⑴ 大学数学学什么
大学数学学的是高等数学的内容。主要包括极限、导数、微积分以及空间解析几何。
极限
数学中的“极限”指某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”的过程。此变量永远趋近的值A叫做“极限值”。
导数
导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。
微积分
微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。
⑵ 大学数学学什么
大学数学主要有 高等数学、线性代数、概率统计、数值分析、离散数学.其中高数、线代、概统都是理工类学生必修科目.文科生只需学比较简单的高数就行了.而考研数学也就考这三科.高数主要有导数、微积分、空间解释几何...
⑶ 大学数学学什么
分析学、代数学、几何学及其应用的基本理论和基本方法以及一些常用的计算机知识和数学软件的使用。
数学专业研究方向有分析,代数,几何,方程,拓扑,数论,概率论与数理统计等。
在国家重视基础科学发展以及重点建设一流专业之际,数学专业作为第一批国家级一流专业建设点迎来了一个千载难逢的发展机遇,发展前景广阔,发展趋势很好。
⑷ 大学数学学什么
应该是每个学校的安排也都不会一样吧~然后数学专业各个方向的所学也不一样,楼主要问的的是应用数学么?
大一:高等代数,数学分析,解析几何
大二:常微分方程,事变函数,复变函数,概率论基础,数理统计,近世代数,c语言
大三:数值逼近,数学物理方程,泛函分析,拓扑学,运筹学,数值代数,微分方程数值解,时间序列分析,微分几何
大四:离散数学之类的等等,自己选择
高等数学不是数学的专业课,一般是非数学类的所学,里面包含了微积分,解析几何,常微分等内容,比较概括,只注重计算
数学分析是数学类基础课,主要内容是微积分之类的,比高等数学讲得要深,既要掌握定理证明,也注重计算能力
线性代数是非数学类开的课程,高等代数是数学类专业课程,它比线性代数内容要深,两门课都是讲矩阵,线性方程组等内容
⑸ 大学数学学什么内容
大学数学一般是高等数学,包括微积分、代数学、几何学以及它们之间的交叉内容。高等数学的主要学习内容包括数列、极限、微积分、空间解析几何与线性代数、级数、常微分方程。
数学分析课程的内容一般由极限论、一元微积分、级数论和多元微积分这四大部分所组成,其中一元微积分对应了通常国外所说的“初等微积分”课程,而极限论、级数论和多元微积分这三部分则对应了国外所说的“高等微积分”课程。极限理论的主要内容有:数列的极限、函数的极限、连续函数、关于实数的基本定理、以及闭区间上连续函数的性质。
大学数学学习技巧
第一、大学的数学非常注重逻辑,课前的预习有助于学好大学数学,一可以发现不懂的,二可以在正式课程上加深印象。
第二,重点掌握关键公式,大学数学不会考得太深,基本是学会了相关的内容,考试就考这么些内容,所以公式必定要烂熟于心。
第三,练习是很重要的,大学数学虽然考得不深,但是学生常有,上课听老师说,明白。但是课后自己做题,却发现不会。这就是没有熟练的典型特征
第四,考试复习的时候,一定要听老师在考试前一节课给你们讲的题,或者老师划的重点。大学的考试,老师说什么,考试几乎就考什么的。
⑹ 大学数学学什么(具体点,如微积分等)
大学数学其实主要就是微积分,虽然有些大学喜欢叫作“高数”意思是高等数学
其实在国外都直接叫做微积分!还稍微包括一点立体解析几何
当然数学分支的还有就是线性代数和概率论
⑺ 大学数学主要学的是些什么内容
大学的数学学习内容属于高等数学,主要的内容有:
1、极限
极限思想是微积分的基本思想,是数学分析中的一系列重要概念,如函数的连续性、导数(为0得到极大值)以及定积分等等都是借助于极限来定义的。极限是解决高等数学问题的基础。
2、微积分
微积分是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。它是数学的一个基础学科,在许多领域都有重要的应用。
3、空间解析几何
借助矢量的概念可使几何更便于应用到某些自然科学与技术领域中去,因此,空间解析几何介绍空间坐标系后,紧接着介绍矢量的概念及其代数运算。
历史发展
一般认为,16世纪以前发展起来的各个数学学科总的是属于初等数学的范畴,因而,17世纪以后建立的数学学科基本上都是高等数学的内容。由此可见,高等数学的范畴无法用简单的几句话或列举其所含分支学科来说明。
19世纪以前确立的几何、代数、分析三大数学分支中,前两个都原是初等数学的分支,其后又发展了属于高等数学的部分,而只有分析从一开始就属于高等数学。
分析的基础——微积分被认为是“变量的数学”的开始,因此,研究变量是高等数学的特征之一。原始的变量概念是物质世界变化的诸量的直接抽象,现代数学中变量的概念包含了更高层次的抽象。
⑻ 大学数学一二三四都具体学习哪些内容
数学一,含:A.高等数学(函数、极限、连续、一元函数微分学、一元函数积分学、向量代数与空间解析几何、多元函数微分学、多元函数积分学、无穷级数、常微分方程);B.线性代数;C.概率论与数理统计初步。
数学二,含:A.高等数学(函数、极限、连续、一元函数微分学、一元函数积分学、常微分方程);B.线性代数初步。
数学三,含:A.微积分(函数、极限、连续、一元函数微积分学、多元函数微积分学、无穷级数、常微分方程与差分方程);B.线性代数;C.概率论与数理统计。
数学四,含:A.微积分(函数、极限、连续、一元函数微积分学、多元函数微积分学);B.线性代数;C.概率论。
有的知识点虽然名称相同,但是考察的深度不同。工科专业由于对数学要求很高必须选考1或者2,经济管理类的数学要求相对较低选考3、或4,但是具体考哪科由招生单位规定。
最好买本大纲看看,上面很清楚。.
⑼ 大学本科数学专业的,都要学哪些科目
专业基础课有数学分析、高等代数、解析几何、概率论与数理统计:这三者是老三门,将来如果考研时要用到的。
近代数学的新三门是:拓扑学、实变函数与泛函分析、近世代数(也叫抽象代数)。
另外其他的一些常见的分支包括复变函数、常微分、运筹、最优化,数学模型。
⑽ 大学数学学什么内容吗
应该是每个学校的安排也都不会一样吧~然后数学专业各个方向的所学也不一样,楼主要问的的是应用数学么?
大一:高等代数,数学分析,解析几何
大二:常微分方程,事变函数,复变函数,概率论基础,数理统计,近世代数,c语言
大三:数值逼近,数学物理方程,泛函分析,拓扑学,运筹学,数值代数,微分方程数值解,时间序列分析,微分几何
大四:离散数学之类的等等,自己选择
高等数学不是数学的专业课,一般是非数学类的所学,里面包含了微积分,解析几何,常微分等内容,比较概括,只注重计算
数学分析是数学类基础课,主要内容是微积分之类的,比高等数学讲得要深,既要掌握定理证明,也注重计算能力
线性代数是非数学类开的课程,高等代数是数学类专业课程,它比线性代数内容要深,两门课都是讲矩阵,线性方程组等内容