导航:首页 > 数字科学 > 数学中的符号表示什么

数学中的符号表示什么

发布时间:2022-10-30 06:02:09

Ⅰ 数学符号的含义

数学符号“△”表示三角形。

在数学中,对于三角形的书写在计算过程中比较复杂,通常使用“△”来代替“三角形”三个字,比如在描述有ABC三个点构成的三角形时,为了简便的书写,常使用“△ABC”来表示。


(1)数学中的符号表示什么扩展阅读:

数学中三角形常用的一些性质:

1 、在平面上三角形的内角和等于180°(内角和定理)。

2 、在平面上三角形的外角和等于360° (外角和定理)。

3、 在平面上三角形的外角等于与其不相邻的两个内角之和。

推论:三角形的一个外角大于任何一个和它不相邻的内角。

4、 一个三角形的三个内角中最少有两个锐角。

5、 在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。

6 、三角形任意两边之和大于第三边,任意两边之差小于第三边。

Ⅱ 常用的数学符号大全及其意义

相信大家平时对于数学符号的认识经常会弄混淆吧,下面就是我给大家带来的常用数学符号以及它们所代表的意义,希望能帮助到大家!

一、常用数学符号大全

数学符号大全及意义之运算符号

如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√ ̄),对数(log,lg,ln,lb),比(:),绝对值符号| |,微分(d),积分(∫),闭合曲面(曲线)积分(∮)等。

数学符号大全及意义之关系符号

如“=”是等号,“≈”是近似符号(即约等于),“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”,即不小于),“≤”是小于或等于符号(也可写作“≯”,即不大于),“→ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是正比例符号(表示反比例时可以利用倒数关系),“∈”是属于符号,“⊆”是包含于符号,“⊇”是包含符号,“|”表示“能整除”(例如a|b 表示“a能整除b”,而 ||b表示r是a恰能整除b的最大幂次),x,y等任何字母都可以代表未知数。

数学符号大全及意义之结合符号

如小括号“()”,中括号“[]”,大括号“{}”,横线“—”=。

数学符号大全及意义之性质符号

如正号“+”,负号“-”,正负号“ ”(以及与之对应使用的负正号“”)

数学符号大全及意义之省略符号

如三角形(△),直角三角形(Rt△),正弦(sin)(见三角函数),

双曲正弦函数(sinh),x的函数(f(x)),极限(lim),角(∠),

∵ 因为(一个脚站着的,站不住)

∴ 所以(两个脚站着的,能站住)(口诀:因为站不住,所以两个点;因为上面两个点,所以下面两个点)

总和,连加:∑,求积,连乘:∏,从n个元素中取出r个元素所有不同的组合数 (n元素的总个数;r参与选择的元素个数),幂 等。

数学符号大全及意义之排列组合符号

C 组合数

A (或P) 排列数

n 元素的总个数

r 参与选择的元素个数

! 阶乘,如5!=5×4×3×2×1=120,规定0!=1

!! 半阶乘(又称双阶乘),例如7!!=7×5×3×1=105,10!!=10×8×6×4×2=3840

数学符号大全及意义之离散数学符号

∀ 全称量词

∃存在量词

├ 断定符(公式在L中可证)

╞ 满足符(公式在E上有效,公式在E上可满足)

﹁ 命题的“非”运算,如命题的否定为﹁p

∧ 命题的“合取”(“与”)运算

∨ 命题的“析取”(“或”,“可兼或”)运算

→ 命题的“条件”运算

↔ 命题的“双条件”运算的

p<=>q 命题p与q的等价关系

p=>q 命题p与q的蕴涵关系(p是q的充分条件,q是p的必要条件)

A* 公式A的对偶公式,或表示A的数论倒数(此时亦可写为 )

wff 合式公式

iff 当且仅当

↑ 命题的“与非” 运算(“与非门”)

↓ 命题的“或非”运算(“或非门”)

□ 模态词“必然”

◇ 模态词“可能”

∅空集

∈ 属于(如"A∈B",即“A属于B”)

∉ 不属于

P(A) 集合A的幂集

|A| 集合A的点数

R²=R○R [R

=R

○R] 关系R的“复合”

ℵ Aleph,阿列夫

⊆ 包含

⊂(或⫋) 真包含

另外,还有相应的⊄,⊈,⊉等

∪ 集合的并运算

U(P)表示P的领域

∩ 集合的交运算

-或 集合的差运算

〡 限制

集合关于关系R的等价类

A/R 集合A上关于R的商集

[a] 元素a产生的循环群

I环,理想

Z/(n) 模n的同余类集合

r(R) 关系 R的自反闭包

s(R) 关系 R的对称闭包

CP 命题演绎的定理(CP 规则)

EG 存在推广规则(存在量词引入规则)

ES 存在量词特指规则(存在量词消去规则)

UG 全称推广规则(全称量词引入规则)

US 全称特指规则(全称量词消去规则)

R 关系

r 相容关系

R○S 关系 与关系 的复合

domf 函数 的定义域(前域)

ranf 函数 的值域

f:x→y f是x到y的函数

(x,y) x与y的最大公约数,有时为避免混淆,使用gcd(x,y)

[x,y] x与y的最小公倍数,有时为避免混淆,使用lcm(x,y)

aH(Ha) H关于a的左(右)陪集

Ker(f) 同态映射f的核(或称f同态核)

[1,n] 1到n的整数集合

d(A,B),|AB|,或AB 点A与点B间的距离

d(V) 点V的度数

G=(V,E) 点集为V,边集为E的图G

W(G) 图G的连通分支数

k(G) 图G的点连通度

Δ(G) 图G的最大点度

A(G) 图G的邻接矩阵

P(G) 图G的可达矩阵

M(G) 图G的关联矩阵

C 复数集

I 虚数集

N 自然数集,非负整数集(包含元素"0")

N*(N+) 正自然数集,正整数集(其中*表示从集合中去掉元素“0”,如R*表示非零实数)

P 素数(质数)集

Q 有理数集

R 实数集

Z 整数集

Set 集范畴

Top 拓扑空间范畴

Ab 交换群范畴

Grp 群范畴

Mon 单元半群范畴

Ring 有单位元的(结合)环范畴

Rng 环范畴

CRng 交换环范畴

R-mod 环R的左模范畴

mod-R 环R的右模范畴

Field 域范畴

Poset 偏序集范畴

二、常用数学符号意义汇总

= 等于

≠ 不等于

≈ 约等于

< 小于

> 大于

// 平行

平行且相等

⊥垂直

≥ 大于或等于

≤ 小于或等于

≡ 恒等于或同余

π 圆周率 约为3.1415926536

e 自然常数 约为 2.7182818285

|x| 绝对值或(复数的)模

∽ 相似

≌ 全等

远大于

<< 远小于

∪ 并集

∩ 交集

⊆ 包含于

∈ 属于

⊙ 圆

除,求商值,部分编程语言中理解为整除

α,β,γ,φ… 角度;系数

∞无穷大(包括正无穷大+∞与负无穷大-∞)

lnx 以e为底的对数(自然对数)

lgx 以10为底的对数(常用对数)

lbx 以2为底的对数

lim 求极限

floor(x) 或[x],亦可写为 下取整函数(直译为“地板函数”),又称高斯函数

ceil(x) 亦可写为 上取整函数(直译为“天花板函数”)

x mod y模,求余数

x-floor(x) 或{x} 表示x的小数部分

dy,df(x) 函数y=f(x)的微分(或线性主部)

∫f(x)dx 不定积分,函数f的全体原函数

Ⅲ 数学中的符号是什么意思啊

数学集合符号如下:

1、N:非负整数集合或自然数集合{0,1,2,3,…}

2、N*或N+:正整数集合{1,2,3,…}

3、Z:整数集合{…,-1,0,1,…}

4、Q:有理数集合

5、Q+:正有理数集合

6、Q-:负有理数集合

7、R:实数集合(包括有理数和无理数)

8、R+:正实数集合

9、R-:负实数集合

10、C:复数集合

11、∅ :空集(不含有任何元素的集合)

(3)数学中的符号表示什么扩展阅读:

集合基础知识

1、定义:一般地,我们把研究对象统称为元素,一些元素组成的总体叫集合,也简称集;

2、表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。

3、关于集合的元素的特征

(1)确定性:给定一个集合,那么任何一个元素在或不在这个集合中就确定了;

(2)互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的;

(3)无序性:即集合中的元素无顺序,可以任意排列、调换。

4、元素与集合的关系:(元素与集合的关系有“属于”及“不属于”两种)

(1)若a是集合A中的元素,则称a属于集合A;

(2)若a不是集合A的元素,则称a不属于集合A。

5、集合的表示方法

(1)列举法:把集合中的元素一一列举出来, 并用花括号括起来表示集合的方法叫列举法;

(2)描述法:用集合所含元素的共同特征表示集合的方法,称为描述法;

(3)文氏(Venn)图法:画一条封闭的曲线,用它的内部来表示一个集合。

参考资料:网络:集合

Ⅳ 数学符号都有那些都是什么意思

整理了一些重要的数学符号。

有理数集Q
Q表示的意义是:有理数集。
但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。
有理数为整数(正整数、0、负整数)和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。
整数集合Z
整数的全体构成整数集,整数集是一个数环。在整数系中,零和正整数统称为自然数。-1、-2、-3、…、-n、…(n为非零自然数)为负整数。则正整数、零与负整数构成整数系。整数不包括小数,分数。
实数集R
实数集,包含所有有理数和无理数的集合,通常用大写字母R表示。
18世纪,微积分学在实数的基础上发展起来。但当时的实数集并没有精确的定义。直到1871年,德国数学家康托尔第一次提出了实数的严格定义。任何一个非空有上界的集合(包含于R)必有上确界。

Ⅳ 数学上的符号都代表什么意思

数学集合符号都有:N、N+、Z、Q、R、C等。具体介绍如下:

1、全体非负整数的集合通常简称非负整数集(或自然数集),记作N。

2、非负整数集内排除0的集,也称正整数集,记作N+(或N*)。

3、全体整数的集合通常称作整数集,记作Z。

4、全体有理数的集合通常简称有理数集,记作Q。

5、全体实数的集合通常简称实数集,记作R。

6、复数集合计作C。

(5)数学中的符号表示什么扩展阅读:

1、集合,是指具有某种特定性质的具体的或抽象的对象汇总成的集体,这些对象称为该集合的元素。例如全中国人的集合,它的元素就是每一个中国人。我们通常用大写字母如A,B,S,T,...表示集合,而用小写字母如a,b,x,y,...表示集合的元素。

2、元素与集合的关系有:“属于”与“不属于”两种。

3、集合的运算:

(1)集合交换律:A∩B=B∩A;A∪B=B∪A。

(2)集合结合律:(A∩B)∩C=A∩(B∩C);(A∪B)∪C=A∪(B∪C)。

(3)集合分配律:A∩(B∪C)=(A∩B)∪(A∩C);A∪(B∩C)=(A∪B)∩(A∪C)。

Ⅵ 数学符号都表示什么怎么读

运算符号:如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√ ̄),对数(log,lg,ln,lb),比(:),绝对值符号||,微分(d),积分(∫),闭合曲面(曲线)积分(∮)等。

关系符号:如“=”是等号,“≈”是近似符号(即约等于),“≠”是不等号,“>”是大于符号,“<”是小于符号。

“≥”是大于或等于符号(也可写作“≮”,即不小于),“≤”是小于或等于符号(也可写作“≯”,即不大于)。

“→”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是正比例符号(表示反比例时可以利用倒数关系),“∈”是属于符号,“⊆”是包含于符号。

“⊇”是包含符号,“|”表示“能整除”(例如a|b表示“a能整除b”,而||b表示r是a恰能整除b的最大幂次),x,y等任何字母都可以代表未知数。

结合符号:如小括号“()”,中括号“[]”,大括号“{}”,横线“—”,比如。

性质符号:如正号“+”,负号“-”,正负号“”(以及与之对应使用的负正号“”)。

省略符号:如三角形(△),直角三角形(Rt△),正弦(sin)(见三角函数),双曲正弦函数(sinh),x的函数(f(x)),极限(lim),角(∠),∵因为∴所以。

总和,连加:∑,求积,连乘:∏,从n个元素中取出r个元素所有不同的组合数(n元素的总个数;r参与选择的元素个数),幂等。

排列组合符号:C组合数、A(或P)排列数、n元素的总个数、r参与选择的元素个数、!阶乘,如5!=5×4×3×2×1=120,规定0!=1、!!半阶乘(又称双阶乘)。

例如:7!!=7×5×3×1=105,10!!=10×8×6×4×2=3840。

离散数学符号:∀全称量、∃存在量词、├断定符(公式在L中可证)、╞满足符(公式在E上有效,公式在E上可满足)、﹁命题的“非”运算。

如命题的否定为﹁p、∧命题的“合取”(“与”)运算、∨命题的“析取”(“或”,“可兼或”)运算、→命题的“条件”运算。

↔命题的“双条件”运算的、p<=>q命题p与q的等价关系、p=>q命题p与q的蕴涵关系(p是q的充分条件,q是p的必要条件)、A*公式A的对偶公式,或表示A的数论倒数(此时亦可写为)。

wff合式公式:iff当且仅当、↑命题的“与非”运算(“与非门”)、↓命题的“或非”运算(“或非门”)、□模态词“必然”、◇模态词“可能”、∅空集、∈属于(如"A∈B",即“A属于B”)、∉不属于、P(A)集合A的幂集。

|A|集合A的点数、R²=R○R[R、=R、○R]关系R的“复合”、ℵAleph,阿列夫、⊆包含、⊂(或⫋)真包含、另外,还有相应的⊄,⊈,⊉等。

∪集合的并运算:U(P)表示P的领域、∩集合的交运算、-或集合的差运算、⊕集合的对称差运算、〡限制、集合关于关系R的等价类。

A/R集合A上关于R的商集、[a]元素a产生的循环群、I环,理想、Z/(n)模n的同余类集合、r(R)关系R的自反闭包。

s(R)关系R的对称闭包、CP命题演绎的定理(CP规则)、EG存在推广规则(存在量词引入规则)、ES存在量词特指规则(存在量词消去规则)、UG全称推广规则(全称量词引入规则)、US全称特指规则(全称量词消去规则)。

(6)数学中的符号表示什么扩展阅读:

更多数学表达符号:

∞无穷大、π圆周率、|x|绝对值、∪并集、∩交集、≥大于等于、≤小于等于、≡恒等于或同余、ln(x)以e为底的对数、lg(x)以10为底的对数、floor(x)上取整函数、ceil(x)下取整函数。

xmody求余数、x-floor(x)小数部分、∫f(x)dx不定积分、∫[a:b]f(x)dxa到b的定积分、f(x)函数f在自变量x处的值、sin(x)在自变量x处的正弦函数值、exp(x)在自变量x处的指数函数值,常被写作ex、logba以b为底a的对数。

cosx在自变量x处余弦函数的值、tanx其值等于sinx/cosx、cotx余切函数的值或cosx/sinx、secx正割含数的值,其值等于1/cosx、cscx余割函数的值,其值等于1/sinx、asinxy正弦函数反函数在x处的值,即x=siny。

acosxy余弦函数反函数在x处的值,即x=cosy、atanxy正切函数反函数在x处的值,即x=tany、acotxy余切函数反函数在x处的值,即x=coty、asecxy正割函数反函数在x处的值,即x=secy、acscxy余割函数反函数在x处的值,即x=cscy。

Ⅶ 什么是数学符号

数学符号一般有以下几种:(1)数量符号:如 :i,2+ i,a,x,自然对数底e,圆周率 ∏.(2)运算符号:如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号( ),对数(log,lg,ln),比(∶),微分(d),积分(∫)等.(3)关系符号:如“=”是等号,“≈”或“ ”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“‖”是平行符号,“⊥”是垂直符号,“∝”是正比例符号,“∈”是属于符号等.(4)结合符号:如圆括号“()”方括号“[]”,花括号“{}”括线“—” (5)性质符号:如正号“+”,负号“-”,绝对值符号“‖” (6)省略符号:如三角形(△),正弦(sin),X的函数(f(x)),极限(lim),因为(∵),所以(∴),总和(∑),连乘(∏),从N个元素中每次取出R个元素所有不同的组合数(C ),幂(aM),阶乘(!)等.符号 意义 ∞ 无穷大 PI 圆周率 |x| 函数的绝对值 ∪ 集合并 ∩ 集合交 ≥ 大于等于 ≤ 小于等于 ≡ 恒等于或同余 ln(x) 以e为底的对数 lg(x) 以10为底的对数 floor(x) 上取整函数 ceil(x) 下取整函数 x mod y 求余数 {x} 小数部分 x - floor(x) ∫f(x)δx 不定积分 ∫[a:b]f(x)δx a到b的定积分 P为真等于1否则等于0 ∑[1≤k≤n]f(k) 对n进行求和,可以拓广至很多情况 如:∑[n is prime][n < 10]f(n) ∑∑[1≤i≤j≤n]n^2 lim f(x) (x->?) 求极限 f(z) f关于z的m阶导函数 C(n:m) 组合数,n中取m P(n:m) 排列数 m|n m整除n m⊥n m与n互质 a∈ A a属于集合A #A 集合A中的元素个数

Ⅷ 数学符号各有什么含义(请说出所有的符号)

(1)数量符号:如 :i,2+ i,a,x,自然对数底e,圆周率 ∏。

(2)运算符号:如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号( ),对数(log,lg,ln),比(∶),微分(d),积分(∫)等。

(3)关系符号:如“=”是等号,“≈”或“ ”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“‖”是平行符号,“⊥”是垂直符号,“∝”是正比例符号,“∈”是属于符号等。

(4)结合符号:如圆括号“()”方括号“[]”,花括号“{}”括线“—”

(5)性质符号:如正号“+”,负号“-”,绝对值符号“‖”

(6)省略符号:如三角形(△),正弦(sin),X的函数(f(x)),极限(lim),因为(∵),所以(∴),总和(∑),连乘(∏),从N个元素中每次取出R个元素所有不同的组合数(C ),幂(aM),阶乘(!)等。

符号 意义
∞ 无穷大
PI 圆周率
|x| 函数的绝对值
∪ 集合并
∩ 集合交
≥ 大于等于
≤ 小于等于
≡ 恒等于或同余
ln(x) 以e为底的对数
lg(x) 以10为底的对数
floor(x) 上取整函数
ceil(x) 下取整函数
x mod y 求余数
小数部分 x - floor(x)
∫f(x)δx 不定积分
∫[a:b]f(x)δx a到b的定积分

P为真等于1否则等于0
∑[1≤k≤n]f(k) 对n进行求和,可以拓广至很多情况
如:∑[n is prime][n < 10]f(n)
∑∑[1≤i≤j≤n]n^2
lim f(x) (x->?) 求极限
f(z) f关于z的m阶导函数
C(n:m) 组合数,n中取m
P(n:m) 排列数
m|n m整除n
m⊥n m与n互质
a ∈ A a属于集合A
#A 集合A中的元素个数

Ⅸ 数学中的符号是什么

数学中的符号是:在数学中/是除号,除号是个数学符号,是一个由一根短横线和横线两侧的两点构成的符号,其主要用来表示数学中的除法运算。除号可运用到数学、物理学、化学等多领域。


相关内容:

数学符号的发明及使用比数字要晚,但其数量却超过了数字。现代数学常用的数学符号已超过了200个,其中,每一个符号都有一段有趣的经历。

数量符号:

如圆周率(π,3.14159265358979),自然率(e,2.71828),斐波那契黄金分割数(φ,0.618033),虚数(i,√-1)和毕达哥拉斯常数(√2,1.41421356)等等。

运算符号

如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√ ̄),对数(log,lg,ln,lb,lim),比(:),绝对值符号| |,微分(d),积分(∫),闭合曲面(曲线)积分(∮)等。

关系符号

如“=”是等号,“≈”是近似符号(即约等于),“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”,即不小于),“≤”是小于或等于符号(也可写作“≯”,即不大于)。


阅读全文

与数学中的符号表示什么相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:740
乙酸乙酯化学式怎么算 浏览:1406
沈阳初中的数学是什么版本的 浏览:1353
华为手机家人共享如何查看地理位置 浏览:1045
一氧化碳还原氧化铝化学方程式怎么配平 浏览:886
数学c什么意思是什么意思是什么 浏览:1411
中考初中地理如何补 浏览:1300
360浏览器历史在哪里下载迅雷下载 浏览:703
数学奥数卡怎么办 浏览:1388
如何回答地理是什么 浏览:1025
win7如何删除电脑文件浏览历史 浏览:1058
大学物理实验干什么用的到 浏览:1487
二年级上册数学框框怎么填 浏览:1701
西安瑞禧生物科技有限公司怎么样 浏览:976
武大的分析化学怎么样 浏览:1250
ige电化学发光偏高怎么办 浏览:1339
学而思初中英语和语文怎么样 浏览:1651
下列哪个水飞蓟素化学结构 浏览:1425
化学理学哪些专业好 浏览:1488
数学中的棱的意思是什么 浏览:1059