导航:首页 > 数字科学 > 四年级数学手抄报上面写什么字

四年级数学手抄报上面写什么字

发布时间:2022-11-05 02:18:34

‘壹’ 四年级数学手抄报内容写些什么(A4纸,共四个格)

写些经典例题
外加些数学家的故事
例如:
数学家高斯的故事
高斯(Gauss 1777~1855)生于Brunswick,位于现在德国中北部。他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶而会给他一些指导,而父亲可以说是一名“大老粗”,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。
高斯很早就展现过人才华,三岁时就能指出父亲...

‘贰’ 数学手抄报文字内容可以写什么

.内容可以分为以下几个方面:关于数学的笑话;关于数学的名言;关于数学的意义;关于数学的小故事等。

数学名人故事:

德国着名大科学家高斯(1777~1855)出生在一个贫穷的家庭。高斯在还不会讲话就自己学计算,在三岁时有一天晚上他看着父亲在算工钱时,还纠正父亲计算的错误。
长大后他成为当代最杰出的天文学家、数学家。他在物理的电磁学方面有一些贡献,现在电磁学的一个单位就是用他的名字命名。数学家们则称呼他为“数学王子”。
他八岁时进入乡村小学读书。教数学的老师是一个从城里来的人,觉得在一个穷乡僻壤教几个小猢狲读书,真是大材小用。而他又有些偏见:穷人的孩子天生都是笨蛋,教这些蠢笨的孩子念书不必认真,如果有机会还应该处罚他们,使自己在这枯燥的生活里添一些乐趣。
这一天正是数学教师情绪低落的一天。同学们看到老师那抑郁的脸孔,心里畏缩起来,知道老师又会在今天捉这些学生处罚了。
“你们今天替我算从1加2加3一直到100的和。谁算不出来就罚他不能回家吃午饭。”老师讲了这句话后就一言不发的拿起一本小说坐在椅子上看去了。
教室里的小朋友们拿起石板开始计算:“1加2等于3,3加3等于6,6加4等于10……”一些小朋友加到一个数后就擦掉石板上的结果,再加下去,数越来越大,很不好算。有些孩子的小脸孔涨红了,有些手心、额上渗出了汗来。
还不到半个小时,小高斯拿起了他的石板走上前去。“老师,答案是不是这样?”
老师头也不抬,挥着那肥厚的手,说:“去,回去再算!错了。”他想不可能这么快就会有答案了。
可是高斯却站着不动,把石板伸向老师面前:“老师!我想这个答案是对的。”
数学老师本来想怒吼起来,可是一看石板上整整齐齐写了这样的数:5050,他惊奇起来,因为他自己曾经算过,得到的数也是5050,这个8岁的小鬼怎么这样快就得到了这个数值呢?
高斯解释他发现的一个方法,这个方法就是古时希腊人和中国人用来计算级数1+2+3+…+n的方法。高斯的发现使老师觉得羞愧,觉得自己以前目空一切和轻视穷人家的孩子的观点是不对的。他以后也认真教起书来,并且还常从城里买些数学书自己进修并借给高斯看。在他的鼓励下,高斯以后便在数学上作了一些重要的研究了。
牛顿(1642~1727)
牛顿英国物理学家、数学家。曾任英国皇家学会会长。
牛顿是举世公认的、有史以来最伟大的科学家之一。他的幼年充满了辛酸,在他出生前3个月父亲便去世了,之后母亲改嫁,他是由外祖母抚养成人的。23毕业于着名的剑桥大学后留校工作。后因逃避伦敦流行的鼠疫来到母亲的农场里。在这里,他被一个常人熟视无睹的现象吸引住了。有一次,他看到一个熟透了的苹果落在地上,便开始思索为什么苹果会垂直落在地上,而不是飞到天上去呢?一定是有一种力在拉它,那么这种将苹果往下拉的力会不会控制月球?他就是通过这个看起来十分简单的现象,发现了着名的万有引力定律。这个定律的巨大作用,很快就显示了出来。它解释了当时所知道的天体的一切运动。同时,牛顿又完成了一项重要的光学实验,从而证明了白光是由以赤、橙、黄、绿、青、蓝、紫的顺序排列的合成光。1687年,牛顿出版了有史以来最伟大的科学着作《自然哲学的数学原理》。在这里,他钻研了伽利略的理论,并归纳出着名的运动三大定律。除此之外,他发现的二项式定理,在数学界也有一席之地。1704年,出版《光学》一书,总结了他对光学研究的成果。
牛顿61岁那年被选为英国皇家学会会长,此后年年连任直至逝世。作为举世公认的、最卓越的科学巨匠,他仍谦逊地说:“如果说我比别人看得远些,那是因为我站在了巨人的肩上。”1727年3月20日,84岁的牛顿逝世了。作为有功于国家的伟人,他被葬在了英国国家公墓,受到世人的瞻仰。
祖冲之(429~500)
中国南北朝时代南朝数学家、天文学家、物理学家。范阳遒(今河北涞水)人
祖冲之(429-500)的祖父名叫祖昌,在宋朝做了一个管理朝廷建筑的长官。祖冲之长在这样的家庭里,从小就读了不少书,人家都称赞他是个博学的青年。他特别爱好研究数学,也喜欢研究天文历法,经常观测太阳和星球运行的情况,并且做了详细记录。
宋孝武帝听到他的名气,派他到一个专门研究学术的官署“华林学省”工作。他对做官并没有兴趣,但是在那里,可以更加专心研究数学、天文了。
我国历代都有研究天文的官,并且根据研究天文的结果来制定历法。到了宋朝的时候,历法已经有很大进步,但是祖冲之认为还不够精确。他根据他长期观察的结果,创制出一部新的历法,叫做“大明历”(“大明”是宋孝武帝的年号)。这种历法测定的每一回归年(也就是两年冬至点之间的时间)的天数,跟现代科学测定的相差只有五十秒;测定月亮环行一周的天数,跟现代科学测定的相差不到一秒,可见它的精确程度了。
公元462年,祖冲之请求宋孝武帝颁布新历,孝武帝召集大臣商议。那时候,有一个皇帝宠幸的大臣戴法兴出来反对,认为祖冲之擅自改变古历,是离经叛道的行为。 祖冲之当场用他研究的数据回驳了戴法兴。戴法兴依仗皇帝宠幸他,蛮横地说:“历法是古人制定的,后代的人不应该改动。”祖冲之一点也不害怕。他严肃地说:“你如果有事实根据,就只管拿出来辩论。不要拿空话吓唬人嘛。”宋孝武帝想帮助戴法兴,找了一些懂得历法的人跟祖冲之辩论,也一个个被祖冲之驳倒了。但是宋孝武帝还是不肯颁布新历。直到祖冲之死了十年之后,他创制的大明历才得到推行。
尽管当时社会十分动乱不安,但是祖冲之还是孜孜不倦地研究科学。他更大的成就是在数学方面。他曾经对古代数学着作《九章算术》作了注释,又编写一本《缀术》。他的最杰出贡献是求得相当精确的圆周率。经过长期的艰苦研究,他计算出圆周率在3.1415926和3.1415927之间,成为世界上最早把圆周率数值推算到七位数字以上的科学家。
祖冲之在科学发明上是个多面手,他造过一种指南车,随便车子怎样转弯,车上的铜人总是指着南方;他又造过“千里船”,在新亭江(在今南京市西南)上试航过,一天可以航行一百多里。他还利用水力转动石磨,舂米碾谷子,叫做“水碓磨”。
祖冲之晚年的时候,掌握宋朝禁卫军的萧道成灭了宋朝。

‘叁’ 手抄数学报文字内容4年级,关于数学手抄报文字内容

1.数学除了记数以外,还需要一套数学符号来表示数和数、数和形的相互关系。

2.数学符号的发明和使用比数字晚,但是数量多得多。

3.现在常用的有200多个,初中数学书里就不下20多种。

4.它们都有一段有趣的经历。

5. 例如加号曾经有好几种,现在通用+号。

6.+号是由拉丁文et(和的意思)演变而来的。

7.十六世纪,意大利科学家塔塔里亚用意大利文più(加的意思)的第一个字母表示加,草为μ第三都变成了+号。

8.-号是从拉丁文minus(减的意思)演变来的,简写m,再省略掉字母,就成了-了。

9.到了十五世纪,德国数学家魏德美正式确定:+用作加号,-用作减号。

10.乘号曾经用过十几种,现在通用两种。

11.一个是×,最早是英国数学家奥屈特1631年提出的;一个是· ,最早是英国数学家赫锐奥特首创的。

12.德国数学家莱布尼茨认为:×号象拉丁字母X,加以反对,而赞成用· 号。

13.他自己还提出用п表示相乘。

14.可是这个符号现在应用到集合论中去了。

‘肆’ 数学小报上写啥内容四年级

这里有些素材 你整理一下就行了
第一部分:数学小故事
1.古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在主:“不要弄坏我的圆”。)后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二。
2.伽罗华生于离巴黎不远的一个小城镇,父亲是学校校长,还当过多年市长。家庭的影响使伽罗华一向勇往直前,无所畏惧。1823年,12岁的伽罗华离开双亲到巴黎求学,他不满足呆板的课堂灌输,自己去找最难的数学原着研究,一些老师也给他很大帮助。老师们对他的评价是“只宜在数学的尖端领域里工作”。
3.阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。在这座号称"智慧之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。
第二部分:生活中的数学
学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。比如说,上街买东西自然要用到加减法,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。
我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识。
从这以后,我开始有意识的把数学和日常生活联系起来。有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。
我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。
数学就应该在生活中学习。有人说,现在书本上的知识都和实际联系不大。这说明他们的知识迁移能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。
第三部分:数学小笑话
《不是洗澡堂》

德国女数学家爱米·诺德,虽已获得博士学位,但无开课“资格”,因为她需要另写论文后,教授才会讨论是否授予她讲师资格。

当时,着名数学家希尔伯特十分欣赏爱米的才能,他到处奔走,要求批准她为哥廷根大学的第一名女讲师,但在教授会上还是出现了争论。

一位教授激动地说:“怎么能让女人当讲师呢?如果让她当讲师,以后她就要成为教授,甚至进大学评议会。难道能允许一个女人进入大学最高学术机构吗?”

另一位教授说:“当我们的战士从战场回到课堂,发现自己拜倒在女人脚下读书,会作何感想呢?”

希尔伯特站起来,坚定地批驳道:“先生们,候选人的性别绝不应成为反对她当讲师的理由。大学评议会毕竟不是洗澡堂!”
第四部分
趣味数学
1
我们大家一起来试营一家有80间套房的旅馆,看看知识如何转化为财富。
经调查得知,若我们把每日租金定价为160元,则可客满;而租金每涨20元,就会失去3位客人。 每间住了人的客房每日所需服务、维修等项支出共计40元。
问题:我们该如何定价才能赚最多的钱?
答案:日租金360元。
虽然比客满价高出200元,因此失去30位客人,但余下的50位客人还是能给我们带来360*50=18000元的收入; 扣除50间房的支出40*50=2000元,每日净赚16000元。而客满时净利润只有160*80-40*80=9600元。
当然,所谓“经调查得知”的行情实乃本人杜撰,据此入市,风险自担。

2
《孙子算经》是唐初作为“算学”教科书的着名的《算经十书》之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料。下卷收集了一些算术难题,“鸡兔同笼”问题是其中之一。原题如下:令有雉(鸡)兔同笼,上有三十五头,下有九十四足。

问雄、兔各几何?

原书的解法是;设头数是a,足数是b。则b/2-a是兔数,a-(b/2-a)是雉数。这个解法确实是奇妙的。原书在解这个问题时,很可能是采用了方程的方法。

设x为雉数,y为兔数,则有

x+y=b, 2x+4y=a

解之得

y=b/2-a,

x=a-(b/2-a)

根据这组公式很容易得出原题的答案:兔12只,雉22只。

‘伍’ 四年级数学手抄报内容是什么

你可以找一些数字歌和一些关于奥数相关的资料,再进行加工一下就有你所要的东西了!
你参考一下以下内容吧:
我曾经做的手抄报,左边写哥德巴赫猜想的2+1研究过程,右边写一个数学小故事,至于装饰嘛~写点空心数字,拿蜡笔涂上颜色,最好做出朦胧的效果.
这两个网站有一些数学手抄报的图片
数学手抄报:写些经典例题
外加些数学家的故事

例如
数学家高斯的故事

高斯(Gauss 1777~1855)生于Brunswick,位于现在德国中北部。他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶而会给他一些指导,而父亲可以说是一名“大老粗”,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。

高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。七岁时进了小学,在破旧的教室里上课,老师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。高斯十岁时,老师考了那道着名的“从一加到一百”,终于发现了高斯的才华,他知道自己的能力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。同时,高斯和大他差不多十岁的助教Bartels变得很熟,而Bartels的能力也比老师高得多,后来成为大学教授,他教了高斯更多更深的数学。

老师和助教去拜访高斯的父亲,要他让高斯接受更高的教育,但高斯的父亲认为儿子应该像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最后的结论是--去找有钱有势的人当高斯的赞助人,虽然他们不知道要到哪里找。经过这次的访问,高斯免除了每天晚上织布的工作,每天和Bartels讨论数学,但不久之后,Bartels也没有什么东西可以教高斯了。

1788年高斯不顾父亲的反对进了高等学校。数学老师看了高斯的作业后就要他不必再上数学课,而他的拉丁文不久也凌驾全班之上。

1791年高斯终于找到了资助人--布伦斯维克公爵费迪南(Braunschweig),答应尽一切可能帮助他,高斯的父亲再也没有反对的理由。隔年,高斯进入Braunschweig学院。这年,高斯十五岁。在那里,高斯开始对高等数学作研究。并且独立发现了二项式定理的一般形式、数论上的“二次互逆定理”(Law of Quadratic Reciprocity)、质数分布定理(prime numer theorem)、及算术几何平均(arithmetic-geometric mean)。

1795年高斯进入哥廷根(G?ttingen)大学,因为他在语言和数学上都极有天分,为了将来是要专攻古典语文或数学苦恼了一阵子。到了1796年,十七岁的高斯得到了一个数学史上极重要的结果。最为人所知,也使得他走上数学之路的,就是正十七边形尺规作图之理论与方法。

希腊时代的数学家已经知道如何用尺规作出正 2m×3n×5p 边形,其中 m 是正整数,而 n 和 p 只能是0或1。但是对于正七、九、十一边形的尺规作图法,两千年来都没有人知道。而高斯证明了:

一个正 n 边形可以尺规作图若且唯若 n 是以下两种形式之一:

1、n = 2k,k = 2, 3,…

2、n = 2k × (几个不同“费马质数”的乘积),k = 0,1,2,…

费马质数是形如 Fk = 22k 的质数。像 F0 = 3,F1 = 5,F2 = 17,F3 = 257, F4 = 65537,都是质数。高斯用代数的方法解决二千多年来的几何难题,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。

1799年高斯提出了他的博士论文,这论文证明了代数一个重要的定理:

任一多项式都有(复数)根。这结果称为“代数学基本定理”(Fundamental Theorem of Algebra)。

事实上在高斯之前有许多数学家认为已给出了这个结果的证明,可是没有一个证明是严密的。高斯把前人证明的缺失一一指出来,然后提出自己的见解,他一生中一共给出了四个不同的证明。

在1801年,高斯二十四岁时出版了《算学研究》(Disquesitiones Arithmeticae),这本书以拉丁文写成,原来有八章,由于钱不够,只好印七章。

这本书除了第七章介绍代数基本定理外,其余都是数论,可以说是数论第一本有系统的着作,高斯第一次介绍“同余”(Congruent)的概念。“二次互逆定理”也在其中。

二十四岁开始,高斯放弃在纯数学的研究,作了几年天文学的研究。

当时的天文界正在为火星和木星间庞大的间隙烦恼不已,认为火星和木星间应该还有行星未被发现。在1801年,意大利的天文学家Piazzi,发现在火星和木星间有一颗新星。它被命名为“谷神星”(Cere)。现在我们知道它是火星和木星的小行星带中的一个,但当时天文学界争论不休,有人说这是行星,有人说这是彗星。必须继续观察才能判决,但是Piazzi只能观察到它9度的轨道,再来,它便隐身到太阳后面去了。因此无法知道它的轨道,也无法判定它是行星或彗星。

高斯这时对这个问是产生兴趣,他决定解决这个捉摸不到的星体轨迹的问题。高斯自己独创了只要三次观察,就可以来计算星球轨道的方法。他可以极准确地预测行星的位置。果然,谷神星准确无误的在高斯预测的地方出现。这个方法--虽然他当时没有公布--就是“最小平方法” (Method of Least Square)。

1802年,他又准确预测了小行星二号--智神星(Pallas)的位置,这时他的声名远播,荣誉滚滚而来,俄国圣彼得堡科学院选他为会员,发现Pallas的天文学家Olbers请他当哥廷根天文台主任,他没有立刻答应,到了1807年才前往哥廷根就任。

1809年他写了《天体运动理论》二册,第一册包含了微分方程、圆椎截痕和椭圆轨道,第二册他展示了如何估计行星的轨道。高斯在天文学上的贡献大多在1817年以前,但他仍一直做着观察的工作到他七十岁为止。虽然做着天文台的工作,他仍抽空做其他研究。为了用积分解天体运动的微分力程,他考虑无穷级数,并研究级数的收敛问题,在1812年,他研究了超几何级数(Hypergeometric Series),并且把研究结果写成专题论文,呈给哥廷根皇家科学院。

1820到1830年间,高斯为了测绘汗诺华(Hanover)公国(高斯住的地方)的地图,开始做测地的工作,他写了关于测地学的书,由于测地上的需要,他发明了日观测仪(Heliotrope)。为了要对地球表面作研究,他开始对一些曲面的几何性质作研究。

1827年他发表了《曲面的一般研究》 (Disquisitiones generales circa superficies curva),涵盖一部分现在大学念的“微分几何”。

在1830到1840年间,高斯和一个比他小廿七岁的年轻物理学家-韦伯(Withelm Weber)一起从事磁的研究,他们的合作是很理想的:韦伯作实验,高斯研究理论,韦伯引起高斯对物理问题的兴趣,而高斯用数学工具处理物理问题,影响韦伯的思考工作方法。

1833年高斯从他的天文台拉了一条长八千尺的电线,跨过许多人家的屋顶,一直到韦伯的实验室,以伏特电池为电源,构造了世界第一个电报机。

1835年高斯在天文台里设立磁观测站,并且组织“磁协会”发表研究结果,引起世界广大地区对地磁作研究和测量。

高斯已经得到了地磁的准确理,他为了要获得实验数据的证明,他的书《地磁的一般理论》拖到1839年才发表。

1840年他和韦伯画出了世界第一张地球磁场图,而且定出了地球磁南极和磁北极的位置。 1841年美国科学家证实了高斯的理论,找到了磁南极和磁北极的确实位置。

高斯对自己的工作态度是精益求精,非常严格地要求自己的研究成果。他自己曾说:“宁可发表少,但发表的东西是成熟的成果。”许多当代的数学家要求他,不要太认真,把结果写出来发表,这对数学的发展是很有帮助的。 其中一个有名的例子是关于非欧几何的发展。非欧几何的的开山祖师有三人,高斯、 Lobatchevsky(罗巴切乌斯基,1793~1856), Bolyai(波埃伊,1802~1860)。其中Bolyai的父亲是高斯大学的同学,他曾想试着证明平行公理,虽然父亲反对他继续从事这种看起来毫无希望的研究,小Bolyai还是沉溺于平行公理。最后发展出了非欧几何,并且在1832~1833年发表了研究结果,老Bolyai把儿子的成果寄给老同学高斯,想不到高斯却回信道:

to praise it would mean to praise myself.我无法夸赞他,因为夸赞他就等于夸奖我自己。

早在几十年前,高斯就已经得到了相同的结果,只是怕不能为世人所接受而没有公布而已。

美国的着名数学家贝尔(E.T.Bell),在他着的《数学工作者》(Men of Mathematics) 一书里曾经这样批评高斯:

在高斯死后,人们才知道他早就预见一些十九世的数学,而且在1800年之前已经期待它们的出现。如果他能把他所知道的一些东西泄漏,很可能现在数学早比目前还要先进半个世纪或更多的时间。阿贝尔(Abel)和雅可比(Jacobi)可以从高斯所停留的地方开始工作,而不是把他们最好的努力花在发现高斯早在他们出生时就知道的东西。而那些非欧几何学的创造者,可以把他们的天才用到其他力面去。

在1855年二月23日清晨,高斯在他的睡梦中安详的去世了。

‘陆’ 四年级数学手抄报可以写什么

可以写一些数学家的小故事 :
1 .16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁 道夫数,他死后别人便把这个数刻到他的墓碑上。 瑞士数学家雅谷·伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上 就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”。这是一句既刻划螺线性质又象征他对数学热爱的双关语

2 .20世纪最杰出的数学家之一的冯·诺依曼.众所周知,1946年发明的电子计算机,大大促进了科学技术的进步,大大促进了社会生活的进步.鉴于冯·诺依曼在发明电子计算机中所起到关键性作用,他被西方人誉为"计算机之父".1911年一1921年,冯·诺依曼在布达佩斯的卢瑟伦中学读书期间,就崭露头角而深受老师的器重.在费克特老师的个别指导下并合作发表了第一篇数学论文,此时冯·诺依曼还不到18岁.

3. 伽罗华生于离巴黎不远的一个小城镇,父亲是学校校长,还当过多年市长。家庭的影响使伽罗华一向勇往直前,无所畏惧。1823年,12岁的伽罗华离开双亲到巴黎求学,他不满足呆板的课堂灌输,自己去找最难的数学原着研究,一些老师也给他很大帮助。老师们对他的评价是“只宜在数学的尖端领域里工作”。

4. 阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。在这座号称"智慧之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。

5 . 俄国诗人莱蒙托夫也是一个数学爱好者。在服兵役时,他出题给军官做一个数学游戏:
他让一个军官先想好一个数,不要告诉别人,然后在这个数上加25,心算好了以后,再加上125,然后再减去37。把算好的结果减去原来想的那个数,结果再乘5并除以2,最后,莱蒙托夫对那个军官说:答案是282.5。

‘柒’ 四年级数学手抄报内容

数学趣味小故事:
高斯念小学的时候,有一次在老师教完加法后,因为老师想要休息,所以便出了一道题目要同学们算算看,题目是:
1+2+3+ .+97+98+99+100 =
老师心里正想,这下子小朋友一定要算到下课了吧!正要借口出去时,却被 高斯叫住了!原来呀,高斯已经算出来了,小朋友你可知道他是如何算的吗?
高斯告诉大家他是如何算出的:把 1加 至 100 与 100 加至 1 排成两排相加,也就是说:
1+2+3+4+ .+96+97+98+99+100
100+99+98+97+96+ .+4+3+2+1
=101+101+101+ .+101+101+101+101
共有一百个101相加,但算式重复了两次,所以把10100 除以 2便得到答案等于
从此以后高斯小学的学习过程早已经超越了其它的同学,也因此奠定了他以后的数学基础,更让他成为——数学天才!

‘捌’ 四年级上册数学小报内容该写什么

四年级上册数学小报内容写作如下:

一、最小的数字。

古老而庞大的自然数家族,是由全体自然数1、2、3、4、5、6、7、8、9、10等等集合在一起组成的。其中最小的是“1”,找不到最大的。如果你有兴趣的话,可以找一找。

二、没有最大的自然数。

也许你认为可以找到一个最大的自然数(n),但是,你立刻就会发现另一个自然数(n+1),它大于n。这就说明在自然数家族中永远找不到最大的自然数。

三、“1”确实是自然数家族中最小的。

自然数是无限的,而“1”是自然数中最小的。有人提出异议,不同意“1”是最小的自然数,说“0”比“1”小,“0”应该是最小的自然数。这是不对的,因为自然数指的是正整数,“0”是唯一的非正非负的整数,因而“0”不属于自然数家族。“1”确实是自然数家族中最小的。

四、一元钱哪里去了

三人住旅店,每人每天的价格是十元,每人付了十元钱,总共给了老板三十元,后来老板优惠了五元,让服务员退给他们,结果服务员贪污了两元,剩下三元每人退了一元钱,也就是说每人消费了9元钱。三个人总共花了27元,加上服务员贪污的2元总共29元。那一元钱到哪去了?给大家留下疑问。

五、分苹果

小咪家里来了5位同学。小咪的爸爸想用苹果来招待这6位小朋友,可是家里只有5个苹果。怎么办呢?只好把苹果切开了,可是又不能切成碎块,小咪的爸爸希望每个苹果最多切成3块。这就成了又一道题目:给6个孩子平均分配5个苹果,每个苹果都不许切成3块以上。

‘玖’ 小学四年级数学手抄报的内容资料应该写什麽

数学知识是最纯粹的逻辑思维活动,以及最高级智能活力美学体现。——普林舍姆

◇历史使人聪明,诗歌使人机智,数学使人精细。——培根

◇数学是最宝贵的研究精神之一。——华罗庚

◇没有哪门学科能比数学更为清晰地阐明自然界的和谐性。——卡罗斯

◇数学是规律和理论的裁判和主宰者。——本杰明

◇音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人
获得智慧,科学可改善物质生活,但数学能给予以上的一切。. ————克莱因.

◇音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人
获得智慧,科学可改善物质生活,但数学能给予以上的一切。. ————克莱因.

◇数学的本质在于它的自由. ——康扥尔(Cantor)

◇在数学的领域中, 提出问题的艺术比解答问题的艺术更为重要. ——康扥尔(Cantor)

◇没有任何问题可以向无穷那样深深的触动人的情感, 很少有别的观念能像无穷那样激励理智产生富有成果的思想, 然而也没有任何其他的概念能向无穷那样需要加以阐明.——希尔伯特(Hilbert)

◇数学是无穷的科学. ——外尔(Weil)

◇问题是数学的心脏.—— 哈尔默斯(P.R.Halmos )

◇只要一门科学分支能提出大量的问题, 它就充满着生命力, 而问题缺乏则预示着独立发展的终止或衰亡.—— 希尔伯特(Hilbert )

◇数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来, 但证明却隐藏的极深.——高斯 (Gauss)

◇数学是科学的皇后,而数论是数学的皇后 ——高斯(Gauss)

◇自然这一巨着是用数学符号写成的) ——伽里略

◇数学是一项工具,特别适合于处理任何一类抽象概念,而且,它在这方面的作用是无止境的。因此,一本论述新物理学的书,如果不是单纯地描述实验工作的,其本质上,必定是一本数学书。 ——狄拉克

◇数学受到高度尊崇的另一个原因在于:恰恰是数学,给精密的自然科学提供了无可置疑的可靠保证,没有数学,它们无法达到这样的可靠程度。 ——爱因斯坦

◇纯粹数学,就其本质而言,是逻辑思想的诗篇。——爱因斯坦

◇数学科学呈现出一个最辉煌的例子,表明不用借助实验,纯粹的推理能成功地扩大人们的认知领域。 ——康德

◇一个人就好像一个分数,他的实际才能好比分子,而他对自己的估价好比分母。分母越大,则分数的值就越小。 ——托尔斯泰

◇时间是个常数,但对勤奋者来说,是个‘变数’。用‘分’来计算时间的人比用‘小时’来计算时间的人时间多59倍。

——雷巴柯夫

◇在学习中要敢于做减法,就是减去前人已经解决的部分,看看还有那些问题没有解决,需要我们去探索解决 —— 华罗庚

◇数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来, 但证明却隐藏的极深。数学是科学之王。 ——高斯
◇数学是无穷的科学。 ——赫尔曼外尔

◇在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么。
——毕达哥拉斯

◇一门科学,只有当它成功地运用数学时,才能达到真正完善的地步。
——马克思
◇一个国家的科学水平可以用它消耗的数学来度量。
——拉奥

◇A=x+y+z. A代表成功,x代表艰苦的劳动,y代表正确的方法,z代表少说空话。

-----爱因斯坦

◇天才=1%的灵感+99%的血汗。 ------爱迪生

◇要利用时间,思考一下一天之中做了些什么,是“正号”还是“负号”,倘若是“+”,则进步;倘若是“—”,就得吸取教训,采取措施。 ------季米特洛夫

◇人生应该象线段,有始有终;不应象射线,有始无终。

◇人生轨迹都是圆,但是你可以将圆的半径延长些。

◇一个人要在有限的生活区域内求得最大值。

◇20多岁的人是锐角,30多岁的人是钝角,40多岁的人是平角,50多岁的人是周角。

◇做朋友要象垂线,互相交流;做对手要象平行线,虽然不来往,但是你追我赶,互相超越。

数学故事:
那是1618年11月,笛卡儿在军队服役,驻扎在荷兰的一个小小的城填布莱达。一天,他在街上散步,看见一群人聚集在一张贴布告的招贴牌附近,情绪兴奋地议论纷纷。他好奇地走到跟前。但由于他听不懂荷兰话,也看不懂布告上的荷兰字,他就用法语向旁边的人打听。有一位能听懂法语的过路人不以为然的看了看这个年青的士兵,告诉他,这里贴的是一张解数学题的有奖竞赛。要想让他给翻译一下布告上所有的内容,需要有一个条件,就是士兵要给他送来这张布告上所有问题的答案。这位荷兰人自称,他是物理学、医学和数学教师别克曼。出乎意料的是,第二天,笛卡儿真地带着全部问题的答案见他来了;尤其是使别克曼吃惊地是,这位青年的法国士兵的全部答案竟然一点儿差错都没有。于是,二人成了好朋友,笛卡儿成了别克曼家的常客。

笛卡儿在别克曼指导下开始认真研究数学,别克曼还教笛卡儿学习荷兰语。这种情况一直延续了两年多,为笛卡儿以后创立解析几何打下了良好的基础。而且,据说别克曼教笛卡儿学会的荷兰话还救过笛卡儿一命:

有一次笛卡儿和他的仆人一起乘一艘不大的商船驶往法国,船费不很贵。没想到这是一艘海盗船,船长和他的副手以为笛卡儿主仆二人是法国人,不懂荷兰语,就用荷兰语商量杀害他们俩抢掠他们钱财的事。笛卡儿听懂了船长和他副手的话,悄悄做准备,终于制服了船长,才安全回到了法国。

八岁的高斯发现了数学定理
他八岁时进入乡村小学读书。教数学的老师是一个从城里来的人,觉得在一个穷乡僻壤教几个小猢狲读书,真是大材小用。而他又有些偏见:穷人的孩子天生都是笨蛋,教这些蠢笨的孩子念书不必认真,如果有机会还应该处罚他们,使自己在这枯燥的生活里添一些乐趣。

这一天正是数学教师情绪低落的一天。同学们看到老师那抑郁的脸孔,心里畏缩起来,知道老师又会在今天捉这些学生处罚了。

“你们今天替我算从1加2加3一直到100的和。谁算不出来就罚他不能回家吃午饭。”老师讲了这句话后就一言不发的拿起一本小说坐在椅子上看去了。

教室里的小朋友们拿起石板开始计算:“1加2等于3,3加3等于6,6加4等于10……”一些小朋友加到一个数后就擦掉石板上的结果,再加下去,数越来越大,很不好算。有些孩子的小脸孔涨红了,有些手心、额上渗出了汗来。

还不到半个小时,小高斯拿起了他的石板走上前去。“老师,答案是不是这样?”

老师头也不抬,挥着那肥厚的手,说:“去,回去再算!错了。”他想不可能这么快就会有答案了。

可是高斯却站着不动,把石板伸向老师面前:“老师!我想这个答案是对的。”

数学老师本来想怒吼起来,可是一看石板上整整齐齐写了这样的数:5050,他惊奇起来,因为他自己曾经算过,得到的数也是5050,这个8岁的小鬼怎么这样快就得到了这个数值呢?

高斯解释他发现的一个方法,这个方法就是古时希腊人和中国人用来计算级数1+2+3+…+n的方法。高斯的发现使老师觉得羞愧,觉得自己以前目空一切和轻视穷人家的孩子的观点是不对的。他以后也认真教起书来,并且还常从城里买些数学书自己进修并借给高斯看。在他的鼓励下,高斯以后便在数学上作了一些重要的研究了。

小欧拉智改羊圈
欧拉是数学史上着名的数学家,他在数论、几何学、天文数学、微积分等好几个数学的分支领域中都取得了出色的成就。不过,这个大数学家在孩提时代却一点也不讨老师的喜欢,他是一个被学校除了名的小学生。

事情是因为星星而引起的。 当时,小欧拉在一个教会学校里读书。有一次,他向老师提问,天上有多少颗星星。老师是个神学的信徒,他不知道天上究竟有多少颗星,圣经上也没有回答过。其实,天上的星星数不清,是无限的。我们的肉眼可见的星星也有几千颗。这个老师不懂装懂,回答欧拉说:"天有有多少颗星星,这无关紧要,只要知道天上的星星是上帝镶嵌上去的就够了。"

欧拉感到很奇怪:"天那么大,那么高,地上没有扶梯,上帝是怎么把星星一颗一颗镶嵌到一在幕上的呢?上帝亲自把它们一颗一颗地放在天幕,他为什么忘记了星星的数目呢?上帝会不会太粗心了呢?

他向老师提出了心中的疑问,老师又一次被问住了,涨红了脸,不知如何回答才好。老师的心中顿时升起一股怒气,这不仅是因为一个才上学的孩子向老师问出了这样的问题,使老师下不了台,更主要的是,老师把上帝看得高于一切。小欧拉居然责怪上帝为什么没有记住星星的数目,言外之意是对万能的上帝提出了怀疑。在老师的心目中,这可是个严重的问题。

在欧拉的年代,对上帝是绝对不能怀疑的,人们只能做思想的奴隶,绝对不允许自由思考。小欧拉没有与教会、与上帝"保持一致",老师就让他离开学校回家。但是,在小欧拉心中,上帝神圣的光环消失了。他想,上帝是个窝囊废,他怎么连天上的星星也记不住?他又想,上帝是个独裁者,连提出问题都成了罪。他又想,上帝也许是个别人编造出来的家伙,根本就不存在。

回家后无事,他就帮助爸爸放羊,成了一个牧童。他一面放羊,一面读书。他读的书中,有不少数学书。

爸爸的羊群渐渐增多了,达到了100只。原来的羊圈有点小了,爸爸决定建造一个新的羊圈。他用尺量出了一块长方形的土地,长40米,宽15米,他一算,面积正好是600平方米,平均每一头羊占地6平方米。正打算动工的时候,他发现他的材料只够围100米的篱笆,不够用。若要围成长40米,宽15米的羊圈,其周长将是110米(15+15+40+40=110)父亲感到很为难,若要按原计划建造,就要再添10米长的材料;要是缩小面积,每头羊的面积就会小于6平方米。

小欧拉却向父亲说,不用缩小羊圈,也不用担心每头羊的领地会小于原来的计划。他有办法。父亲不相信小欧拉会有办法,听了没有理他。小欧拉急了,大声说,只有稍稍移动一下羊圈的桩子就行了。

父亲听了直摇头,心想:"世界上哪有这样便宜的事情?"但是,小欧拉却坚持说,他一定能两全齐美。父亲终于同意让儿子试试看。

小欧拉见父亲同意了,站起身来,跑到准备动工的羊圈旁。他以一个木桩为中心,将原来的40米边长截短,缩短到25米。父亲着急了,说:"那怎么成呢?那怎么成呢?这个羊圈太小了,太小了。"小欧拉也不回答,跑到另一条边上,将原来15米的边长延长,又增加了10米,变成了25米。经这样一改,原来计划中的羊圈变成了一个25米边长的正方形。然后,小欧拉很自信地对爸爸说:"现在,篱笆也够了,面积也够了。"

父亲照着小欧拉设计的羊圈扎上了篱笆,100米长的篱笆真的够了,不多不少,全部用光。面积也足够了,而且还稍稍大了一些。父亲心里感到非常高兴。孩子比自己聪明,真会动脑筋,将来一定大有出息。

父亲感到,让这么聪明的孩子放羊实在是及可惜了。后来,他想办法让小欧拉认识了一个大数学家伯努利。通过这位数学家的推荐,1720年,小欧拉成了巴塞尔大学的大学生。这一年,小欧拉13岁,是这所大学最年轻的大学生。

数学趣味题:
1、两个男孩各骑一辆自行车,从相距2O英里(1英里合1.6093千米)的两个地方,开始沿直线相向骑行。在他们起步的那一瞬间,一辆自行车车把上的一只苍蝇,开始向另一辆自行车径直飞去。它一到达另一辆自行车车把,就立即转向往回飞行。这只苍蝇如此往返,在两辆自行车的车把之间来回飞行,直到两辆自行车相遇为止。如果每辆自行车都以每小时1O英里的等速前进,苍蝇以每小时15英里的等速飞行,那么,苍蝇总共飞行了多少英里?

答案
每辆自行车运动的速度是每小时10英里,两者将在1小时后相遇于2O英里距离的中点。苍蝇飞行的速度是每小时15英里,因此在1小时中,它总共飞行了15英里。
许多人试图用复杂的方法求解这道题目。他们计算苍蝇在两辆自行车车把之间的第一次路程,然后是返回的路程,依此类推,算出那些越来越短的路程。但这将涉及所谓无穷级数求和,这是非常复杂的高等数学。据说,在一次鸡尾酒会上,有人向约翰?冯·诺伊曼(John von Neumann, 1903~1957,20世纪最伟大的数学家之一。)提出这个问题,他思索片刻便给出正确答案。提问者显得有点沮丧,他解释说,绝大多数数学家总是忽略能解决这个问题的简单方法,而去采用无穷级数求和的复杂方法。
冯·诺伊曼脸上露出惊奇的神色。“可是,我用的是无穷级数求和的方法.”他解释道

2、 有位渔夫,头戴一顶大草帽,坐在划艇上在一条河中钓鱼。河水的流动速度是每小时3英里,他的划艇以同样的速度顺流而下。“我得向上游划行几英里,”他自言自语道,“这里的鱼儿不愿上钩!”
正当他开始向上游划行的时候,一阵风把他的草帽吹落到船旁的水中。但是,我们这位渔夫并没有注意到他的草帽丢了,仍然向上游划行。直到他划行到船与草帽相距5英里的时候,他才发觉这一点。于是他立即掉转船头,向下游划去,终于追上了他那顶在水中漂流的草帽。
在静水中,渔夫划行的速度总是每小时5英里。在他向上游或下游划行时,一直保持这个速度不变。当然,这并不是他相对于河岸的速度。例如,当他以每小时5英里的速度向上游划行时,河水将以每小时3英里的速度把他向下游拖去,因此,他相对于河岸的速度仅是每小时2英里;当他向下游划行时,他的划行速度与河水的流动速度将共同作用,使得他相对于河岸的速度为每小时8英里。
如果渔夫是在下午2时丢失草帽的,那么他找回草帽是在什么时候?

答案
由于河水的流动速度对划艇和草帽产生同样的影响,所以在求解这道趣题的时候可以对河水的流动速度完全不予考虑。虽然是河水在流动而河岸保持不动,但是我们可以设想是河水完全静止而河岸在移动。就我们所关心的划艇与草帽来说,这种设想和上述情况毫无无差别。
既然渔夫离开草帽后划行了5英里,那么,他当然是又向回划行了5英里,回到草帽那儿。因此,相对于河水来说,他总共划行了10英里。渔夫相对于河水的划行速度为每小时5英里,所以他一定是总共花了2小时划完这10英里。于是,他在下午4时找回了他那顶落水的草帽。
这种情况同计算地球表面上物体的速度和距离的情况相类似。地球虽然旋转着穿越太空,但是这种运动对它表面上的一切物体产生同样的效应,因此对于绝大多数速度和距离的问题,地球的这种运动可以完全不予考虑.

3、一架飞机从A城飞往B城,然后返回A城。在无风的情况下,它整个往返飞行的平均地速(相对于地面的速度)为每小时100英里。假设沿着从A城到B城的方向笔直地刮着一股持续的大风。如果在飞机往返飞行的整个过程中发动机的速度同往常完全一样,这股风将对飞机往返飞行的平均地速有何影响?
怀特先生论证道:“这股风根本不会影响平均地速。在飞机从A城飞往B城的过程中,大风将加快飞机的速度,但在返回的过程中大风将以相等的数量减缓飞机的速度。”“这似乎言之有理,”布朗先生表示赞同,“但是,假如风速是每小时l00英里。飞机将以每小时200英里的速度从A城飞往B城,但它返回时的速度将是零!飞机根本不能飞回来!”你能解释这似乎矛盾的现象吗?

答案
怀特先生说,这股风在一个方向上给飞机速度的增加量等于在另一个方向上给飞机速度的减少量。这是对的。但是,他说这股风对飞机整个往返飞行的平均地速不发生影响,这就错了。
怀特先生的失误在于:他没有考虑飞机分别在这两种速度下所用的时间。
逆风的回程飞行所用的时间,要比顺风的去程飞行所用的时间长得多。其结果是,地速被减缓了的飞行过程要花费更多的时间,因而往返飞行的平均地速要低于无风时的情况。
风越大,平均地速降低得越厉害。当风速等于或超过飞机的速度时,往返飞行的平均地速变为零,因为飞机不能往回飞了。

4、《孙子算经》是唐初作为“算学”教科书的着名的《算经十书》之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料。下卷收集了一些算术难题,“鸡兔同笼”问题是其中之一。原题如下:令有雉(鸡)兔同笼,上有三十五头,下有九十四足。

问雄、兔各几何?

原书的解法是;设头数是a,足数是b。则b/2-a是兔数,a-(b/2-a)是雉数。这个解法确实是奇妙的。原书在解这个问题时,很可能是采用了方程的方法。

设x为雉数,y为兔数,则有

x+y=b, 2x+4y=a

解之得

y=b/2-a,

x=a-(b/2-a)

根据这组公式很容易得出原题的答案:兔12只,雉22只。

5、我们大家一起来试营一家有80间套房的旅馆,看看知识如何转化为财富。
经调查得知,若我们把每日租金定价为160元,则可客满;而租金每涨20元,就会失去3位客人。 每间住了人的客房每日所需服务、维修等项支出共计40元。
问题:我们该如何定价才能赚最多的钱?
答案:日租金360元。
虽然比客满价高出200元,因此失去30位客人,但余下的50位客人还是能给我们带来360*50=18000元的收入; 扣除50间房的支出40*50=2000元,每日净赚16000元。而客满时净利润只有160*80-40*80=9600元。

‘拾’ 四年级数学手抄报内容参考

关于四年级数学手抄报内容参考

手抄报是一种可传阅、可观赏、也可张贴的报纸的另一种形式。在学校,手抄报是第二课堂的一种很好的活动形式,具有相当强的可塑性和自由性。以下是我整理的四年级数学手抄报,希望能够帮助到大家!

四年级数学手抄报图片1

四年级数学手抄报图片2

四年级数学手抄报图片3

昨天的下午,我和姐姐、妹妹回到家。妈妈看我的病还没有好,应带我去人民医院看医生。妈妈从带子里拿出1元钱说:"你去前面买挂号。"我去到那里就说:"医生,我要买一张挂号。"我从手里拿出一元钱。医生就给了我一张挂号。我赶快跑过去我和妈妈进去了医生的位子旁边坐着,医生问我你哪里不舒服,我说:我太咳嗽了,医生说:你去照X光吧!要不你不会好的。然后医生就给我开了张处单,给我去交费,妈妈给了我100元给我去交费,医生说:照X光要50元,然后我给她100元钱,她就找回我50元。后来打"掉针"用了273元。

妈妈从家带了400元钱;今天又来看医生了,医生又说:"咳嗽好了些吗"。"今天早上到现在只咳嗽了二下,好了一点"我回答。医生又说:"今天打完针就好了"。医生开了三个处方给我去付钱。付了钱后我看到处方票里又用了75元,昨天妈妈从家里带的.400元钱,挂号用了1元,照X光用了50元,加上今天用了75元,一共用了75+50=125(元),125+1=126(元)。再加上昨天打针273元。一共用399元。最后用妈妈带的400—399=1(元),还剩1元钱。

人民医院看医生的钱用的真不少呀!

;
阅读全文

与四年级数学手抄报上面写什么字相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:740
乙酸乙酯化学式怎么算 浏览:1406
沈阳初中的数学是什么版本的 浏览:1353
华为手机家人共享如何查看地理位置 浏览:1045
一氧化碳还原氧化铝化学方程式怎么配平 浏览:886
数学c什么意思是什么意思是什么 浏览:1411
中考初中地理如何补 浏览:1300
360浏览器历史在哪里下载迅雷下载 浏览:703
数学奥数卡怎么办 浏览:1388
如何回答地理是什么 浏览:1025
win7如何删除电脑文件浏览历史 浏览:1058
大学物理实验干什么用的到 浏览:1487
二年级上册数学框框怎么填 浏览:1701
西安瑞禧生物科技有限公司怎么样 浏览:976
武大的分析化学怎么样 浏览:1250
ige电化学发光偏高怎么办 浏览:1339
学而思初中英语和语文怎么样 浏览:1651
下列哪个水飞蓟素化学结构 浏览:1425
化学理学哪些专业好 浏览:1488
数学中的棱的意思是什么 浏览:1059