‘壹’ 数学问题 求矩阵计算公式
矩阵乘法公式:
如:
1
2
1
2
3
4
A
=
2
5
3
B
=
1
5
2
1
3
4
3
6
7
A
*
B
=
?
详细计算过程
........1*2+2*1+1*3..1*3+2*5+1*6..1*4+2*2+1*7..7.19.15
A*B=2*2+5*1+3*3..2*3+5*5+3*6..2*4+5*2+3*7=18.49.39
........1*2+3*1+4*3..1*3+3*5+4*6..1*4+3*2+4*7..17.42.38
...表示空格
规则就是,把前面矩阵的第i行与后面矩阵的第j列对应元素相乘再相加,放到结果矩阵的第(i,j)这个位置上。
‘贰’ 矩阵的公式是什么
矩阵的基本运算公式有加法,减法,数乘,转置,共轭和共轭转置。
1、加法运算A+B=C、数乘运算k*A=B、乘法运算A*B=C,加法运算和数乘运算合称线性运算,由加法运算和数乘运算可以得到减法运算A+(-1)*B=A-B,矩阵没有除法运算,两个矩阵之间是不能相除的,但是当矩阵可逆的时候,可以对矩阵求逆。
2、矩阵的秩计算公式是A=aij m×n。矩阵的秩是线性代数中的一个概念。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数,通常表示为r(A),rk(A)或rank A。
3、行列式和他的转置行列式相等,变换一个行列式的两行,行列式改变符号即变为之前的相反数,如果一个行列式有两行完全相同,那么这个行列式等于零,一个行列式中的某一行,所有元素的公因子可以提到行列式符号的外面,如果一个行列式中有一行,的元素全部是零,那么这个行列式等于零。
矩阵的应用:
矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。
对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考《矩阵理论》。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。
数值分析的主要分支致力于开发矩阵计算的有效算法,这是一个已持续几个世纪以来的课题,是一个不断扩大的研究领域。 矩阵分解方法简化了理论和实际的计算。
针对特定矩阵结构(如稀疏矩阵和近角矩阵)定制的算法在有限元方法和其他计算中加快了计算。 无限矩阵发生在行星理论和原子理论中。无限矩阵的一个简单例子是代表一个函数的泰勒级数的导数算子的矩阵。
‘叁’ 矩阵公式是什么
矩阵公式是行矩阵、列矩阵:m x n矩阵中,m=1的为行矩阵。n=1的为列矩阵。
零矩阵:所有元素都为0的m x n矩阵。
方阵:m=n的m x n矩阵。
单位阵:主对角线上都为1,且其余为0。n阶单位方阵称为E。
对角形矩阵:非对角线上的元素都为0的n阶方阵。
数量矩阵:n阶对角形矩阵对角线上元素相等的矩阵。
定理
定理1设A为一n×n矩阵,则det(A)=det(A)。
证对n采用数学归纳法证明。显然,因为1×1矩阵是对称的,该结论对n=1是成立的。假设这个结论对所有k×k矩阵也是成立的,对(k+1)×(k+1)矩阵A,将det(A)按照A的第一行展开,我们有det(A)=adet(M)-adet(M)+-…±adet(M)。
由于M均为k×k矩阵,由归纳假设有此式右端恰是det(A)按照A的第一列的余子式展开。因此定理2设A为一n×n三角形矩阵。则A的行列式等于A的对角元素的乘积。
根据定理1,只需证明结论对下三角形矩阵成立。利用余子式展开和对n的归纳法,容易证明这个结论。
‘肆’ 想知道矩阵公式是什么
矩阵公式是行矩阵、列矩阵:m x n矩阵中,m=1的为行矩阵。n=1的为列矩阵。
零矩阵:所有元素都为0的m x n矩阵。
方阵:m=n的m x n矩阵。
单位阵:主对角线上都为1,且其余为0。n阶单位方阵称为E。
对角型矩阵:非对角线上的元素都为0的n阶方阵。
数量矩阵:n阶对角型矩阵对角线上元素相等的矩阵。
定理:
定理1设A为一n×n矩阵,则det(A)=det(A)。
证对n采用数学归纳法证明。显然,因为1×1矩阵是对称的,该结论对n=1是成立的。假设这个结论对所有k×k矩阵也是成立的,对(k+1)×(k+1)矩阵A,将det(A)按照A的第一行展开,我们有det(A)=adet(M)-adet(M)+-…±adet(M)。
由于M均为k×k矩阵,由归纳假设有此式右端恰是det(A)按照A的第一列的余子式展开。因此定理2设A为一n×n三角形矩阵。则A的行列式等于A的对角元素的乘积。
‘伍’ 矩阵的公式是什么
矩阵的常见相关公式有矩阵的交换律A+B=B+A,矩阵的结合律(A+B)+C=A+(B+C)。矩阵与数的乘法分配律公式为λ(A+B)=λA+λB。
英国数学家凯莱一般被公认为是矩阵论的创立者,因为凯莱首先把矩阵作为一个独立的数学概念提出来,并首先发表了关于这个题目的一系列文章。凯莱同研究线性变换下的不变量相结合,首先引进矩阵以简化记号。
用途:
矩阵的一个重要用途是解线性方程组。线性方程组中未知量的系数可以排成一个矩阵,加上常数项,则称为增广矩阵。另一个重要用途是表示线性变换,即是诸如f(x) 4x之类的线性函数的推广。
设定基底后,某个向量v可以表示为m×1的矩阵,而线性变换f可以表示为行数为m的矩阵A,使得经过变换后得到的向量f(v)可以表示成Av的形式。矩阵的特征值和特征向量可以揭示线性变换的深层特性。
符号:
以下是一个 4 × 3 矩阵:某矩阵 A 的第 i 行第 j 列,或 i,j位,通常记为 A[i,j] 或 Ai,j。在上述例子中 A[2,3]=7。此外 A = (aij),意为 A[i,j] = aij 对于所有 i 及 j,常见于数学着作中。
‘陆’ 矩阵计算方法法则
矩阵计算方法法则:
1.矩阵加法运算
矩阵之间也可以相加。把两个矩阵对应位置的单个元素相加,得到的新矩阵就是矩阵加法的结果。由其运算法则可知,只有行数和列数完全相同的矩阵才能进行加法运算。
矩阵之间相加没有顺序,假设A、B都是矩阵,则A+B=B+A。通常认为矩阵没有减法,若要与一个矩阵相减,在概念上是引入一个该矩阵的负矩阵,然后相加。A-B是A+(-B)的简写。图演示了两个三行三列矩阵的加法。
2.矩阵乘法运算
矩阵之间也可以进行乘法运算,但其运算过程相对复杂得多。与算术乘法不同,矩阵乘法并不是多个矩阵之和,它有自己的逻辑。其算法的具体描述为:假设m行n列的矩阵A和r行v列的矩阵B相乘得到矩阵C,则首先矩阵A和矩阵B必须满足n=r。
也就是说,第一个矩阵的列数必须和第二个矩阵的行数相同。在运算时,第一个矩阵A的第i行的所有元素同第二个矩阵B第j列的元素对应相乘,并把相乘的结果相加,最终得到的值就是矩阵C的第i行第j列的值。
矩阵的值的计算公式
A=(aij)m×n。按照初等行变换原则把原来的矩阵变换为阶梯型矩阵,总行数减去全部为零的行数即非零的行数就是矩阵的秩了。用初等行变换化成梯矩阵,梯矩阵中非零行数就是矩阵的秩。矩阵的秩是线性代数中的一个概念。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数。
‘柒’ 矩阵运算常用公式总结
c11=a11xb11+a12xb21+a13xb31+a14xb41
c12=a11xb12+a12xb22+a13xb32+a14xb42
c21=a21xb11+a22xb21+b23xb31+a24xb41
一次类推,就是拿第一个矩阵行的数据依次和第二个矩阵列对应的数据相乘再相加的和就是积矩阵对应行和对应列上数据。
在线性代数中,一个矩阵A的列秩是 A的线性无关的纵列的极大数目。类似,行秩是A的线性无关的横行的极大数目。
方阵的列秩和行秩总是相等的,因此它们可以简单地称作矩阵 A的秩。通常表示为 rk(A) 或 rank A。
m× n矩阵的秩最大为 m和 n中的较小者。有尽可能大的秩的矩阵被称为有满秩;类似的,否则矩阵是秩不足的。
设A是n阶方阵,如果数λ和n维非零列向量x使关系式
AX=λX (1)
成立,那么这样的数λ称为矩阵A特征值,非零向量x称为A的对应于特征值λ的特征向量
(1)式也可写成,( A-λE)X=0
(2)这是n个未知数n个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式| A-λE|=0 。
(7)数学矩阵值如何计算公式扩展阅读:
矩阵在物理学中的另一类泛应用是描述线性耦合调和系统。这类系统的运动方程可以用矩阵的形式来表示,即用一个质量矩阵乘以一个广义速度来给出运动项,用力矩阵乘以位移向量来刻画相互作用。求系统的解的最优方法是将矩阵的特征向量求出(通过对角化等方式),称为系统的简正模式。
这种求解方式在研究分子内部动力学模式时十分重要:系统内部由化学键结合的原子的振动可以表示成简正振动模式的叠加。描述力学振动或电路振荡时,也需要使用简正模式求解 。
‘捌’ 矩阵公式是什么呢
矩阵的常见相关公式有矩阵的交换律A+B=B+A,矩阵的结合律(A+B)+C=A+(B+C)。矩阵与数的乘法分配律公式为λ(A+B)=λA+λB。
英国数学家凯莱一般被公认为是矩阵论的创立者,因为凯莱首先把矩阵作为一个独立的数学概念提出来,并首先发表了关于这个题目的一系列文章。凯莱同研究线性变换下的不变量相结合,首先引进矩阵以简化记号。
简正模式
矩阵在物理学中的另一类泛应用是描述线性耦合调和系统。这类系统的运动方程可以用矩阵的形式来表示,即用一个质量矩阵乘以一个广义速度来给出运动项,用力矩阵乘以位移向量来刻画相互作用。
求系统的解的最优方法是将矩阵的特征向量求出(通过对角化等方式),称为系统的简正模式。这种求解方式在研究分子内部动力学模式时十分重要:系统内部由化学键结合的原子的振动可以表示成简正振动模式的叠加。描述力学振动或电路振荡时,也需要使用简正模式求解。
‘玖’ 矩阵公式是什么
若A、B和C表示三个矩阵并有C=AB,A为n行m列,B为m行q列,则C为n行q列。
则对于C矩阵任一元素Cij都有Cij=ai1*b1j+ai2*b2j+ai3*b3j+...+ain*bnj。
矩阵相乘最重要的方法是一般矩阵乘积。它只有在第一个矩阵的列数(column)和第二个矩阵的行数(row)相同时才有意义。一般单指矩阵乘积时,指的便是一般矩阵乘积。
1、当矩阵A的列数(column)等于矩阵B的行数(row)时,A与B可以相乘。
2、矩阵C的行数等于矩阵A的行数,C的列数等于B的列数。
3、乘积C的第m行第n列的元素等于矩阵A的第m行的元素与矩阵B的第n列对应元素乘积之和。
矩阵乘法的运算规则:
顿时矩阵乘法的运算规则诞生了。也许凯莱特别幸运,也或许是他的数学直觉格外敏锐,但不论如何,他给出了一个自然而且有用的矩阵乘法定义。
凯莱的基本思想是用矩阵乘积来表示线性复合映射,但他并不是第一个考虑线性复合映射问题的数学家。早在 1801 年,高斯(Carl Friedrich Gauss) 就已经使用这种复合计算,但高斯并没有以阵列形式记录系数。