Ⅰ 高中数学包括哪些内容
高中数学主要是代数,三角,几何三个部分.内容相互独立但是解题时常互相提供方法,等高三你就知道了. 必修的: 代数部分有: 1 集合与简易逻辑.其实就是集合,命题,充要条件三点,很浅显高考也不会单出这类的题 2 函数.先是对于函数的描述,有映射定义域对应法则植域;然后是性质,三个,单调性奇偶性周期性;最后是指数函数还有对数函数,是两个基本的函数,要研究他们的性质和图象 3 三角.三角其实就是个工具,比较烦人,公式背下来再多练练用的滚瓜烂熟就行了 4 几何.也就是平面解析几何,用坐标法定量的研究平面几何问题.学几个定义,然后是直线的方程,圆的方程,圆锥曲线方程. 高考的重点一般在 常用函数 常用双曲线+直线 数列 三角 二项式定理 立体几何 排列组合加概率等其他一些知识是比较小的部分 重要的是基础 高一的话上课的基本解题方法一定要熟练掌握 并且不能忘记 到了高三再练习就很麻烦了 还有不要忽视概念 往往很多题目是考概念的 难度方面要视文理科而定 但是70%题目肯定用基本知识就能做的 20%需要结合各种知识并且动脑 真正有难度的题目只有10% 高中数学学习方法谈 进入高中以后,往往有不少同学不能适应数学学习,进而影响到学习的积极性,甚至成绩一落千丈。出现这样的情况,原因很多。但主要是由于学生不了解高中数学教学内容特点与自身学习方法有问题等因素所造成的。在此结合高中数学教学内容的特点,谈一下高中数学学习方法,供同学参考。 一、 高中数学与初中数学特点的变化 1、数学语言在抽象程度上突变 初、高中的数学语言有着显着的区别。初中的数学主要是以形象、通俗的语言方式进行表达。而高一数学一下子就触及非常抽象的集合语言、逻辑运算语言、函数语言、图象语言等。 2、思维方法向理性层次跃迁 高一学生产生数学学习障碍的另一个原因是高中数学思维方法与初中阶段大不相同。初中阶段,很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步,因式分解先看什么,再看什么等。因此,初中学习中习惯于这种机械的,便于操作的定势方式,而高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了高要求。这种能力要求的突变使很多高一新生感到不适应,故而导致成绩下降。 3、知识内容的整体数量剧增 高中数学与初中数学又一个明显的不同是知识内容的“量”上急剧增加了,单位时间内接受知识信息的量与初中相比增加了许多,辅助练习、消化的课时相应地减少了。 4、知识的独立性大 初中知识的系统性是较严谨的,给我们学习带来了很大的方便。因为它便于记忆,又适合于知识的提取和使用。但高中的数学却不同了,它是由几块相对独立的知识拼合而成(如高一有集合,命题、不等式、函数的性质、指数和对数函数、指数和对数方程、三角比、三角函数、数列等),经常是一个知识点刚学得有点入门,马上又有新的知识出现。因此,注意它们内部的小系统和各系统之间的联系成了学习时必须花力气的着力点。 二、如何学好高中数学 1、养成良好的学习数学习惯。 建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。 2、及时了解、掌握常用的数学思想和方法 学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。 解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。高中数学中经常用到的数学思维策略有:以简驭繁、数形结合、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅等。 3、逐步形成 “以我为主”的学习模式 数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神;正确对待学习中的困难和挫折,败不馁,胜不骄,养成积极进取,不屈不挠,耐挫折的优良心理品质;在学习过程中,要遵循认识规律,善于开动脑筋,积极主动去发现问题,注重新旧知识间的内在联系,不满足于现成的思路和结论,经常进行一题多解,一题多变,从多侧面、多角度思考问题,挖掘问题的实质。学习数学一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法。 4、针对自己的学习情况,采取一些具体的措施 记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中 拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。 建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再 犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。 熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化 或半自动化的熟练程度。 经常对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化, 使知识结构一目了然;经常对习题进行类化,由一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。 阅读数学课外书籍与报刊,参加数学学科课外活动与讲座,多做数学课 外题,加大自学力度,拓展自己的知识面。 及时复习,强化对基本概念知识体系的理解与记忆,进行适当的反复巩 固,消灭前学后忘。 学会从多角度、多层次地进行总结归类。如:①从数学思想分类②从解 题方法归类③从知识应用上分类等,使所学的知识系统化、条理化、专题化、网络化。 经常在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学 思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过。 无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而 不是一味地去追求速度或技巧,这是学好数学的重要问题。
Ⅱ 高中数学知识有哪些
高中数学必修一:主要是基本函数。1.集合与函数的概念;2.基本初等函数:指数函数,对数函数,幂函数;3.函数的应用
高中数学必修二:主要是空间几何。1.空间几何体;2.点、直线、平面之间的位置关系;3.直线与方程;4.圆与方程
高中数学必修三:主要是概率和统计。1.算法初步;2.统计;3.概率
高中数学必修四:主要是三角函数和平面向量。1.三角函数;2.平面向量;3.三角恒等变换
高中数学必修五:主要是数列和不等式。1.解三角形;2.数列;3.不等式
高中数学选修2-1:1.常用逻辑用语;2.圆锥曲线与方程; 3.空间向量与立体几何
高中数学选修2-2:1.导数及其应用;2.推理与证明;3.数系的扩充与复数的引入
高中数学选修2-3:1.计数原理;2.随机变量及其分布;3.统计案例
Ⅲ 高中数学主要有几大专题网路上是否已有编辑好的专题希望知道的能告诉我,谢谢!
本人为2011年高三毕业生,刚从数学的苦海中脱离。。。分享一下吧
1,集合与常用逻辑用语(简单,一般是选择小题)
2,函数(一般为选择中档题)
3,立体几何(必定为大题之一,一般难度中度,小题几率小)
4,直线、圆及方程(大题一般和圆锥曲线结合,单考可能性不大~~)
5,算法初步(一般不考来着。。反正在下没遇到过,仔细点就成)
6,三角函数(必定为一道大题,但是最简单的,一般是第1道)
7,平面向量与复数(一般是选择,难度一般)
8,数列(三大恶魔之老小,大题中难度中等偏高,看运气了。。。)
9,不等式(一般只出选择)
10,计数原理(本人生平没见过)
11,概率与统计(注定为一道大题,难度与三角函数差不多,也不难)
12,圆锥曲线与方程(三大恶魔之老中,难度一般为中高,主要难在计算上,思路还可以)
13,导数及其应用(三大恶魔之老大,恶魔中的恶魔。。。。又恶心又操蛋。。小心了,一般高考这大题是注定撂掉的~~~~顶多做个第1问。。。)
14,推理与证明(一般不考,顶多在数列第3小题里涉及个数学归纳法)
全部手打,亲身经验,希望对你有帮助。。。
Ⅳ bsk高中数学专题
我只是想问你做得完不
这些书你努力就最多做一本的1题
不努力就买了也不会看的、
我这么喜欢数学
我买的书也没有做完过
甚至一点没看[就是同种套书]
有的或许几业
这个我觉得你`要把基础打好
再说吧
Ⅳ 高中数学共多少知识点
好多的。一个三角函数就够多了
Ⅵ 人教A版高中数学全套共有多少本是哪些本
必修一共5本,算上选修总共26本,但不都讲。
必修课程
必修课程是每个学生都必须学习的数学内容,包括5个模块。
数学1:集合、函数概念与基本初等函数I(指数函数、对数函数、幂函数);
数学2:立体几何初步、平面解析几何初步;
数学3:算法初步、统计、概率;
数学4:基本初等函数II(三角函数)、平面上的向量、三角恒等变换;
数学5:解三角形、数列、不等式。
选修课程
对于选修课程,学生可以根据自己的兴趣和对未来发展的愿望进行选择。选修课程由系列1,系列2,系列3,系列4等组成。
◆系列1:由2个模块组成。
选修1-1:常用逻辑用语、圆锥曲线与方程、导数及其应用;
选修1-2:统计案例、推理与证明、数系的扩充与复数的引入、框图。
◆系列2:由3个模块组成。
选修2-1:常用逻辑用语、圆锥曲线与方程、空间中的向量与立体几何;
选修2-2:导数及其应用、推理与证明、数系的扩充与复数的引入;
选修2-3:计数原理、统计案例、概率。
◆系列3:由6个专题组成。
选修3-1:数学史选讲;
选修3-2:信息安全与密码;
选修3-3:球面上的几何;
选修3-4:对称与群;
选修3-5:欧拉公式与闭曲面分类;
选修3-6:三等分角与数域扩充。
◆系列4:由10个专题组成。
选修4-1:几何证明选讲;
选修4-2:矩阵与变换;
选修4-3:数列与差分;
选修4-4:坐标系与参数方程;
选修4-5:不等式选讲;
选修4-6:初等数论初步;
选修4-7:优选法与试验设计初步;
选修4-8:统筹法与图论初步;
选修4-9:风险与决策;
选修4-10:开关电路与布尔代数。
Ⅶ 高中数学教辅 专题
1。高中的数学其实题目就那么多,新旧之分就是几道题目的不同。当然你有时间就好好研究,什么题型的难度都会才好。免得碰上变态高考试卷,自己不知道怎么对付。
高中数学有一个迷茫期,就是怎么学都不懂。但是一定要坚持学,大概到高二上学期就好了。
数学建议的资料 《重难点手册》
当然,最好的资料永远是 数学书加高考真题。你不妨找一找,天星有卖 高考分类汇编
高一数学其实是高考的关键。很多人在寒暑假一直都在补高一的类容。真的,函数,三角函数,数列……这些在高考中占据大量分数。你可以找近几年的 考试要求 研究下,找到重点专门研究。
2。现在做英语高考题不算早。英语是语言学科,这是没有什么等级的。不过英语高考题不是死做,建议这样子做:
单选:找题目分类。比如 情景对话 动词的现在分词……这个网上就有。建议做历年全国高考试卷。这样子做,你会有感觉的
完型填空:在做完高考题的基础上,建议做大学四级题。因为大学四级对词汇要求很高,做大学四级可以帮助你提升完型填空的能力。当然,高考真真考的其实是文章逻辑关系。高考完型填空的依据就是上下文。你能明白段落与段落,句子和句子,词和词的关系,胜过你做十篇。这也是完形填空拿高分的唯一路径。
阅读:在做完高考题的基础上,千万不要做大学四级的题目。高考要求的是选拔,大学四级只要过关。因此,高考的题目很刁钻,有时候翻译成中文你都拿不到满分。大学四级的却是只要你能看到5成,你就能拿全分。阅读建议找本文的主题。虽然题目刁钻,但是它们都有一个共同的地方,围绕主题。只要你找到主题,其它的几乎可以不看。做真题时,无论题目和文章简单与否,都要尝试想主题和题目的关系,经常这样,你的阅读会有一个很大的提升。
作文:虽然这个方法很卑鄙,但是却是你拿到高分的捷径。作文只有那几类,你找到相应题型的模板(如果你不懂上面是模板,你可以到网络上找),考试时只要换几个词就好了。你可以从考研的上面找。刚开始只要记住别人写的,到后来一定自己要创造一个,只属于自己的模板,将它用熟悉,参加高考。
3。语文真真拉分的是文言文和作文。做文摘和看杂志一点用都没有。记住考场作文和杂志文章是不同的概念。所以,你只要研究高考作文,而不是杂志。
文言文:(包含古诗词鉴赏)用高考试卷来研究。看试卷是怎么给分的,记住常用的字词。一定要词词落实。大约一篇高考文章用3天研究。
作文:千万不要模仿满分作文。满分作文和零分作文有时候只是一步之差。没必要在这上面冒险。因为高中议论文多,所以每天找一篇,只写提纲,然后请语文老师提建议,回来再写提纲。这样确保自己不跑题,拿到中等偏上的分数。
语言基础:大多数只要肯下功夫就没问题,不在多讲
语言运用:属于大家分数普遍偏低。这个很难练习,如果你看到12分你拿3分,一般就是正常了。除非你想考清华北大,不然这方面纠结的没意思。
记住,高考只是考试。练习的最好方法就是揣摩各个题型的解题技巧。每个题型的技巧都是大量练习,勤奋反思得到的。
还有,一定要研究课本。课本是很多专家研究出来的。你如果能理解每一道习题的隐身意,你一定会大有长进。
比如:一个平面上任意两点,如果平面上有一个动点,到两定点的距离之比为定值(且不为1),求这个定点的轨迹。
很多老师都是用方程的方法解决的,有的甚至不讲。但是,这题其实是 阿波罗尼斯圆 的定义,从本题找出 阿波罗尼斯圆,研究其性质,对你很有作用。用这个来解决江苏08 13题
满足条件AB=2,AC=根号2 BC的三角形ABC的最大面积是_________
别人算10分钟也解决不了,用 阿波罗尼斯圆只是几步就解决了
祝你成功
Ⅷ 高中数学数列专题
LZ您好...
这个...
在已知条件中,不是有
a[n+2]-a[n]=4 吗?
所以直接计算就可!
当n=1时
a[1+2] - a[1]=4
a[3] = 4+a[1]=5
同理,当n=3时
a[3+2] - a[3]=4
a[5] = 4+a[3]=9
当n=5时,计算a[7]=13
......
事实上这个a[n+2]-a[n]=4递推公式
不就是隔1个数取数列的吗?
所以本身就是取n=1,3,5,7...
Ⅸ 请问高中数学包括哪些内容
高中数学主要是代数,三角,几何三个部分.内容相互独立但是解题时常互相提供方法,等高三你就知道了.
必修的:
代数部分有:
1 集合与简易逻辑.其实就是集合,命题,充要条件三点,很浅显高考也不会单出这类的题
2 函数.先是对于函数的描述,有映射定义域对应法则植域;然后是性质,三个,单调性奇偶性周期性;最后是指数函数还有对数函数,是两个基本的函数,要研究他们的性质和图象
3 三角.三角其实就是个工具,比较烦人,公式背下来再多练练用的滚瓜烂熟就行了
4 几何.也就是平面解析几何,用坐标法定量的研究平面几何问题.学几个定义,然后是直线的方程,圆的方程,圆锥曲线方程.
高考的重点一般在 常用函数 常用双曲线+直线 数列 三角
二项式定理 立体几何 排列组合加概率等其他一些知识是比较小的部分
重要的是基础 高一的话上课的基本解题方法一定要熟练掌握 并且不能忘记 到了高三再练习就很麻烦了 还有不要忽视概念 往往很多题目是考概念的
难度方面要视文理科而定 但是70%题目肯定用基本知识就能做的 20%需要结合各种知识并且动脑 真正有难度的题目只有10%
高中数学学习方法谈
进入高中以后,往往有不少同学不能适应数学学习,进而影响到学习的积极性,甚至成绩一落千丈。出现这样的情况,原因很多。但主要是由于学生不了解高中数学教学内容特点与自身学习方法有问题等因素所造成的。在此结合高中数学教学内容的特点,谈一下高中数学学习方法,供同学参考。
一、 高中数学与初中数学特点的变化
1、数学语言在抽象程度上突变
初、高中的数学语言有着显着的区别。初中的数学主要是以形象、通俗的语言方式进行表达。而高一数学一下子就触及非常抽象的集合语言、逻辑运算语言、函数语言、图象语言等。
2、思维方法向理性层次跃迁
高一学生产生数学学习障碍的另一个原因是高中数学思维方法与初中阶段大不相同。初中阶段,很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步,因式分解先看什么,再看什么等。因此,初中学习中习惯于这种机械的,便于操作的定势方式,而高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了高要求。这种能力要求的突变使很多高一新生感到不适应,故而导致成绩下降。
3、知识内容的整体数量剧增
高中数学与初中数学又一个明显的不同是知识内容的“量”上急剧增加了,单位时间内接受知识信息的量与初中相比增加了许多,辅助练习、消化的课时相应地减少了。
4、知识的独立性大
初中知识的系统性是较严谨的,给我们学习带来了很大的方便。因为它便于记忆,又适合于知识的提取和使用。但高中的数学却不同了,它是由几块相对独立的知识拼合而成(如高一有集合,命题、不等式、函数的性质、指数和对数函数、指数和对数方程、三角比、三角函数、数列等),经常是一个知识点刚学得有点入门,马上又有新的知识出现。因此,注意它们内部的小系统和各系统之间的联系成了学习时必须花力气的着力点。
二、如何学好高中数学
1、养成良好的学习数学习惯。
建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
2、及时了解、掌握常用的数学思想和方法
学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。
解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。高中数学中经常用到的数学思维策略有:以简驭繁、数形结合、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅等。
3、逐步形成 “以我为主”的学习模式
数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神;正确对待学习中的困难和挫折,败不馁,胜不骄,养成积极进取,不屈不挠,耐挫折的优良心理品质;在学习过程中,要遵循认识规律,善于开动脑筋,积极主动去发现问题,注重新旧知识间的内在联系,不满足于现成的思路和结论,经常进行一题多解,一题多变,从多侧面、多角度思考问题,挖掘问题的实质。学习数学一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法。
4、针对自己的学习情况,采取一些具体的措施
² 记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中
拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。
² 建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再
犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。
² 熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化
或半自动化的熟练程度。
² 经常对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化,
使知识结构一目了然;经常对习题进行类化,由一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。
² 阅读数学课外书籍与报刊,参加数学学科课外活动与讲座,多做数学课
外题,加大自学力度,拓展自己的知识面。
² 及时复习,强化对基本概念知识体系的理解与记忆,进行适当的反复巩
固,消灭前学后忘。
² 学会从多角度、多层次地进行总结归类。如:①从数学思想分类②从解
题方法归类③从知识应用上分类等,使所学的知识系统化、条理化、专题化、网络化。
² 经常在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学
思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过。
² 无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而
不是一味地去追求速度或技巧,这是学好数学的重要问题。