一元一次方程解应用题:
(1)读题分析法:多用于“和,差,倍,分问题”
仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套—————”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程。
(2)画图分析法:多用于“行程问题”
利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础。
11.列方程解应用题的常用公式:
(1)行程问题:距离=速度·时间;
(2)工程问题:工作量=工效·工时;
(3)比率问题:部分=全体·比率;
(4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度—水流速度;
(5)商品价格问题:售价=定价·折·,利润=售价—成本,;
(6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab,C正方形=4a,
S正方形=a2,S环形=π(R2—r2),V长方体=abc,V正方体=a3,V圆柱=πR2h,V圆锥=πR2h。
本章内容是代数学的核心,也是所有代数方程的基础。丰富多彩的问题情境和解决问题的快乐很容易激起学生对数学的乐趣,所以要注意引导学生从身边的问题研究起,进行有效的数学活动和合作交流,让学生在主动学习、探究学习的过程中获得知识,提升能力,体会数学思想方法。
二元二次方程与二元二次方程组以及解法要领的孩子试点已经为大家讲完,接下来给大家带来的知识点内容是数轴,希望同学们了解有向直线和数轴的知识要领了。
数轴
11有向直线
在科学技术和日常生活中,为了区别一条直线的两个不同方向,可以规定其中一方向为正向,另一方向为负相
规定了正方向的直线,叫做有向直线,读作有向直线l
12数轴
我们把数轴上任意一点所对应的实数称为点的坐标
对于每一个坐标(实数),在数周上可以找到唯一的点与之对应这就是直线的坐标化
数轴上任意一条有向线段的数量等于它的终点坐标与起点坐标的差任意一条有向线段的长度等于它两个断电坐标差的绝对值
上面的内容是初中数学知识点之数轴,相信同学们看过以后都可以很好的掌握了吧。如果想要了解更多更全的初中数学知识就来关注吧。
初中数学知识点总结:平面直角坐标系
下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系
平面直角坐标系: 在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合
三个规定:
①正方向的规定横轴取向右为正方向,纵轴取向上为正方向
②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
初中数学知识点:平面直角坐标系的构成
对于平面直角坐标系的构成内容,下面我们一起来学习哦。
平面直角坐标系的构成
在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。
通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。
初中数学知识点:点的坐标的性质
下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。
点的坐标的性质
建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。
对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。
一个点在不同的象限或坐标轴上,点的坐标不一样。
希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。
初中数学知识点:因式分解的一般步骤
关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。
因式分解的一般步骤
如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,
通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。
注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。
相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。
初中数学知识点:因式分解
下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。
因式分解
因式分解定义 :
把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。
因式分解要素 :
①结果必须是整式②结果必须是积的形式③结果是等式④
因式分解与整式乘法的关系:m(a+b+c)
公因式:
一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。
公因式确定方法 :
①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。
提取公因式步骤:
①确定公因式。②确定商式③公因式与商式写成积的形式。
分解因式注意;
①不准丢字母
②不准丢常数项注意查项数
③双重括号化成单括号
④结果按数单字母单项式多项式顺序排列
⑤相同因式写成幂的形式
⑥首项负号放括号外
⑦括号内同类项合并。
通过上面对因式分解内容知识的讲解学习,相信同学们已经能很好的掌握了吧,希望上面的内容给同学们的学习很好的帮助。
;⑦ 初中数学基础知识点总结
初中数学只要内容是函数的学习,其中重点是二次函数的解法。二次函数在数学中占有一定地位,甚至以后的数学学习中都会遇到二次函数问题,因此牢牢掌握二次函数的解法对于大家以后数学学习十分有帮助。现在将初中数学重要知识点整理如下,供大家学习。
目录
有理数
代数式
分式的运算
方程与方程组
有理数1、数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。②任何一个有理数都可以用数轴上的一个点来表示。③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。
2、绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。
3、有理数的运算:
加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。
除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。
乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。
4、实数:
①实数分有理数和无理数。
②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。
③每一个实数都可以在数轴上的一个点来表示。
1、合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。②把同类项合并成一项就叫做合并同类项。③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。
2、整式与分式,整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。②一个单项式中,所有字母的指数和叫做这个单项式的次数。③一个多项式中,次数最高的项的次数叫做这个多项式的次数。
3、整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。幂的运算:AM+AN=A(M+N)(A/B)N=AN/BN 除法一样。
整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
公式两条:平方差公式/完全平方公式
整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。
方法 :提公因式法、运用公式法、分组分解法、十字相乘法。
分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。
1、乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
2、除法:除以一个分式等于乘以这个分式的倒数。
3、加减法:①同分母分式相加减,分母不变,把分子相加减。②异分母的分式先通分,化为同分母的分式,再加减。
4、分式方程:①分母中含有未知数的方程叫分式方程。②使方程的分母为0的解称为原方程的增根。
方程与不等式
1、一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。
2、解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。
3、二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。
4、二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。解二元一次方程组的方法:代入消元法/加减消元法。一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程
5、一元二次方程的二次函数的关系
关于二次函数的解法公式其实很简单,关键是我们如何应用这些公式来解答实际问题,这有待于大家在以后学习过程中勤加练习, 总结 经验 了。
相关 文章 :
1. 初中数学基础知识点总结
2. 初中数学知识点整理:
3. 初一数学基础知识有哪些?
4. 初中数学的常考知识点20条
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();⑧ 关于初中数学知识点总结归纳
数学已成为许多国家及地区的 教育 范畴中的一部分。它应用于不同领域中,包括科学、工程、医学、经济学和金融学等。这次我给大家整理了初中数学知识点 总结 归纳,供大家阅读参考。
初中数学知识点总结归纳
一: 数轴
11 有向直线
在科学技术和日常生活中,为了区别一条直线的两个不同方向,可以规定其中一方向为正向,另一方向为负相
规定了正方向的直线,叫做有向直线,读作有向直线l
12 数轴
我们把数轴上任意一点所对应的实数称为点的坐标
对于每一个坐标(实数),在数周上可以找到唯一的点与之对应这就是直线的坐标化
数轴上任意一条有向线段的数量等于它的终点坐标与起点坐标的差任意一条有向线段的长度等于它两个断电坐标差的绝对值
二:平面直角坐标系
下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系
平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合
三个规定:
①正方向的规定横轴取向右为正方向,纵轴取向上为正方向
②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
三:平面直角坐标系的构成
对于平面直角坐标系的构成内容,下面我们一起来学习哦。
平面直角坐标系的构成
在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。
通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。
四:点的坐标的性质
点的坐标的性质
建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。
对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。
一个点在不同的象限或坐标轴上,点的坐标不一样。
希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。
五:因式分解的一般步骤
关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。
因式分解的一般步骤
如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,
通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。
注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。
相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。
六:因式分解
下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。
因式分解
因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。
因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④
因式分解与整式乘法的关系:m(a+b+c)
公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。
公因式确定 方法 :①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。
提取公因式步骤:
①确定公因式。②确定商式③公因式与商式写成积的形式。
分解因式注意;
①不准丢字母
②不准丢常数项注意查项数
③双重括号化成单括号
④结果按数单字母单项式多项式顺序排列
⑤相同因式写成幂的形式
⑥首项负号放括号外
⑦括号内同类项合并。
初中数学知识点
1.有理数:
(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;
(2)有理数的分类: ① ②
2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.
3.相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
(2)相反数的和为0 ? a+b=0 ? a、b互为相反数.
4.绝对值:
(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;
(2) 绝对值可表示为:或 ;绝对值的问题经常分类讨论;
5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数> 0,小数-大数< 0.
6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a≠0,那么的倒数是;若ab=1? a、b互为倒数;若ab=-1? a、b互为负倒数.
7. 有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数.
8.有理数加法的运算律:
(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).
9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).
10 有理数乘法法则:
(1)两数相乘,同号为正,异号为负,并把绝对值相乘;
(2)任何数同零相乘都得零;
(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.
11 有理数乘法的运算律:
(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac .
12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数, .
13.有理数乘方的法则:
(1)正数的任何次幂都是正数;
(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n .
14.乘方的定义:
(1)求相同因式积的运算,叫做乘方;
(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;
15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.
16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.
17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.
18.混合运算法则:先乘方,后乘除,最后加减.
本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。重点利用有理数的运算法则解决实际问题.
体验数学发展的一个重要原因是生活实际的需要.激发学生学习数学的兴趣,教师培养学生的观察、归纳与概括的能力,使学生建立正确的数感和解决实际问题的能力。教师在讲授本章内容时,应该多创设情境,充分体现学生学习的主体性地位。
关于初中数学的知识点
一、平移变换:
1。概念:在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移。
2。性质:(1)平移前后图形全等;
(2)对应点连线平行或在同一直线上且相等。
3。平移的作图步骤和方法:
(1)分清题目要求,确定平移的方向和平移的距离;
(2)分析所作的图形,找出构成图形的关健点;
(3)沿一定的方向,按一定的距离平移各个关健点;
(4)连接所作的各个关键点,并标上相应的字母;
(5)写出结论。
二、旋转变换:
1。概念:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。
说明:
(1)图形的旋转是由旋转中心和旋转的角度所决定的;
(2)旋转过程中旋转中心始终保持不动。
(3)旋转过程中旋转的方向是相同的。
(4)旋转过程静止时,图形上一个点的旋转角度是一样的。⑤旋转不改变图形的大小和形状。
2。性质:
(1)对应点到旋转中心的距离相等;
(2)对应点与旋转中心所连线段的夹角等于旋转角;
(3)旋转前、后的图形全等。
3。旋转作图的步骤和方法:
(1)确定旋转中心及旋转方向、旋转角;
(2)找出图形的关键点;
(3)将图形的关键点和旋转中心连接起来,然后按旋转方向分别将它们旋转一个旋转角度数,得到这些关键点的对应点;
(4)按原图形顺次连接这些对应点,所得到的图形就是旋转后的图形。
说明:在旋转作图时,一对对应点与旋转中心的夹角即为旋转角。
常见考法
(1)把平移旋转结合起来证明三角形全等;
(2)利用平移变换与旋转变换的性质,设计一些题目。
误区提醒
(1)弄反了坐标平移的上加下减,左减右加的规律;
(2)平移与旋转的性质没有掌握。
学好数学的方法
1、上课前要调整好心态,一定不能想,哎,又是数学课,上课时听讲心情就很不好,这样当然学不好!
2、上课时一定要认真听讲,作到耳到、眼到、手到!这个很重要,一定要学会做笔记,上课时如果老师讲的快,一定静下心来听,不要记,下课时再整理到 笔记本 上!保持高效率!
3、俗话说兴趣是最好的老师,当别人谈论最讨厌的课时,你要告诉自己,我喜欢数学!
4、保证遇到的每一题都要弄会,弄懂,这个很重要!不会就问,不要不好意思,要学会举一反三!也就是要灵活运用!作的题不要求多,但要精!
5、要有错题集,把平时遇到的好题记下来,错题记下来,并要多看,多思考,不能在同一个地方绊倒!!
总之,学习数学,不要怕难,不要怕累,不要怕问!
初中数学知识点总结归纳相关 文章 :
★ 初中数学基础知识整理归纳
★ 初中数学知识点总结
★ 初中数学重点知识点的归纳总结
★ 初中数学知识点归纳有哪些
★ 初中数学知识点总结归纳
★ 初中部数学学习方法总结
★ 初中数学圆的知识点归纳
★ 初一数学学习方法总结
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();⑨ 初中数学基础知识点归纳总结
初中数学教学,注重培养学生正确的数学情操和几何思维能力。下面是我为大家整理的关于初中数学基础知识点归纳 总结 ,希望对您有所帮助。欢迎大家阅读参考学习!
初中数学基础知识点归纳总结
1、定理1 关于中心对称的两个图形是全等的
2、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
3、逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称
4、等腰梯形性质定理 等腰梯形在同一底上的两个角相等
5、等腰梯形的两条对角线相等
6、等腰梯形判定定理 在同一底上的两个角相等的梯 形是等腰梯形
7、对角线相等的梯形是等腰梯形
8、平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等
9、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
10、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边
11、三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半
12、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h
13、(1)比例的基本性质:如果a:b=c:d,那么ad=bc 如果 ad=bc ,那么a:b=c:d
14、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d
15、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b
16、平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例
17、推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
18、定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
19、平行于三角形的一边,并且和其他两边相交的直线, 所截得的三角形的三边与原三角形三边对应成比例
20、定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
21、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)
22、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
23、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)
24、判定定理3 三边对应成比例,两三角形相似(SSS)
25、定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
26、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比
27、性质定理2 相似三角形周长的比等于相似比
28、性质定理3 相似三角形面积的比等于相似比的平方
29、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值
30、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值
31、圆是定点的距离等于定长的点的集合
32、圆的内部可以看作是圆心的距离小于半径的点的集合
33、圆的外部可以看作是圆心的距离大于半径的点的集合
34、同圆或等圆的半径相等
35、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
36、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线
37、到已知角的两边距离相等的点的轨迹,是这个角的平分线
38、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线
39、定理 不在同一直线上的三点确定一个圆。
40、垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
41、推论1
①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
42、推论2 圆的两条平行弦所夹的弧相等
43、圆是以圆心为对称中心的中心对称图形
44、定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
45、推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
46、定理 一条弧所对的圆周角等于它所对的圆心角的一半
47、推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
48、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
49、推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
50、定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
51、①直线L和⊙O相交 d
②直线L和⊙O相切 d=r
③直线L和⊙O相离 d>r
52、切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
53、切线的性质定理 圆的切线垂直于经过切点的半径
54、推论1 经过圆心且垂直于切线的直线必经过切点
55、推论2 经过切点且垂直于切线的直线必经过圆心
56、切线长定理 从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角
57、圆的外切四边形的两组对边的和相等
58、弦切角定理 弦切角等于它所夹的弧对的圆周角
59、推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
60、相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等
61、推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项
62、切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项
63、推论 从圆外一点引圆的两条割线,这一点到每条 割线与圆的交点的两条线段长的积相等
64、如果两个圆相切,那么切点一定在连心线上
65、①两圆外离 d>R+r ②两圆外切 d=R+r③两圆相交 R-rr)
④两圆内切 d=R-r(R>r) ⑤两圆内含 dr)
66、定理 相交两圆的连心线垂直平分两圆的公共弦
67、定理 把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
68、定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
69、正n边形的每个内角都等于(n-2)×180°/n
70、定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
71、正n边形的面积Sn=pnrn/2 p表示正n边形的周长
72、正三角形面积√3a/4 a表示边长
73、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
74、弧长计算公式:L=n兀R/180
75、扇形面积公式:S扇形=n兀R^2/360=LR/2
76、内公切线长= d-(R-r) 外公切线长= d-(R+r) 本回答被提问者采纳
怎样学好初中数学
1、深刻理解概念,概念是数学的基石,学习概念不仅要知其然,还要知其所以然。
2、对于每个定义、定理必须在牢记其内容的基础上知道是怎样得来的,又是运用到何处的。
3、多看一些例题,不能只看皮毛,不看内涵。
4、要把想和看结合起来,各难度层次的例题都照顾到。
5、看例题要循序渐进,这同后面的“做练习”一样,但看比做有一个显着的好处,例题有现成的解答,思路清晰,只需循着思路走,就会得出结论,所以可以看一些技巧性较强、难度较大的例题。
相关 文章 :
1. 初中数学基础知识点总结
2. 初中数学基础知识点总结之有理数
3. 初中数学知识点整理
4. 初一数学知识点归纳与学习方法
5. 初一数学基础知识有哪些?
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();⑩ 数学初中知识点总结归纳
初中生学习数学要特别注意知识点的总结,下面为大家总结了初中数学重点知识点,仅供大家参考。
1.有理数的加法运算
同号两数来相加,绝对值加不变号。
异号相加大减小,大数决定和符号。
互为相反数求和,结果是零须记好。
“大”减“小”是指绝对值的大小。
2.有理数的减法运算
减正等于加负,减负等于加正。
有理数的乘法运算符号法则。
同号得正异号负,一项为零积是零。
3.有理数混合运算的四种运算技巧
转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算。
凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解。
分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算。
巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便。
1.整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。
去括号法则:如果括号前是“十”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;如果括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都改变符号。
2.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
合并同类项:
(1)合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。
(2)合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
(3)合并同类项步骤:
a.准确的找出同类项。
b.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。
c.写出合并后的结果。
1.平方根
平方根,又叫二次方根,表示为〔±√ ̄〕,其中属于非负数的平方根称之为算术平方根。一个正数有两个实平方根,它们互为相反数,负数没有平方根。
2.立方根
如果一个数的立方等于a,那么这个数叫a的立方根,也称为三次方根。
立方根性质
①在实数范围内,任何实数的立方根只有一个
②在实数范围内,负数不能开平方,但可以开立方。
③0的立方根是0
3.实数
实数,是有理数和无理数的总称。实数具有封闭性、有序性、传递性、稠密性、完备性等。
1.一般解法:去分母法,即方程两边同乘以最简公分母。
2.特殊解法:换元法。
3.验根:由于在去分母过程中,当未知数的取值范围扩大而有可能产生增根.因此,验根是解分式方程必不可少的步骤,一般把整式方程的根的值代人最简公分母,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去。
说明:解分式方程,一般先考虑换元法,再考虑去分母法。
1.边边边:三边对应相等的两个三角形全等。
2.边角边:两边和它们的夹角对应相等的两个三角形全等。
3.角边角:两角和它们的夹边对应相等的两个三角形全等。
4.角角边:两角和其中一个角的对边对应相等的两个三角形全等。
5.斜边、直角边:斜边和一条直角边对应相等的两个直角三角形全等。
1.几何图形:即从实物中抽象出的各种图形,可帮助人们有效的刻画错综复杂的世界。
2.平面图形:平面图形是几何图形的一种,指所有点都在同一平面内的图形,如直线、三角形等。
3.立体图形:是各部分不在同一平面内的几何图形,由一个或多个面围成的可以存在于现实生活中的三维图形。
4.展开图:有些立体图形是有一些平面图形围成的,将它们的表面适当剪开,可以展成平面图形,这样的平面图形称为相应立体图形的展开图。
5.点,线,面,体
(1)图形是由点,线,面构成的。
(2)线与线相交得点,面与面相交得线。
(3)点动成线,线动成面,面动成体。
1.定义:
一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式,叫做一元一次方程。求出方程中未知数的值叫做方程式的解。
2.解一元一次方程的步骤
①去分母:把系数化成整数。
②去括号
③移项:把等式一边的某项变号后移到另一边。
④合并同类项
⑤系数化为1