Ⅰ 请问有没有类似“秃宝盖”的符号!~~~
有的,在”word“的”插入“里面找
Ⅱ 数学符号大全
数学符号(理科符号)——运算符号
1.基本符号:+ - × ÷(/)
2.分数号:/
3.正负号:±
4.相似全等:∽ ≌
5.因为所以:∵ ∴
6.判断类:= ≠ < ≮(不小于) > ≯(不大于)
7.集合类:∈(属于) ∪(并集) ∩(交集)
8.求和符号:∑
9.n次方符号:¹(一次方) ²(平方) ³(立方) ⁴(4次方) ⁿ(n次方)
10.下角标:₁ ₂ ₃ ₄ (如:A₁B₂C₃D₄)
11.或与非的"非":¬
12.导数符号(备注符号):′ 〃
13.度:° ℃
14.任意:∀
15.推出号:⇒
16.等价号:⇔
17.包含被包含:⊆ ⊇ ⊂ ⊃
18.导数:∫ ∬
19.箭头类:↗ ↙ ↖ ↘ ↑ ↓ ↔ ↕ ↑ ↓ → ←
20.绝对值:|
21.弧:⌒
22.圆:⊙
23.平均数-,ba拔
Ⅲ 数学符号大全
1 Α α alpha a:lf 阿尔法 角度;系数
2 Β β beta bet 贝塔 磁通系数;角度;系数
3 Γ γ gamma ga:m 伽马 电导系数(小写)
4 Δ δ delta delt 德尔塔 变动;密度;屈光度
5 Ε ε epsilon ep`silon 伊普西龙 对数之基数
6 Ζ ζ zeta zat 截塔 系数;方位角;阻抗;相对粘度;原子序数
7 Η η eta eit 艾塔 磁滞系数;效率(小写)
8 Θ θ thet θit 西塔 温度;相位角
9 Ι ι iot aiot 约塔 微小,一点儿
10 Κ κ kappa kap 卡帕 介质常数
11 ∧ λ lambda lambd 兰布达波长(小写);体积
12 Μ μ mu mju 缪 磁导系数;微(千分之一);放大因数(小写)
13 Ν ν nu nju 纽 磁阻系数
14 Ξ ξ xi ksi 克西
15 Ο ο omicron omik`ron 奥密克戎
16 ∏ π pi pai 派 圆周率=圆周÷直径=3.1416
17 Ρ ρ rho rou 肉 电阻系数(小写)
18 ∑ σ sigma `sigma 西格马 总和(大写),表面密度;跨导(小写)
19 Τ τ tau tau 套 时间常数
20 Υ υ upsilon jup`silon 宇普西龙 位移
21 Φ φ phi fai 佛爱 磁通;角
22 Χ χ chi phai 西
23 Ψ ψ psi psai 普西 角速;介质电通量(静电力线);角
24 Ω ω omega o`miga 欧米伽 欧姆(大写);角速(小写);角
Ⅳ 简谱“宀”符号代表什么
简谱“宀”符号代表:空弦的意思。
扩展:谱子里面的各种符号代表的意思如下:1、重升记号(×)表示将基本音级升高两个半音(一个全音)。2、重降记号(bb)表示将基本简谱上的符号代表着音的高低以及音的长短,一般的简谱中有着1-7七个音符,这些音符的发音以及高低都有所不同,同时简谱上面也有标注音长短的符号,这些符号的标注让人们能够更好的进行音乐的学习。
二分音符:带有符干、没有符尾的白色音符叫“二分音符”。它只有全音符的一半长,等于全音符1/2的时值;四分音符:带有符干、没有符尾的黑色音符叫“四分音符”。它比二分音符又小一半,等于全音符1/4的时值;
Ⅳ 请问各种数学符号的读音比如α,β,γ,δ,ε,λ,ζ,η,θ,ξ,σ,φ,ψ,ω等等的读音
1、Α,α,alpha,a:lf,阿尔法,角度;系数。
2、Β,β,beta,bet,贝塔,磁通系数;角度;系数。
3、Γ,γ,gamma,ga:m,伽马,电导系数(小写)。
4、Δ,δ,delta,delt,德尔塔,变动;密度;屈光度。
5、Ε,ε,epsilon,ep`silon,伊普西龙,对数之基数。
6、Ζ,ζ,zeta,zat,截塔,系数;方位角;阻抗;相对粘度;原子序数。
7、Η,η,eta,eit,艾塔,磁滞系数;效率(小写)。
8、Θ,θ,thet,θit,西塔,温度;相位角。
9、Ψ,ψ,psipsai,普西角速;介质电通量(静电力线);角。
符号种类
1、数量符号
如圆周率(π,3.14159265358979),自然率(e,2.71828),斐波那契黄金分割数(φ,0.618033),虚数(i,√-1)和毕达哥拉斯常数(√2,1.41421356)等等。
2、运算符号
如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√ ̄),对数(log,lg,ln,lb,lim),比(:),绝对值符号| |,微分(d),积分(∫),闭合曲面(曲线)积分(∮)等。
Ⅵ 数学中这个符号叫什么代表什么ξ
解:ξ是希腊字母
读作“柯西 ”或“克西”
ξ用于表示数学上的随机变量,在概率统计里面用的比较多。
望采纳,若不懂,请追问。
Ⅶ 下方五线谱中音符上的那个像宝盖头一样的是什么符号有什么作用谢谢!
是升记号,升mi
就是要弹黑键
Ⅷ 简谱中音符左上角宝盖头符号代表什么
简谱中音符左上角宝盖头符号代表装饰音,也叫前倚音,此处应该是乐器的一个演奏法,右下角的是震音符号,这个应该是提琴乐器的,也就是用琴弓快速拉弦并借助琴弦和琴弓的弹力振动琴弦。
简谱是用来简单的记录乐谱的形式,简谱是根据音乐的发音高低不同而用发明的一种简单的记录音乐音调的方式,简谱中音符的搭配使用能够弹奏出一幅美丽的乐章,音乐是由音的高低、音的长短、音的力度以及音色构成的,而简谱中则对音乐中相关的事项进行了标注,能够让人们更好的进行音乐的制作,简谱的学习能够让人们更好的了解音乐,同时也是音乐进步学习的基础。
Ⅸ 有关数学的特殊符号是什么
大写 小写 英文注音 国际音标注音 中文注音
Α α alpha alfa 阿耳法
Β β beta beta 贝塔
Γ γ gamma gamma 伽马
Δ δ deta delta 德耳塔
Ε ε epsilon epsilon 艾普西隆
Ζ ζ zeta zeta 截塔
Η η eta eta 艾塔
Θ θ theta θita 西塔
Ι ι iota iota 约塔
Κ κ kappa kappa 卡帕
∧ λ lambda lambda 兰姆达
Μ μ mu miu 缪
Ν ν nu niu 纽
Ξ ξ xi ksi 可塞
Ο ο omicron omikron 奥密可戎
∏ π pi pai 派
Ρ ρ rho rou 柔
∑ σ sigma sigma 西格马
Τ τ tau tau 套
Υ υ upsilon jupsilon 衣普西隆
Φ φ phi fai 斐
Χ χ chi khai 喜
Ψ ψ psi psai 普西
Ω ω omega omiga 欧米伽
符号表
符号 含义
i -1的平方根
f(x) 函数f在自变量x处的值
sin(x) 在自变量x处的正弦函数值
exp(x) 在自变量x处的指数函数值,常被写作ex
a^x a的x次方;有理数x由反函数定义
ln x exp x 的反函数
ax 同 a^x
logba 以b为底a的对数; blogba = a
cos x 在自变量x处余弦函数的值
tan x 其值等于 sin x/cos x
cot x 余切函数的值或 cos x/sin x
sec x 正割含数的值,其值等于 1/cos x
csc x 余割函数的值,其值等于 1/sin x
asin x y,正弦函数反函数在x处的值,即 x = sin y
acos x y,余弦函数反函数在x处的值,即 x = cos y
atan x y,正切函数反函数在x处的值,即 x = tan y
acot x y,余切函数反函数在x处的值,即 x = cot y
asec x y,正割函数反函数在x处的值,即 x = sec y
acsc x y,余割函数反函数在x处的值,即 x = csc y
θ 角度的一个标准符号,不注明均指弧度,尤其用于表示atan x/y,当x、y、z用于表示空间中的点时
i, j, k 分别表示x、y、z方向上的单位向量
(a, b, c) 以a、b、c为元素的向量
(a, b) 以a、b为元素的向量
(a, b) a、b向量的点积
a?b a、b向量的点积
(a?b) a、b向量的点积
|v| 向量v的模
|x| 数x的绝对值
∑ 表示求和,通常是某项指数。下边界值写在其下部,上边界值写在其上部。如j从1到100的和可以表示成: 。这表示 1 + 2 + … + nM 表示一个矩阵或数列或其它
|v> 列向量,即元素被写成列或可被看成k×1阶矩阵的向量
<v| 被写成行或可被看成从1×k阶矩阵的向量
dx 变量x的一个无穷小变化,dy, dz, dr等类似
ds 长度的微小变化
ρ 变量 (x2 + y2 + z2)1/2 或球面坐标系中到原点的距离
r 变量 (x2 + y2)1/2 或三维空间或极坐标中到z轴的距离
|M| 矩阵M的行列式,其值是矩阵的行和列决定的平行区域的面积或体积
||M|| 矩阵M的行列式的值,为一个面积、体积或超体积
det M M的行列式
M-1 矩阵M的逆矩阵
v×w 向量v和w的向量积或叉积
θvw 向量v和w之间的夹角
A?B×C 标量三重积,以A、B、C为列的矩阵的行列式
uw 在向量w方向上的单位向量,即 w/|w|
df 函数f的微小变化,足够小以至适合于所有相关函数的线性近似
df/dx f关于x的导数,同时也是f的线性近似斜率
f ' 函数f关于相应自变量的导数,自变量通常为x
?f/?x y、z固定时f关于x的偏导数。通常f关于某变量q的偏导数为当其它几个变量固定时df与dq的比值。任何可能导致变量混淆的地方都应明确地表述
(?f/?x)|r,z 保持r和z不变时,f关于x的偏导数
grad f 元素分别为f关于x、y、z偏导数 [(?f/?x), (?f/?y), (?f/?z)] 或 (?f/?x)i + (?f/?y)j + (?f/?z)k; 的向量场,称为f的梯度
? 向量算子(?/?x)i + (?/?x)j + (?/?x)k, 读作 "del"
?f f的梯度;它和 uw 的点积为f在w方向上的方向导数
??w 向量场w的散度,为向量算子? 同向量 w的点积, 或 (?wx /?x) + (?wy /?y) + (?wz /?z)
curl w 向量算子 ? 同向量 w 的叉积
?×w w的旋度,其元素为[(?fz /?y) - (?fy /?z), (?fx /?z) - (?fz /?x), (?fy /?x) - (?fx /?y)]
??? 拉普拉斯微分算子: (?2/?x2) + (?/?y2) + (?/?z2)
f "(x) f关于x的二阶导数,f '(x)的导数
d2f/dx2 f关于x的二阶导数
f(2)(x) 同样也是f关于x的二阶导数
f(k)(x) f关于x的第k阶导数,f(k-1) (x)的导数
T 曲线切线方向上的单位向量,如果曲线可以描述成 r(t), 则T = (dr/dt)/|dr/dt|
ds 沿曲线方向距离的导数
κ 曲线的曲率,单位切线向量相对曲线距离的导数的值:|dT/ds|
N dT/ds投影方向单位向量,垂直于T
B 平面T和N的单位法向量,即曲率的平面
τ 曲线的扭率: |dB/ds|
g 重力常数
F 力学中力的标准符号
k 弹簧的弹簧常数
pi 第i个物体的动量
H 物理系统的哈密尔敦函数,即位置和动量表示的能量
{Q, H} Q, H的泊松括号
以一个关于x的函数的形式表达的f(x)的积分
函数f 从a到b的定积分。当f是正的且 a < b 时表示由x轴和直线y = a, y = b 及在这些直线之间的函数曲线所围起来图形的面积
L(d) 相等子区间大小为d,每个子区间左端点的值为 f的黎曼和
R(d) 相等子区间大小为d,每个子区间右端点的值为 f的黎曼和
M(d) 相等子区间大小为d,每个子区间上的最大值为 f的黎曼和
m(d) 相等子区间大小为d,每个子区间上的最小值为 f的黎曼和
+:plus(positive正的)
-:minus(negative负的)
*:multiplied by
÷:divided by
=:be equal to
≈:be approximately equal to
():round brackets(parenthess)
[]:square brackets
{}:braces
∵:because
∴:therefore
≤:less than or equal to
≥:greater than or equal to
∞:infinity
LOGnX:logx to the base n
xn:the nth power of x
f(x):the function of x
dx:diffrencial of x
x+y:x plus y
(a+b):bracket a plus b bracket closed
a=b:a equals b
a≠b:a isn't equal to b
a>b:a is greater than b
a>>b:a is much greater than b
a≥b: a is greater than or equal to b
x→∞:x approches infinity
x2:x square
x3:x cube
√ ̄x:the square root of x
3√ ̄x:the cube root of x
3‰:three peimill
n∑i=1xi:the summation of x where x goes from 1to n
n∏i=1xi:the proct of x sub i where igoes from 1to n
∫ab:integral betweens a and b
(1)数量符号:如 :i,2+ i,a,x,自然对数底e,圆周率 ∏。
(2)运算符号:如加号(+),减号(-),乘号(×或?),除号(÷或/),两个集合的并集(∪),交集(∩),根号( ),对数(log,lg,ln),比(∶),微分(d),积分(∫)等。
(3)关系符号:如“=”是等号,“≈”或“ ”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“‖”是平行符号,“⊥”是垂直符号,“∝”是正比例符号,“∈”是属于符号等。
(4)结合符号:如圆括号“()”方括号“[]”,花括号“{}”括线“—”
(5)性质符号:如正号“+”,负号“-”,绝对值符号“‖”
(6)省略符号:如三角形(△),正弦(sin),X的函数(f(x)),极限(lim),因为(∵),所以(∴),总和(∑),连乘(∏),从N个元素中每次取出R个元素所有不同的组合数(C ),幂(aM),阶乘(!)等。
符号 意义
∞ 无穷大
PI 圆周率
|x| 函数的绝对值
∪ 集合并
∩ 集合交
≥ 大于等于
≤ 小于等于
≡ 恒等于或同余
ln(x) 以e为底的对数
lg(x) 以10为底的对数
floor(x) 上取整函数
ceil(x) 下取整函数
x mod y 求余数
小数部分 x - floor(x)
∫f(x)δx 不定积分
∫[a:b]f(x)δx a到b的定积分
P为真等于1否则等于0
∑[1≤k≤n]f(k) 对n进行求和,可以拓广至很多情况
如:∑[n is prime][n < 10]f(n)
∑∑[1≤i≤j≤n]n^2
lim f(x) (x->?) 求极限
f(z) f关于z的m阶导函数
C(n:m) 组合数,n中取m
P(n:m) 排列数
m|n m整除n
m⊥n m与n互质
a ∈ A a属于集合A
#A 集合A中的元素个数
大写 小写 英文注音 国际音标注音 中文注音
Α α alpha alfa 阿耳法
Β β beta beta 贝塔
Γ γ gamma gamma 伽马
Δ δ deta delta 德耳塔
Ε ε epsilon epsilon 艾普西隆
Ζ ζ zeta zeta 截塔
Η η eta eta 艾塔
Θ θ theta θita 西塔
Ι ι iota iota 约塔
Κ κ kappa kappa 卡帕
∧ λ lambda lambda 兰姆达
Μ μ mu miu 缪
Ν ν nu niu 纽
Ξ ξ xi ksi 可塞
Ο ο omicron omikron 奥密可戎
∏ π pi pai 派
Ρ ρ rho rou 柔
∑ σ sigma sigma 西格马
Τ τ tau tau 套
Υ υ upsilon jupsilon 衣普西隆
Φ φ phi fai 斐
Χ χ chi khai 喜
Ψ ψ psi psai 普西
Ω ω omega omiga 欧米伽
Ⅹ 好像宝盖头的符号
ぉっづゥヴ这些符号在智能ABC输入法.打入V1或V2或V3或V4或V5,按回车,就会有这样的符号.