⑴ 数学设计方案的题要如何做,有何解题技巧
假设每件影集x元,则每件衣服为x+9元
2*(x+9)+5x=200
解得x=26
每件影集26元,每件衣服为35元
现有现金1800元,拿出为老师买纪念品的钱,剩下的应在1500-1530之间
如果全部买影集,最多能买1530÷26=58.8,所以最多能买58件
如果全部买衣服,最多能买1530÷35=43.7,所以最多能买43件
有43种买衣服和影集的方案
⑵ 如何解答数学问题
如何解答数学问题?
方法步骤:
1、首先,要审清题干,明确你已知什么,包括题干中给出了什么具体信息,隐含信息。这样你才知道你有什么,这是你要得到什么的基础前提。带着这样的思路去分析问题,就是一种数学上由已知推未知的思路。数学其实本质上就是在做这样的事情,不管是推理还是计算。
2、其次,要将题目进行推理转化,类似于数学上的分析法。如我要吃饭,那我得先做饭或者买饭,做饭的话需要什么材料需要什么步骤,买饭的话需要多少钱买什么东西。然后一直这样追问下去,直到将问题的源头和最终要解决的问题联系起来,那么就完成解决问题的思维过程,也就是转化完毕。
3、将思维的过程从前到后整理成逻辑性的步骤。可以说第二步就是逆向思维的过程,这就是正向推导的逻辑推理。步骤要运用到最基本的推理,这些是你完成步骤最基本的保证。
注意事项
1、方法永远是纲领性的、整体性的。具体问题需要具体分析,没有绝对的方法,所以不能生搬硬套一种方法。
2、结合具体的实例体验数学问题的解决,一步步积累解决问题的信心和成就感,这才是成长的快乐过程。
⑶ 数学方案题怎么做
所谓方案题,就是根据给的题境,设计一个最合适最好的解决问题的方案,方法.
一般情况下,都是要求最省钱,最快,最便捷等等.
都是因题而异的!
这种题型要求联系生活实际,思维灵敏.
多练习一下就应该找得到方法.
如不行,可以把题目发上来,我们一起试着去解决他!
⑷ 大家可否说一下解数学题时的一般步骤就是如何入手的思路是怎样的
解答分数应用题要做到“四个善于”(这里的方法其实也是一种思路)
分数应用题变化多端,但我们只要仔细审题,掌握一定的解题技巧,便能迎刃而解。
一、善于对应。在解答分数(百分数)应用题时,找不准数量之间的对应关系是造成错误的重要原因。因而,要正确解答分数应用题首先要善于找出数量之间的对应关系。如:某工厂有工人1350人,其中男工人占 ,男工人比女工人多多少人?根据题意,可找出下列对应关系:总人数1350人单位“1”;男工人数 ,女工人数 ;男工人比女工人多的人数 。根据“单位1”的量×几分之几=对应数量,不难得出计算结果: (人)。
二、善于比较。有意识地进行题组比较,能使我们分清分数应用题的结构特征,清晰分数应用题的解题思路。如:(1)水果店运来苹果2000千克,比运来的梨多 ,梨有多少千克?(2)水果店运来苹果2000千克,运来的梨比苹果多 ,梨有多少千克?比较两道题,就会发现:一是单位“1”不同。(1)题中的单位“1”是梨的数量(未知);(2)题中的单位“1”是苹果的数量(已知)。二是数量2000千克对应的分率不同。(1)题中2000千克对应的分率是 ;(2)题中2000千克对应的分率是“1”。三是类型不同。(1)题是“已知一个数的几分之几是多少,求这个数”,用方程或除法解答;(2)题是“求一个数的几分之几是多少”,用乘法解答。四是列式与计算结果不同。
三、善于假设。遇到某些难以解答的分数应用题,我们不妨合理假设具体条件,使抽象的数量关系具体化。如:水结成冰时,体积增加 。冰化成水时,体积减少几分之几?我们可先假设水有11立方米,求出水结成冰后的体积是12立方米,再求出冰化成水后体积减少几分之几:即 。
四、善于沟通。对相类似的知识进行联想沟通,能使我们解题时融会贯通,举一反三。如:(1)小明去买早点,包里的钱单买油条可买10根,单买包子可买5个。他买了2根油条后,还可买几个包子?(2)一块木料单做椅子可把10把,单做桌子可做5张。李师傅先用这块木料做了2把椅子,还可做几张桌子?如果我们把这一类题与工程问题进行沟通,就会很快找到解题思路。
⑸ 初中数学方案题技巧
解决方案题:关键是根据已知数据建立恰当的数学模型,再根据相应的数学知识来求解。
⑹ 初一下册数学方案题步骤
根据实际意义,Y>0,50-3X>0,
解得:0<Y<50/3。
4n+5m=9的正整数解:
m=(9-4n)/5,
令m=0,即9-4n=0,n=9/4,无正整数解,
令m=1,即9-4n=5,n=1,
令m=2,即9-4n=10,无正整数解,
∴正整数解只有一组:
m=1,n=1.
⑺ 请哪位高人给总结一下初中数学方案设计题选择题型的解题方法和技巧,做这种题有时觉得自己的方法太麻烦
你这道题我做过。设第一个小组x人,二组y人,则三组20-x-y人。有方程:8x+6y+5(20-x-y)=120 解出来x和y的关系。因为每组至少两人,就从x=2开始,有一个对应的y值,于是三组的人一减就出来了。在把x的值依次加1,把各组人数求出来,最后何时有一组人数小于2了,就停止。此时再一查组数即可。
方案设计要注意找好x到底设什么,是用不等式还是等式,把各个需要知道的量都用未知数表达出来,理清思路就行了。
全文手机手打,望采纳。
⑻ 数学解决问题的一般步骤
第一,从问题出发。解决数学问题,首先要从理解数学问题开始,没有正确的理解就没有正确的解答。所以说要从问题出发,分析问题的基本条件,基本要求,梳理基本脉络,形成基本观点。这就要求学生要特别注重语言的训练,包括听说读写等能力的训练,以实现对题目的充分理解。
第二,从规律出发。数学问题都是有一定规律可遵循的,发现了规律可以事半功倍,发现不了规律只能一头雾水。如何发现规律?首先要认识规律。数学的规律都是隐藏在各类问题之下的,一般很难发现。这就需要学生日常养成专心听讲的良好习惯,因为这些规律性认识都是经过老师认真备课,精心组织耐心讲授出来的。课时要会做笔记,做好笔记,课下做好复习,认识,理解规律,最好能够自主的去发现规律总结规律。
第三,从结果出发。所谓解决数学问题,在小学和中学阶段就是指解决数学题目。数学题目有一个特点,就是一定有一个疑问,有一个答案。为了解答,我们需要认真分析问题,即所谓的有的放矢。从结果出发反推问题所在,从结果中发现数学冲突和矛盾,在结果中理清解题思路。
第四,从逻辑关系出发。解决数学问题的实质是逻辑关系的理顺,学生需要从题目中找到各种数量,变量,并建立起这些量之间合理的逻辑关系和数学解释。罗辑思维能力提升的方法很多,主要是专项逻辑训练,数字规律认识,图形类型归纳,数形结合问题等等。在具体的解题过程中,我们需要抓住变量,还要抓住不变量,通过这些量之间的变化关系得出题意中的逻辑关系,进而最终求的结果。
⑼ 数学方案问题
第三种方案好
⑽ 数学题怎么解
数学是推理工具,初等数学可解决的问题主要有两类:证明命题成立,推导未知量的具体数值
下面分别论述如何利用数学解决问题。
命题证明方法有三种:
1,常规证明方法,从公理或已知的命题推导出该命题成立,即证明该命题是已知公理的子命题。要点是要理清命题以及给出条件的含义,找出该命题的等效含义和条件,最好是转化为数值等式关系,然后符号演算,这种演算方法通用性强,在一些特殊情况下也转化为直观的几何关系,通过直观的几何关系证明,但几何的方法需要灵感,不通用。
2,归谬方法,假设该命题不成立,推导出矛盾的命题,从而证明该命题成立。适用的场合比较有限,不作介绍。
3,递推,初始命题成立,如果第n个命题成立,则第n+1个命题也成立,从而证明所有命题成立。这种证明局限性强,也不作介绍。
下面先拿最典型的勾股定律,说明常规的推导的证明方法: 证明勾股定律成立,
分析过程:
1. 明确要证明的命题:勾股定律是直角三角形的斜边平方等于另两边的平方和
2. 明确定义:直角三角形的定义是其中一个角是直角
3. 找等效含义,转化为符号演算:
4. 边成的平方等效于正方形的面积,于是可以考虑利用直角三角形的特点拼接图形,有很多种拼接方法,但都不好想出,都属于灵光一现的想法,不具有可复制性,这里不作介绍。
5. 换个通用思路,勾股定律既然是边长数值间的关系,可以考虑直角三角形有什么独有特点让边长数值间发生关系,用等式表达,然后数学演算,转化为平方的关系。这种思考方法适用任何场合,可以逐步思考,人人都能掌握。让边长数值发生关系,只能利用相似三角形的边长比值相等,于是考虑构建相似三角形,因为一定要把直角利用上才会反映出直角三角形的特性,自然想到从直角处,引垂直斜边的辅助线。
很容易证明:新生成的两个直角三角形都与原来的大直角三角相似,这也是直角三角形的特性。用数值等式描述相似性,多了3个变量,c1,c2,h 需要3个等式消元,要推导a, b, c间的关系,还需要第4个等式关系,所以总共需要4个等式:
下方小三角形与大三角形相似:
b/c = c2/b
h/a = b/c
上方小三角形与大三角形相似:
a/c = c1/a
h/b = a/c
把c1,c2,h当成变量,任意用其中3个等式,求解出它们的表达式,带入剩余还没用到的第四个等式,变换等式即为:
a平方 + b平方 = c平方
这种关系等式演算的方法,又叫做方程的方法,适合大多数场合,最重要的数学内容。方程方法的用处除了证明命题外,更主要的用处是推导未知量的具体数值。在简单的场合,仅仅算术思维也能求解,但稍微复杂的场合,方程是唯一的求解方法。
方程的使用步骤:
1,搞清楚题目中的条件,已给出数值的含义,暗含的数值。把要求解的未知量用简单易懂的符号代替,包括要求解的未知量和可能需要的未知量。
2,针对某个物理量,两两找出数值间的等式关系,一直到等式的数量不少于未知量的数量为止。
3,用数学演算率转换等式,两边同时加减乘除,开方开根,微分积分,项式展开等,一直到单独的未知量和某个具体值的等式关系,即求解。
举例说明方程的使用方法:
例子1(小学的数学题):
某管道工程由甲乙两工程队施工,单独施工分别要用10天和15天,如果两队两端同时施工2天,然后由乙队单独完成剩下的工程还需几天完成?
我们先用直接的算术推导方法做:工程量为1,甲乙每天可完成的量是 1/10, 1/15. 同时施工两天后还剩 1 - (2/10 + 2/15), 剩余的由乙队单独施工,还需用的天数既是 前面的剩余数 除以 1/15 。
这种推导方法需要稍微复杂的思维过程,简单的,可以有多个角度思考,复杂的,常常只有一个思路可行,想不到就做不出。
现在我们用方程的方法,完全不需要思考,只需考虑数量关系即可,然后数学演算即可得出需要的答案,而且数量关系可以从不同的角度考虑,都是等效的:
还需用的天数为未知量,符号记作x天。
方法一: 2天共同完成的工程量加x天乙队完成的工程量等于1, 即
2/10 + 2/15 + x * 1/15 = 1
方法二: 甲乙分别完成的工程量和等于1,即
2/10 + (2 + x) * 1/15 = 1
方法三: 剩余的工程量即为乙队x天完成的量, 即
1 - (2/10 + 2/15) = x * 1/15
可以看出用方程的方法可以从不同角度描述出数量关系,非常容易想到,然后再用规则演算得到解。而用思维直接推导,即算术方法,就稍微有一定的难度。这个例子是非常简单的应用题,也可以用算术的方法想出,但更多的应用题再聪明的脑袋也不能想出算术的思路,只能用方程的方法列出所有的数量关系式,组成方程组,然后演算,列关系式要做到不能缺失,否则做不出答案来,关系式有重复的在演算时会发现,直接去除多余的关系式就行了,不影响演算。
例子2,稍微难点(依然是小学的数学题):
某铁路桥长1000米, 一列火车桥上通过,火车刚上桥到完全通过的时间是1分钟,整列火车在桥上的时间是40秒,请求出火车长度和速度。
用算术的思路就很难想出
现用方程的方法: 假设火车速度是x米/秒, 长度是y 米。
这里面有3个数值: 桥长1000米,过桥用时1分钟,整列火车在桥上的时间是40秒,我们列关系式只要两两地考虑关系。
先1000米和1分钟: 1000 = 60 * x – y
再1000米和40秒或1分钟和40秒,那一对容易表达关系用哪个。
1000 = 40 * x + y 或 (60 – 40)* x = 2 * y
三个方程用其中2个就完全描述出关系了,三个都用就重复了(任意2个可以推导出第三个关系式)。如果判断不出是不是重复就都列出,反正运算时可发现,不影响求解。
针对这些简单的应用题,我们在演算方程或方程组时其实每步演算都有实际的意义,但在复杂方程的演算中,每步的演算大部分没有实际的物理意义对应,纯粹是数学规则的应用。所以有些高深的物理问题可能只能用数学方法才能发现和解释。
这里再强调下应用题转化为方程或方程组的问题,这个是解题的关键。把要求解的值设为符号x,y ,z等,把题目中的说到的数值或暗含的数值和含义写出来,注明含义,然后拿出其中的两个的数值考虑其关系,针对某个物理量,把其他量引入,列出数量关系式即方程,一直到所有数值都用到为止,然后把几个方程放在一起利用数学演算求解,方程有实质重复的没关系,演算时发现再去除。这种解题步骤,不需脑子多聪明,不需脑子同时考虑到多种情况,只要一个一个地分别考虑问题然后列出关系式,最后丢开实际场景只是数学运算即可。
例子3,(高中的知识水平):
敌军阵地在前方20公里处,我方大炮的出膛速度是1000米/秒,求打击敌方时炮管仰角应是多少。
用算术思维无法想出答案,只能用方程的方法。
仰角设定为y,这里有两个数值20公里,1000m/s,标明其物理含义,然后两两找数量关系,组合随意,根据物理意义,数量关系一定是同一个物理量间的关系。
仰角y和距离20公里的关系: 考虑空间距离上的关系, 仰角x导致炮弹在落地时水平方向飞行了20公里,这时就必须另外引入飞行的时间t,所以关系式为:
1000 * cos(y) * t = 20,000
距离20公里和速度1000m/s的关系: 上面已经考虑了距离上的关系,所以这次只能考虑其他物理量上的关系,这个例子中涉及到的物理量还有时间,速度,我们可以随意选择,如果发现和已列的关系式等效,就换另一个,这里选择速度是和上述的距离关系式等效,所以只能选择时间:水平飞行20公里的时间和炮弹落地的时间相等,
20,000/(1000 * cos y ) = 2 * 1000 * sin y / g ,g是重力加速度9.8 m/s/s
两个方程,两个变量,按数学演算规则就很容易求解出仰角y的具体值。
例子4,(高中知识)
敌方炮弹来袭,我方雷达测量出相隔1秒的飞行炮弹的三个位置:分别是(X1,Y1,Z1)=(20km, 10km, 10km),(X2,Y2,Z2)=(19km, 9.9km, 10km) ,(X3,Y3,Z3)=(18km, 9.7km, 10km) , X,Y,Z分别表示水平位置,高度,侧向。问敌方大炮在何处。
先明确位置的含义:炮弹在一定仰角下射出,在重力作用下飞行,在某个时刻被我方雷达捕捉,相距1秒测量的三个位置坐标。用符号代替未知量,假设敌方大炮位置为(X0 Y0, Z0),需要用到的仰角为a, 炮弹出膛速度为V,飞行到位置一的时间为t,位置1的炮弹下落速度为V1,位置2的下落速度为V2。
先看水平方向的位置关系:
X1-X2=V * COS(a) * 1
X1-X3=V * COS(a) * 2
X0-X1=V*COS(a) * t
再看垂直方向的位置关系:
Y1-Y2 = 0.5 * V2^2 /g - 0.5 *V1^2 /g
Y1-Y0=0.5*V1^2/g
落下速度的关系:
V2-V1=g * 1
V1= (t-V*SIN(a)/g)* g
7个未知量,7个关系等式,所以可以求出7个未知量,若3个位置Z值不同,就多列一些Z方向上的侧向位置关系等式,仰角要分解到两个平面上的夹角,等式只是稍微复杂些,同样可以求解出Z0的值。这样敌方大炮的位置(X0,Y0,Z0) 就能确定,就可以根据例子3调整我方大炮仰角反击,消灭对方。
这个例子,如果不用方程的方法,没有任何办法求解。而方程的办法只需按步骤考虑,每步都很简单,不需多深的思考,不需要多高的智商,人人都能办到,尤其是演算时,完全是固定的套路,而且可以让电脑代劳。
人脑功能强大,但缺陷也很明显,记忆力有限,不能长程推理,概念容易变化,不能同时考虑多个因素。数学工具恰好可以克服这些缺陷,用符号代替数量或极度抽象的概念,从而保证推理过程中内涵和外延不变化,两两找出关系等式,然后只按少数的演算规则变换等式,最终就能得到未知量的确切值,这种推理方法不需记忆,不需动脑,可以纸上演算,人人都可学会。随着信息技术的发展,现在数学演算的过程已经有了多款优秀软件解决,更进一步降低人脑的负担,只需把因素间的数量关系输入电脑即可求解。
可以说科学的发展完全依赖数学推理工具。现代人只有掌握基础的数学工具,才能理解科学和技术。尤其是针对复杂的问题,关系等式常常是变化率间的关系,即微分方程,推理完全是数学演算,理解变得与直觉无关,只能从数学演算规则上理解。如果又是多个变量的偏微方程,复数表示的物理矢量,理解上更是如此。