‘壹’ 什么叫数学原理我要的是数学原理的概念。
《数学原理》(Principia mathematica)是由英国哲学家伯特兰·罗素(Bertrand Russell )和其老师怀特海(Alfred North Whitehead)合着的一本于1910—1913年出版的关于哲学、数学和数理逻辑的三大卷皇皇巨着,该书对逻辑学、数学、集合论、语言学和分析哲学有着巨大影响。正是这部巨着使罗素赢得了学术上的崇高地位和荣誉,1949年罗素获得了英国的荣誉勋章。但是由于此书内容艰深,一般人,甚至专门从事数学原理探讨的人,也难以通读,所以,目前国内还没有完整的权威的中文译本。
纠错 编辑摘要
‘贰’ 所谓的数学原理大概是什么数学系学些啥对推动科技进步有什么做用
1+1=2没有给出证明 数学分析:主要包括微积分和级数理论。微积分是高等数学的基础,应用范围非常广,基本上涉及到函数的领域都需要微积分的知识。级数中,傅立叶级数和傅立叶变换主要应用在信号分析领域,包括滤波、数据压缩、电力系统的监控等,电子产品的制造离不开它。 实变函数(实分析):数学分析的加强版之一。主要应用于经济学等注重数据分析的领域。 复变函数(复分析):数学分析加强版之二。应用很广的一门学科,在航空力学、流体力学、固体力学、信息工程、电气工程等领域都有广泛的应用,所以工科学生都要学这门课的。 高等代数,主要包括线形代数和多项式理论。线形代数可以说是目前应用很广泛的数学分支,数据结构、程序算法、机械设计、电子电路、电子信号、自动控制、经济分析、管理科学、医学、会计等都需要用到线形代数的知识,是目前经管、理工、计算机专业学生的必修课程。 高等几何:包括空间解析几何、射影几何、球面几何等,主要应用在建筑设计、工程制图方面。 分析学、高等代数、高等几何是近代数学的三大支柱。 微分方程:包括常微分方程和偏微分方程,重要工具之一。流体力学、超导技术、量子力学、数理金融、材料科学、模式识别、信号(图像)处理 、工业控制、输配电、遥感测控、传染病分析、天气预报等领域都需要它。 泛函分析:主要研究无限维空间上的函数。因为比较抽象,在技术上的直接应用不多,一般应用于连续介质力学、量子物理、计算数学、控制论、最优化理论等理论。 近世代数(抽象代数):主要研究各种公理化抽象代数系统的。技术上没有应用,物理上用得比较多,尤其是其中的群论。 拓扑学:研究集合在连续变换下的不变性。在自然科学中应用较多,如物理学的液晶结构缺陷的分类、化学的分子拓扑构形、生物学的DNA的环绕和拓扑异构酶等,此外在经济学中也有很重要的应用。 泛函分析、近世代数、拓扑学是现代数学三大热门分支。 非欧几何:主要应用在物理上,最着名的是相对论。 数论:曾经被认为是数学家的游戏、唯一不会有什么应用价值的分支。着名的哥德巴赫猜想就是数论里的。现在随着网络加密技术的发展,数论也找到了自己用武之地——密码学。前几年破解MD5码的王小云就是数论出身。 到目前为止,数学的所有一级分支都已经找到了应用领域,从自然科学、社会科学、工程技术到信息技术,数学的影响无处不在。如果没有高等数学在二十世纪的发展,我们平时所玩的电脑、上的网络、听的mp3、用的手机都不可能存在。当然,一般的普通大众是没必要了结这些艰深抽象的东西,但是它们的存在和发展却是必需的,总要有一些人去研究这些。 数学,就是算术,小学直接面对数字,计算,1+1=2之类的东东,初中有了代数和方程,实际上就是用一个字母来代表一个数,这个数的具体值可以是未知的。到了高中,主要研究未知数的对应变化关系,即函数。到了大学,更进一步,研究函数值的变化规律,比如导数就是函数的变化率。最后泛函就是研究不同函数之间的变化关系了。 数学是从具体到抽象,再抽象的过程,从自然数到集合,从集合到群,从群到拓扑,从拓扑到流形。只要你有时间,都能看懂,必竟数学家也是人,人脑是肉长的。肉长的人脑能想到的东西也就这点了
最难学的是数论~
‘叁’ 高中数学原理课,概念课的区别
本质不同。高中数学概念课教学概念是思维的基本形式,具有确定研究对象和任务的作用。数学原理课则是客观事物中数与形的本质属性的反映,其本质就是不同的。
‘肆’ 什么叫数学概念教学
数学概念是现实生活中某一数量关系和空间形式的本质属性在人的思维中的反映。按概念的抽象水平可以将概念分为描述性概念和定义性概念两类。描述性概念是可以直接通过观察获得的概念,如“长方形”等;定义性概念的本质性特征不能通过直接观察获得,必须通过下定义来揭示,如“偶数”就是通过定义“能被2整除的数叫做偶数”来揭示偶数的本质特征的。不管是哪一类概念,都是小学生掌握数学基本知识和基本技能的基石,都将直接影响以后继续学习及思维能力的发展。
小学数学教学的主要任务之一是使学生掌握一定的数学基础知识。而概念是数学基础知识中最基础的知识,对它的理解和掌握,关系到学生计算能力和逻辑思维能力的培养,关系到学生解决实际问题的能力和对学习数学的兴趣。要掌握正确、清晰、完整的数学概念,既依赖于他们的数学认知结构状况,又依赖于教师的教学措施。笔者认为:有效的概念教学应将概念的逻辑联系与学习者认知水平有机结合起来,制定或选择恰当、有效的教学策略。
一、描述性概念数学要直观形象。
一般来说,学生学习概念是从感知学习对象开始的,经过对所感知材料的观察、分析或通过语言文字的形象描述所唤起的回忆,在头脑中建立学习对象的正确表象,才引入概念。小学生对事物的认识是从具体到抽象,从感性到理性,从特殊到一般的逐步发展过程。小学生的思维还处于具体形象思维阶段。小学数学中的许多概念,都是从小学生比较熟悉的事物中抽象出来的。描述性概念的讲授方法必须从学生现有的生活经验出发,坚持直观形象的原则。如:在学习长方形之前,学生已初步的接触了直线、线段和角,给学习长方形打下了基础。教学长方形的认识时可以利用桌面、书面、黑板面等让学生观察,启发学生抽象出几何图形。从中总结出这些图形的共同特点:
(1)都有四条边;(2)对边相等;(3)四个角都是直角。这样使学生在头脑之中形成对边相等、四个角都是直角的四边形是长方形的概念。
二、定义性概念教学要准确推敲。
数学是一门严密而精确的科学,特别是有关概念具有更强的“压缩性”。字里行间包含着深刻的内涵,丰富的思想内容和数学思想方法,因此在定义性概念教学中,要指导学生咬文嚼字、准确推敲关键词语的涵义。例如在教学互质数时,教师在引导学生对几组数,如“4和7”、“10和9”、“25和18”的公约数的观察的基础上,引入互质数“公约数只有1的两个数叫做互质数”的概念。然后,老师要引导学生认真推敲,对互质数的这个概念要弄清:(1)它是两数之间的一种关系。(2)它是从公约数的个数这个角度提出来的。(3)关键词“只有”的含义。从这三个方面揭示出互质数的本质属性。教学中只有抓住这些属性,逐项剖析,才能使互质数的特征活脱脱地展现出来。教师通过对“互质数”的详细解读,既抽象概括出“互质数”这个概念,又能为学生深刻理解掌握互质数奠定了基础。
三、精心设计习题,清晰概念的内涵外延。
每一个概念都有一定的外延和内涵,概念的外延就是适合这个概念的一切对象的范围;而内涵就是这个概念所反映的对象本质属性的总和。概念教学中,在学生对概念理解的基础上,教师要精心地设计各种类型的题目,让学生通过分析、比较、综合、抽象、概括等逻辑思维方法,把握事物的本质和规律,从而加深对概念的理解。例如,在“因数与倍数”这一章的概念教学中,可以设计如下练习:
1、填空:
(1)、10以内的偶数有
(2)、20以内3的倍数的有 、
(3)、最小的质数是 最小的合数是 。
(4)、18的因数有 。
2、判断:
(1)、8和9是互质数。
(2)、整数可以分成质数和合数两部分。
(3)、6÷1.2=5是整除。
(4)、10和13是互质数,所以他们没有最大公约数。
3、选择:
(1)、4和6的最大公约数是( )。
A、4 B、6 C、2
(2)、把6分解质因数是( )。
A、6=1×2×3 B、2×3 C、6=2×3
通过不同的角度、变换叙述的语言、正反不同的例子、对有联系的概念进行对比等多种形式的训练,深化概念的本质属性,更能帮助学生清晰地掌握概念的内涵与外延。
四、利用知识迁移,构建知识网络。
这包括两方面的要求。第一方面,要加强数学中最基本的概念的教学。所谓最基本的概念,就是在知识与技能的网络中,那些带有关键性的、普遍性的和适用性强的概念。如,加法的概念、比多比少的意义、差的概念、乘法的意义、比的意义、倍的概念等等,越是最基本的概念,它所反映事物的联系就越广泛、越深刻。抓住这些最基本概念的教学,能使知识产生广泛迁移,使学生学习起来容易理解,同时也有利于记忆。第二方面,小学数学中许多概念之间存在着密切的联系,教学中要指导学生对一些相关联的概念进行对比,归类,揭示它们之间的内在联系,抓住这些联系就可以使知识脉络更清晰,知识结构更完整。掌握了这些联系,从特殊到一般,从一般见特殊,便可实现相关知识的有机统一。例如:长方形、正方形、梯形、平行四边形都是四边形,但是他们又相互区别。老师在教学完梯形之后,要对四种有联系又有区别的四边形进行分析比较,从而加深学生对四种四边形的理解。
五、加强训练,指导学以致用。
“使学生初步学会运用所学的数学知识解决一些简单的实际问题”,是新课程标准所赋予我们新时期小学数学老师的任务。在实际教学中往往遇到学生会很熟练地背出概念内容,但不能进行灵活应用的现象。为此,教学中除了要重视数学概念的形成和获得外,还要加强数学概念的应用训练,以增强学生的实践意识。数学来源于生活,就必然要回到生活中去。教师要积极创造条件,引导学生用数学概念去解决生活中的数学问题,让学生在训练中体验教学的价值,获得成功的喜悦。例如,我们在教学“众数”后,可以设计这样一个问题情境:有一家公司,经理的月工资是8000元,2个部门主管每人的月工资是5000元,10个工人每人的月工资是1500元,你要选择用平均数、中位数、还是众数来反映这个公司员工的月工资水平,并说明理由。学生将学过的三种统计量的知识,运用到生活中去解决实际问题,在“学数学”中“用数学”,体会数学的应用价值,增进对数学的理解和应用数学的信心,进而形成勇于探索、勇于创新的科学精神。
总之,要让小学生掌握正确、清晰、完整的数学概念,必须在概念的教法上研究、学法上探讨,从而提高概念教学的高效率,培养学生的学习兴趣,提高学生的数学素养。
‘伍’ 什么是数学概念
众所周知,概念是思维的基本形式之一,是对一切事物进行判断和推理的基础.数学概念是构成数学知识的基础,是基础知识和基本技能教学的核心,正确地理解数学概念是掌握数学知识的前提.因此数学概念的教学是数学教学的一个重要方面,但数学概念的抽象性使得数学概念的教学相对棘手.
概念的产生都有其必然性,我们要抓住概念产生的背景,让学生了解数学概念的产生、发展、演变的原因以及在这些原因中所隐藏着数学概念间的内在联系,将数学概念在数学思想的整体连贯性中的作用体现出来.
因此,教师在讲授新的概念时,可以分析概念产生的背景.找出合适学生理解的、有趣而生动的切入点,让学生更容易理解新概念,更容易对新知识找到共鸣,才能让学生有更多的机会参与发现需要建立新概念的时机并加入到这一创造活动中去,从中感受和谐、连贯、严密、有用的数学之美.下面浅谈一下在概念教学中用到的几种方法.
一、从概念的产生背景着手,层层深入
对数这一概念就是学生在数学学习中遇到的一个非常抽象的概念,直接讲授的方式会使学生难于理解.其实我们分析一下对数产生的背景,可以发现这是数学运算发展到一定的阶段后,必然产生的一种新运算.加法发展到一定程度必然要引入减法,乘方发展到一定阶段必然要出现开方一样,对数也是为了生产生活中的计算需要而必然产生的.如果把这些概念的背景、运算方式列成表格,在对比过程中自然而然形成新的概念,使学生轻松地接受并理解它.
教师可以设置了一个这样的教学引入过程: 首先提出两个问题1、1个细胞一次分裂成两个细胞,请问1个细胞需要分裂多少次以后才能分裂成128个?2、某人原来年薪为a万元,假设他的工资以每年10%的速度增长,请问经过多少年以后他的年薪增长为原来的2倍?
这两个例题中,运用的运算都是解指数方程:1、,2、.但第一题答案是特殊值,不需要引入新运算;第二题答案则不是特殊值了,在现有的运算中,答案算不出来.如何让解决这一问题?
紧接着,教师再提出了几种具有互逆关系的运算进行对比,如:3+x=10 x=10-3、5=8 x=、 .
在接下来的教学中,我们就可以自然的将指数式化成对数式x=,引入新的运算概念.并且指出:指数式与对数式的关系(1)是等价的(2)它们只是写法不一样,读法不一样,a、b、N的名称不一样,所在位置不一样,但代表的数一样,含义一样,数的范围也是一样,只要牢牢记住指数式和对数式中的字母a、b、N交换的方式、交换的位置,就可以自由的将指数式和对数式进行互化.在这个过程中,指数对数与加减、乘除、乘方开方之间关系是相类似的,这些概念之间的对比要贯穿教学始终,以便于学生的理解.
二、从概念的生活背景出发,创设学习情境
很多数学概念是人们在长期的现实生活中对事物进行高度抽象概括的产物,有具体的素材为基础,有生动的现实原型,教师要善于结合生活实际,通过多种方式创造良好的学习情境激发学生的学习兴趣,使学生觉得这些抽象的数学概念仿佛就在自己的身边,伸手可摸.
等比数列这样的概念就是直接源于生活的概念,在讲授的过程中,现实生活中的实例随手可得,如常见的细胞分裂问题,商店打折问题,放射性物质的重量问题,银行利率,为自己家选择合适的还贷方式等等实例可以信手拈来穿插在概念的讲解、巩固的过程中.
为了让学生积极性充分发挥出来,我还设计了一个有趣的问题情境引入等比数列这一概念:
阿基里斯(希腊神话中的善跑英雄)和乌龟赛跑,乌龟在前方1里处,阿基里斯的速度是乌龟的10倍,当他追到1里处时,乌龟前进了里,当他追到了里,乌龟前进了里;当他追到了里,乌龟又前进了里……
(1)分别写出相同的各段时间里阿基里斯和乌龟各自所行的路程;
(2)阿基里斯能否追上乌龟?
让学生观察这两个数列的特点引出等比数列的定义,学生兴趣十分浓厚,积极性和主动性高涨,课堂气氛也十分活跃.
三、从概念的历史背景出发,激发兴趣
复数和虚数的概念有悠远的历史背景,是数发展到一定的阶段的必然产物.在很长一段时间里,人们在实际生活中找不到用虚数和复数表示的量,在学生的有限的知识结构中也找不到虚数的生活原型,所以学生很难完全理解它.因此,在讲解这两个概念时,可以将数的发展史、虚数与复数的出现历程作简单阐述,为了表述得清晰而有趣,教师可以把这过程制作成动画短片:
从原始人分配食物开始,首先是自然数的出现,然后到分数的出现.接下来经过漫长的数的发展,人们又发现了很多不能用两整数之比写出来的数,如圆周率等.人们把它们写成π等形式,称它们为无理数.到19世纪,由于运算时经常需要开平方,如果被开方数是负数,比如,这道题还有解吗?如果没有解,那数学运算就像走在死胡同中那样处处碰壁.这样,可以让学生融入教学中,跟着故事的结尾一起思索,然后引入新概念:数学家们就规定用符号"i "表示"-1"的平方根,即=-1,虚数就这样诞生了.实数和虚数结合起来,写成 a+bi的形式(a、b均为实数),这就是复数.种引入概念的过程新颖别致,一开始就能抓住学生的眼球,吸引他们的注意力,使课堂教学轻松有趣.
四、从概念的专业背景出发,讲求实用
许多数学概念在其他的专业领域应用也非常广泛.把数学知识和其他专业知识有机结合在一起,可以让学生充分认识到数学学习的重要性.
三角函数这一概念在很多专业领域都有重要的应用.在物理方面,简单的和谐运动,星体的环绕运动,峰谷电;在心理生理方面,情绪周期性波动、智力体力的周期性变化、一天内的血压状况;天文地理方面,气温变化规律,月缺月圆、潮涨潮汐的规律;日常生活中,车轮的变化,这一切的研究都离不开三角函数.
因此三角函数的应用课里,可以设计一些有周期性变化规律的实际问题,让学生建立简单的三角函数模型,培养学生数学建模,分析问题、数形结合、抽象概括等能力,体验数学在解决实际问题中的价值和作用,培养学生勤于思考、勇于探索的精神.
学生对新概念的学习只有在已有知识的基础上才能构建,所以教师在教学时一定要注意教材所设计的知识结构.要做到既不脱离课本,又不拘泥于课本,要有大胆的创新精神.要根据学生实际情况,设计好每一堂概念课.
‘陆’ 什么是数学概念,
数学概念是现实生活中某一数量关系和空间形式的本质属性在人的思维中的反映。按概念的抽象水平可以将概念分为描述性概念和定义性概念两类。描述性概念是可以直接通过观察获得的概念,如“长方形”等;定义性概念的本质性特征不能通过直接观察获得,必须通过下定义来揭示,如“偶数”就是通过定义“能被2整除的数叫做偶数”来揭示偶数的本质特征的。不管是哪一类概念,都是小学生掌握数学基本知识和基本技能的基石,都将直接影响以后继续学习及思维能力的发展。
‘柒’ 《数学原理》的概括是什么
《数学原理》共分三篇。极为重要的导论部分,包括“定义和注释”、“运动的基本定理或定律”。定义分别是:“物质的量”、“运动的量”、“固有的力”、“外加的力”以及“向心力”,注释中给出了绝对时间、绝对空间、绝对运动和绝对静止的概念。在“运动的基本定理或定律”部分,牛顿给出了着名的运动三定律,以及力的合成和分解法则、运动叠加性原理、动量守恒原理、伽利略相对性原理等。它开辟了一个全新的宇宙体系。正是从这里,人们获得了用理性来解决面临的所有问题的自信。
‘捌’ 概念的原理的意思
概念(Idea,Notion,Concept)是反映对象的本质属性的思维形式。人类在认识过程中,从感性认识上升到理性认识,把所感知的事物的共同本质特点抽象出来,加以概括,就成为概念。表达概念的语言形式是词或词组。概念都有内涵和外延,即其涵义和适用范围。概念随着社会历史和人类认识的发展而变化。中华人民共和国国家标准GB/T15237.1—2000:“概念”是对特征的独特组合而形成的知识单元。德国工业标准2342将概念定义为一个“通过使用抽象化的方式从一群事物中提取出来的反应其共同特性的思维单位”。
基本信息
中文名:概念
英文名:Idea、Notion、Concept
释义:反映对象的本质属性的思维形式
拼音:gài niàn
近义词:观点、观念
词性:名词、形容词
‘玖’ 数学原理一书的主要内容是什么
《数学原理》共分三篇。极为重要的导论部分,包括“定义和注释”、“运动的基本定理或定律”。定义分别是:“物质的量”、“运动的量”、“固有的力”、“外加的力”以及“向心力”,注释中给出了绝对时间、绝对空间、绝对运动和绝对静止的概念。在“运动的基本定理或定律”部分,牛顿给出了着名的运动三定律,以及力的合成和分解法则、运动叠加性原理、动量守恒原理、伽利略相对性原理等。这一部分是牛顿对前人工作的一种空前的系统化,也是牛顿力学的概念框架。《数学原理》的出版立即使牛顿声名大振;它开辟了一个全新的宇宙体系。正是从这里,人们获得了用理性来解决面临的所有问题的自信。
牛顿虽然是位伟大的科学家,却从来没有骄傲自满过,他谦虚地说:在“科学的道路上,我只是一个在海边玩耍的孩子,偶然拾到一块美丽的石子。至于真理的大海,我还没有发现呢!”
对于牛顿的成就,恩格斯在书中概括得最为完整:“牛顿由于发现了万有引力定律而创立了科学的天文学。”但他的天才对于现代世界产生了更为深远的影响。因此,根据包括爱因斯坦在内的众多科学家的看法,牛顿对现代科学的贡献超过了其他任何一个人,他的研究成果对整个人类文明都产生了决定性的影响。
‘拾’ 什么是数学,数学的概念
数学是研究空间形式和数量关系的科学,是刻画自然规律和社会规律的科学语言和有效工具。数学科学是自然科学、技术科学等科学的基础,并在经济科学、社会科学、人文科学的发展中发挥越来越大的作用。数学的应用越来越广泛,正在不断地渗透到社会生活的方方面面,它与计算机技术的结合在许多方面直接为社会创造价值,推动着社会生产力的发展。数学在形成人类理性思维和促进个人智力发展的过程中发挥着独特的、不可替代的作用。数学是人类文化的重要组成部分,数学素质是公民所必须具备的一种基本素质。
-------选自<普通高中数学新课程标准>