导航:首页 > 数字科学 > 数学应用题如何答

数学应用题如何答

发布时间:2022-11-17 14:14:33

㈠ 做数学应用题的技巧

高数学并不是简简单单就能学好,升入高中以后,高中数学变得更抽象了,很多知识同学们理解起来开始有困难了。那么接下来给大家分享一些关于做数学应用题的技巧,希望对大家有所帮助。

做数学应用题的技巧

一.归一问题解答含义及 方法

牢记题中的数量关系,仔细阅读应用题给出的意思。

含义:

在解答应用题时,先要求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。这类应用题叫做归一问题。

数量关系:

总量÷份数=1份数量 1份数量×所占份数=所求几份的数量

另一总量÷(总量÷份数)=所求份数

解答思路及方法:

先求出单一量,以单一量为标准,求出所要求的数量。

二.归总问题解答含义及方法

含义:

解题时,常常先找出“总数量”,然后再根据 其它 条件算出所求的问题,叫归总问题。所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

数量关系:

1份数量×份数=总量 总量÷1份数量=份数

总量÷另一份数=另一每份数量

解题思路和方法: 先求出总数量,再根据题意得出所求的数量。

三.和差问题解答含义及方法

含义:

已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。

数量关系:

大数=(和+差)÷ 2 小数=(和-差)÷ 2

解题思路和方法:

简单的题目可以直接套用公式;复杂的题目变通后再用公式。

四.和倍问题解答含义及方法

含义:

已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。

数量关系:

总和 ÷(几倍+1)=较小的数 总和 - 较小的数 = 较大的数

较小的数 ×几倍 = 较大的数

解题思路和方法:

简单的题目直接利用公式,复杂的题目变通后利用公式。

五.差倍问题解答含义及方法

含义:

已知两个数的差及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做差倍问题。

数量关系:

两个数的差÷(几倍-1)=较小的数

较小的数×几倍=较大的数

解题思路和方法:

简单的题目直接利用公式,复杂的题目变通后利用公式。

六.倍比问题解答含义及方法

含义:

有两个已知的同类量,其中一个量是另一个量的若干倍,解题时先求出这个倍数,再用倍比的方法算出要求的数,这类应用题叫做倍比问题。

数量关系:

总量÷一个数量=倍数 另一个数量×倍数=另一总量

解题思路和方法:

先求出倍数,再用倍比关系求出要求的数。

高一数学 提分技巧

一、预习是聪明的选择

最好老师指定预习内容,每天不超过十分钟,预习的目的就是强制记忆基本概念。

二、基本概念是根本

基本概念要一个字一个字理解并记忆,要准确掌握基本概念的内涵外延。只有思维钻进去才能了解内涵,思维要发散才能了解外延。只有概念过关,作题才能又快又准。

三、作业可巩固所学知识

作业一定要认真做,不要为节约时间省步骤,作业不要自检,全面暴露存在的问题是好事。

四、难题要独立完成

想得高分一定要过难题关,难题的关键是学会三种语言的熟练转换。(文字语言、符号语言、图形语言)

五、加倍递减训练法

通过训练,从心理上、精力上、准确度上逐渐调整到考试的最佳状态,该训练一定要在专业人员指导下进行,否则达不到效果。

六、考前不要做新题

考前找到你近期做过的试卷,把错的题重做一遍,这才是有的放矢的 复习方法 。

七、良好心态

考生要自信,要有客观的考试目标。追求正常发挥,而不要期望自己超长表现,这样心态会放的很平和。沉着冷静的同时也要适度紧张,要使大脑处于最佳活跃状态

八、考试从审题开始

审题要避免“猜”、“漏”两种不良习惯,为此审题要从字到词再到句。

九、学会使用演算纸

要把演算纸看成是试卷的一部分,要工整有序,为了方便检查要写上题号。

十、正确对待难题

难题是用来拉开分数的,不管你水平高低,都应该学会绕开难题最后做,不要被难题搞乱思绪,只有这样才能保证无论什么考试,你都能排前几名。

高一数学基础差该怎么学习

一、快速掌握基础知识

对于基础薄弱的同学来说,课本就是他们第一步需要掌握的提分法宝。想要提高数学成绩,你需要记熟数学课本里的每一个知识点,看懂每一个例题,一章一章的进行掌握。

你可以先记公式,背熟之后在接着研究例题,最后去看课后习题,用例题和习题去思考该怎么解,不要急着去计算,先想就好,然后在翻看课本看公式定理是怎么推导的,尤其是过程和应用案例。对于课本中的典型问题,更是要深刻的理解,并学会解题后 反思 。这样才能够深刻理解这个问题,跳出题海这个怪圈。

做好错题笔记,记录容易犯的错误,分析错误的原因,找到正确的办法。不要盲目的去做题,必须要在搞清楚概念的基础上做这些才是有用的。

二、学会运用基础知识

在掌握数学基础知识的同时,要学会知识的运用,这样你才能在考试中拿到分数。高中数学学习的特点是:速度快、容量大、方法多。而这对于基础差的同学来说,有时听了会记不住,或是记住了却不会解题。这时候就需要我们把笔记记好,不需要一字不落的记下老师说的话,只需要把关键的思路和结论记下来就可以了,课后在去整理、回看笔记,这也是再学习的一个过程。

想要学好数学题就必须要多做题,只有做了一定题目才能学好数学,而且做题是高中数学学习的主旋律。但是这里的做题不是盲目做题,而是要看题思考,学会思考、反思、 总结 才是学习数学的王道。

其实数学解题并不难,分析题干,挖掘已知条件,寻找这些条件之间有什么关系,得出一个有用的结论,这个结论是我们所要用来解决问题的关键,这就是数学解题的形式。所以想要学好数学,主要靠的是答题的思路,而不是作出某道题的方法。


做数学应用题的技巧相关 文章 :

★ 做数学应用题的技巧

★ 做数学应用题时的方法高中

★ 六年级数学应用题解题技巧(3)

初中数学应用题解题方法与技巧

★ 应用题初中数学重点解题技巧有哪些

★ 初中数学应用题重点解题技巧

★ 小学数学应用题解题方法

★ 做小学数学作业各类题型的方法

★ 六年级数学应用题解题基本思路

㈡ 数学应用题怎么解答有方法吗

解:应用题的解题步骤:
1①弄清题意和题目中的数量关系,用字母(如x、y)表示题目中的未知数;
②找出能够表示应用题全部含意的相等关系;
③根据相等关系列出代数式,从而列出方程或方程组;
④解这个方程(组),求出未知数的值;
⑤检查所得结果的正确性及合理性;
⑥写出答案.

㈢ 应用题怎么解答,有什么技巧

【知识方法归纳】

1.列方程解比较容易的两步应用题

(1)列方程解应用题的步骤

①弄清题意,找出未知数并用x表示;

②找出应用题中数量间的相等关系,列方程;

③解方程;

④检查,写出答案。

(2)列方程解应用题的关键

弄清题意后,找出应用题中数量间的相等关系,恰当地设未知数,列出方程。

(3)运用一般的数量关系列方程解应用题

①列方程解加、减法应用题。如:

甲乙两人年龄的和为29岁,已知甲比乙小3岁,甲、乙两人各多少岁?

数量间的等量关系:

甲的年龄 + 乙的年龄 = 甲乙二人的年龄和

解:设甲的年龄是x岁,则乙的年龄为:(x+3)岁。

x+(x+3)=29

x+x+3=29

2x=29-3

x=26 2

x=13……甲的年龄

13+3=16(岁)……乙的年龄

答:甲的年龄是13岁,乙的年龄是16岁。

②列方程解乘、除法应用题。如:

学校图书馆买来故事书240本,相当于科技书的3倍,买来科技书多少本?

科技书的本数 3 = 故事书的本数

解:设买来科技书x本

3x=240

x=80

答:买来科技书80本。

(4)用计算公式、性质、数位及计数单位等做数量间的等量关系,列方程解应用题

①一长方形的周长是240米,长是宽的1.4倍,求长方形的面积。

( 长 + 宽 ) 2=周长

解:设宽是x米,则长是(1.4x)米。

(1.4x+x) 2=240

2.4x=240 2

x=120 2.4

x=50……长方形的宽

50 1.4=70(米) ……长方形的长

70 50=3500(平方米)

答:长方形的面积是3500平方米。

②三角形ABC中,角A是角B的2倍,角A与角B的和比角C小18°。求三个角的度数。这是一个什么三角形?

角A + 角B + 角C = 180度

解:设角B是x度,

则角A是(2x)度,角C是[(2x+x)+18]度。

2x+x+[(2x+x)+18]=180

6x+18=180

6x=180-18

x=162 6

x=27……角B的度数

27 2=54(度)……角A的度数

54+27+18=99(度)……角C的度数

答:角A是54度,角B是27度,角C是99度。

因为:角B<角A<角C,90°<角C<180°,所以这个三角形是钝角三角形。

③一个两位数,十位数字与个位数字的和是6。若以原数减去7,十位数与个位数字相同,求原数。

十位上的数字 个位上的数字

解:设原数的个位数字为x。则原数十位上的数字为:6-x;若从原数中减去7,则个位上的数字变为:10+x-7、十位上的数字变为:6-x-1。

6-x-1=10+x-7

5-x=3+x

2x=2

x=1……原数的个位数字

6-1=5……原数的十位上的数

因此,原数是:51。

2.列方程解二、三步计算的应用题

广水电影院原有座位32排,平均每排坐38人;扩建后增加到40排,可比原来多坐584人。扩建后平均每排可以坐多少人?

解:设扩建后平均每排坐x人。

x 40-38 32=584

40x-1216=584

40x=584+1216

x=1800 40

x=45

答:扩建后平均每排可以坐45人。

3.列方程解含有两个未知数的应用题

某班学生合买一种纪念品,每人出1元,多4元6角;每人出9角,就差5角。求这件纪念品多少钱?这个班共有多少名学生?

解:设这个班共有x名学生

x-4.6=9 10 x+5 10

x-4.6=0.9x+0.5

0.1x=5.1

x=51……这个班学生人数

51-4.6=46.4(元) ……纪念品的单价

答:这件纪念品46.4元;这个班共有学生51名。

4.用方程解和用算术法解应用题的比较

用方程解应用题和用算术法解应用题有什么区别,它们之间的主要区别在于思路不同。

用方程解应用题,要设未知数x,并且把未知数x与已知数放在一起,分析应用题所叙述的数量关系,再根据数量关系和方程的意义,列出方程式。

用算术法解应用题,要把已知数集中起来,加以分析,找出已知数与未知数之间的联系,列出算式表示未知数。例如:

小华身高160厘米,比小兰高15厘米。小兰的身高是多少厘米?

用方程解:

解:设小兰的身高x厘米

160-x=15

x=160-15

x=145

或:x+15=160

x=160-15

x=145

用算术法解:

160-15=145

通过比较,同学们可以看出,这两种方法的主要区别是未知数参加不参加到列式之中。列算术式,是根据题中的条件,由已知推出未知,用已知数之间的关系来表示未知数。未知数是运算的结果,已知与未知数用等号隔开。列方程式,是根据题目叙述的顺序,未知数参加列式,未知数与已知数用运算符号相连接,从整体上反映数量关系的各个方面,所以,解题方式灵活多样,适用面广,用来解答那些反叙的问题更显得方便。

【典型范例剖析】

例1 甲乙两桶油,甲桶里有油45千克,乙桶里有油24千克,问从甲桶里倒多少千克的油到乙桶里,才能使甲桶里的油的重量是乙桶里的1.5倍?

分析:根据变动以后“甲桶里油的重量是乙桶的1.5倍”,可以列出等量关系式:

现在乙桶里油的重量 1.5 = 现在甲桶里油的重量

设从甲桶里倒x千克的油到乙桶里,那么,现在甲桶里的油是(45-x)千克,现在乙桶里的油是(24+x)千克。

解:设从甲桶里倒x千克油到乙桶里。

(24+x) 1.5=45-x

36+1.5x=45-x

36+1.5x+x=45

36+2.5x=45

x=(45-36) 2.5

x=3.6

答:从甲桶里倒3.6千克的油到乙桶里,才能使甲桶里油的重量是乙桶的5倍。

例2 一位三位数,个位上的数字是5,如果把个位上的数字移到百位上,原百位上的数字移到十位上,原十位上的数字移到个位上,那么所成的新数比原数小108,原数是多少?

分析:原三位数中只知道个位数字,百位和十位上的数字都不知道。如果设原三位数中的百位数字与十位数字拼成的二位数为x,则原三位数可表示为“10x+5”,那么新数就可以表示为“5 100+x”。

解:设原三位数中的百位数字与十位数字拼成的二位数为x,可得方程:

10x+5=5 100+x+108

10x-x=500+108-5

9x=603

x=67

10 67+5=675……原三位数

答:原三位数是675。

例3 某校附小举行了两次数学竞赛,第一次及格人数是不及格人数的3倍还多4人,第二次及格人数增加5人,正好是不及格人数的6倍,问参加竞赛的有多少人?

分析:本题所求的参赛人数包括了及格的和不及格的人数,而第二次的参赛人数与第一次参赛人数有直接关系的条件,总人数又不变。所以我们设第一次参赛的不及格人数为x人,那么第一次参赛及格的人数可以用“(3x+4)”人来表示,总数是(4x+4)人,第二次参赛及格的人数是(3x+4+5)人,不及格的人数是(x-5)人,根据“第二次及格人数是不及格人数的6倍”,这一等量关系,可列方程。

解:设第一次参赛不及格的人数为x,依据题意可得方程:

3x+4+5=(x-5) 6

3x+9=6x-30

3x=39

x=13

则 4x+4=13 4+4=56……参加竞赛的人数

答:参加竞赛的有56人。

【易错题解举例】

例1 吉阳村有粮食作物84公顷,比经济作物的4倍多2公顷,经济作物有多少公顷?

错误:设经济作物有x公顷

x=(84-2)÷4

x=82÷4

x=20.5

答:经济作物有20.5公顷。

分析:这题列出的式子是一个算术式,不是方程。错误在于没有弄清方程和算术式的区别。算术式是由已知数和运算符号组成的,用来表示未知数,如本题的“x=(84-2) ÷4”;而在方程里,未知数则是参加运算的,本题中的“x”则没有参加运算。

改正:设经济作物有x公顷

4x+2=84(或4x=84-2)

4x=82

x=20.5

答:经济作物有20.5公顷。

例2 食堂运来一批煤,原计划每天烧210千克,可以烧24天。改进炉灶后这批煤可烧28天。问:改进炉灶后平均每天比原计划节约多少千克?

错误:设每天比原计划节约x千克

28x=210 24

x=180

210-180=30(千克)

答:改进炉灶后平均每天比原计划节约30千克。

分析:题中所设未知数x与方程式中的x所表示的意义不同。题目中的方程式的“x”所表示的是“改进炉灶后平均每天烧煤数”,并不表示“节约”的数。本题可以采用“间接设未知数法”或“直接设未知数法”。

改正:(1)间接设未知数

解:设改进炉灶后每天烧煤x千克,则每天比原计划节约(210-x)千克。

28x=210 24

28x=5040

x=180

210-x=210-180=30

(2)直接设未知数

解:设改进炉灶后平均每天比原计划节约x千克。

(210-x) 28=210 24

210-x=180

x=210-180

x=30

答:改进炉灶后平均每天比原计划节约30千克。

例3 王兰有64张画片,雷江又送给她12张,这时王兰和雷江的画片数相等。雷江原有画片多少张?(用方程解)

错误:设雷江原有画片x张

x-12=64

x=76

分析:雷江送12张画片给王兰后,两人的画片数才相等。也就是说,雷江减少12张,王兰增加12张之后,他们的画片数才同样多。此解法把等量关系弄错了,误认为雷江的画片减少12张后与王兰原有的画片数相等。

改正:设雷江原有画片x张。

x-12=64+12

x=76+12

x=88

答:雷江原有画片88张。

【解题技巧指点】

1. 列方程解应用题时,往往列出来的是一个算术式,误以为是方程。如:广水市吉阳村有粮食作物84公顷,比经济作物的4倍多2公顷,经济作物有多少公顷?

解:设经济作物有x公顷

x=(84-2) 4

x=82 4

x=20.5

答:经济作物有20.5公顷。

本题中的“x=(84-2) 4”是一个算术式。出现上述错误,原因在于没有弄清方程式和算术式的区别。算术式是由已知数和运算符号组成的,用来表示未知数;而在方程里,未知数则是参加运算的。本题的方程应该列为:

4x+2=84或4x=84-2或84-4x=2

2.按照题意,恰当地设未知数。如:第一教工食堂运来一批煤,原计划每天烧煤210千克,可烧24天,改进炉灶后这批煤可烧28天。问:改进炉灶后平均每天比原计划节约多少千克?

设未知数时一般有两种方法:一种是直接设未知数为x,题目中问什么,就设什么为x;另一种是间接设未知数为x,再通过这个量与所求问题的关系,求出应用题中要求的未知量。

如果按直接设未知数为x的方法解答,那么本题中所列方程应该是:

解:设每天比原计划节约x千克煤

(210-x) 28=210 24

210-x=180

x=210-180

x=30

如果采用间接设未知数x的方法:

解:设改进炉灶后每天烧煤x千克,则每天比原计划节约(210-x)千克。

28x=210 24

x=180

210-180=30(千克)

答:每天比原计划节约30千克。

老了不死;参考资料:根据网络搜集

㈣ 如何解好小学数学应用题

应用题教学是小学数学教学的重要组成部分,他是培养学生综合运用所学知识分析问题、解决问题的能力,是发展学生数学思维的最重要途径.。因此,在教学中必须突出多读、多思。让学生在多读,多思中发现问题、探索问题、掌握规律,提高解答应用题的能力。

下面我谈谈孩子们应该如何读题?
(一)运用直观媒体,理解应用题的题意,从当前教学中反映的问题来看,应注意读题和直观媒体紧密结合,依题解题,读题要加强。不能一字一字地读,也不要只读一遍。要读出停顿。如按标点符号停顿;按句子成分停顿;按内容的逻辑停顿。可多读几遍,在读的过程中使用直观媒体,帮助学生理解题内容,操作时可把一句句话和媒体正确对应,读时可以围绕难点,重点词语,勾画内容之间的联系。 (二) 读题后的思考
第一,思已知 就是让学生在感知已知条件的基础上,展开思维,“你联想到了什么?”它是学生读懂题意,找到已知条件与问题联系的途径之一。例如:一个圆柱的侧面展开是一个正方形,它的边长是18.84厘米,这个圆柱的底面半径是多少厘米?学生在读完“一个圆柱的侧面展开是一个正方形”时,就会联想到它的底面周长等于高,也就是底面周长和高都等于这个正方形的边长,从而实现了已知条件与问题的紧密联系,有助于问题的解决。
第二,思问题 就是根据问题,展开思维,找到问题与已知条件的联系。它是培养学生分析问题能力的有效方法之一。在教学中,我们可以从问题入手分析,学生根据自己已有的数量关系和生活经验,找到要解决这个问题需要知道哪两个条件,如果两个条件都是未知的,下一步该怎么做?这样一步一步地分析,就能找到要求的问题。例如:甲乙两车分别从相距420千米两地同时出发,相向而行,经过6小时相遇,已知甲车每小时行40千米,乙车每小时行多少千米?要求乙车的速度,需要知道甲乙两车的速度和与甲车的速度(或需要知道乙车行的路程和所行时间)。速度和是未知的,甲车的速度是已知的,因此要先求出速度和;而要求速度和?就要知道总路程和相遇时间,这两者都是已知的,问题就解决了。 (三) 解题后在思考
第一,思多解 思多解不仅可以锻炼学生的发散性思维,创新思维,而且可以培养学生综合运用数学知识解决问题的能力。在教学中,不少的应用题客观上存在着多种解法,我们应启发学生一题多思,一题多解,在多解中比较各种解法的优点和缺点,选择最佳解法。从而达到提高学生解题能力,培养学生良好思维品质的目的。
第二,思变通 应用题是千变万化的,多练只会苦了学生,累了自己,精练才会事半功倍。“一题多变”就是精练的好方法之一,它不仅可以开阔学生的眼界,拓展学生的思维,提高学生的应变能力,而且可以防止学生思维的定势。教师在设计作业时,将某一应用题的已知条件或问题变一变,让学生对比练习,提高迁移能力。
第三,思规律 解题后,要启发学生思考解题思路,不但要学生知道该怎么做,而且还要知道为什么这样做,认真总结规律,以达到举一反三的目的,这样有利于强化知识的理解和运用,提高学生解答应用题的能力。
如何教好小学数学应用题
应用题的教学是小学数学教学中的一个难点,解答应用题的过程,其实就是分析、推导、综合数量关系,由已知求出未知的过程。应用题的解答不仅要综合运用小学数学中的概念、性质、意义、法则、公式等基础知识,还要具有分析、判断、推理、综合等思维能力。所以,应用题教学不但可以巩固知识,而且有利于培养学生初步的逻辑思维能力。那么,如何进行应用题教学呢?为此,笔者经过不断探索与实践,精心设计了应用题七环教学法,收到了可观的教学效果。
应用题七环教学法是在心理学理论和《数学课程标准》的指导下,根据应用题的特点,从应用题生活化的角度,针对应用题在小学中的地位,对应用题给师生带来的困惑进行不断的探索与研究得出的。它以学生为主体,以加强思维训练、发展学生思维为重点,着眼于提高学生灵活解决实际问题的能力。其基本环节是:导→读→思→说→记→找→研。现分述导
导,即导入新课,是老师有机连接各个环节的桥梁。其目的是为学生探究新知识指明方向,激发学生学习的积极性,把学生的注意力集中于新知识上,使学生全身心地投入学习。导的水平如何,将直接影响教学的成败。因此,对这一环节的教学,教师千万不可小觑,要引起高度的重视,不仅要让导的内容与新知识紧密联系在一起,使其有利于学生进行迁移类推,而且要密切联系学生实际和现实生活,使学生感到既容易学,又有趣;
既有用,又有价值。为此,教学中,教师要注意导的方式,或者从学生的实际生活进行启发,或者充分使用学具、教具进行设疑,或者运用课件,充分发挥多媒体的优势吸引学生,或者环环相扣,以旧引新。总之,不论运用什么方式,只要能达到导的目的,导得自然,一般来说,都是可取而有效的导入方式。 2、读
读,指读题目,是应用题教学的重要环节,是学生自己感知信息数据的过程。读,看起来是非常简单的事,其实,要把应用题读通、读透,还是比较困难的。有的学生之所以做错,其实主要原因之一就是由于读题时走马观花,没有读懂。“书读百遍,其义自见。”应用题也不例外。甚至可以这么说:“与其让学生抄题目,不如让学生多读题目。”这当中的道理,就像让学生抄不认识的字一样,不论抄多少遍,学生还是同样不认识、不理解。
读,要讲究一定的方式。在小学,大多数的学生读题时都不注意停顿,语感非常差,使得数学意识低下,因而理解不透题意。教学中教师要给学生以读的指导:可以朗读,可以默读;可以个人读,也可以分组读;还可以全班齐读,形式不拘一格。此外,还要注意读的语速。通常情况下,语速以稍慢为佳,以能准确感知信息数据及问题为标准。因此 ,读的时候一定要全面、仔细,既不加字也不减字,对于较深的题目,甚至要咬文嚼字。这样不仅能提高学生的数学意识,而且也使学生的感知能力得到了培养,同时也提高了学生捕捉信息数据的能力,为学生理解题意奠定了初步的基石。 3、思
思,指学生读题后,思考题目中的已知条件和问题该如何表述,该把哪个量看作单位“1”,如何用线段图描述题目,题目中有什么样的数量关系,可以用什么方法来解答等,是培养学生思维能力的中心环节。学生思得如何,主要是看教师是否根据学生的经历和思维水平,合理而充分利用可用的教学资源,使学生思维现实化。只要是上数学的老师,都很清楚地知道,一些学生,尤其是学困生,在掌握数学知识时,往往感到困难重重,其中重要的原因就是他们在解题过程中缺乏思维活动的自觉性与周密性。因此,教学中教师要加强引导,切实做好学生的引导者,设法调动学生的大脑器官。不但要留给学生充分思考的余地,使学生主动而积极地产生遐想,引发思维的火花,而且要关注每一个学生的思维活动,为学生提供独立思考的机会,对学生负责。切忌以教师的说讲来代替学生的思,力求“实现不同的人在数学上都得到不同程度的发展”。
4、说
说,指学生用语言对自己的思考进行表达,属于口头动脑,是对题目的再理解,是最积极的思维表现。“人的思维,尤其是抽象思维,与言语密不可分。”“言语使思维更凝缩。”“语言是思维的工具,人们利用它进行各种思维活动。”可见,语言能促进思维的发展。说也是教师了解学生思维水平的重要手段。教师评价学生爱动脑筋,勤于思考,智商高等,主要就是从学生平时说的积极性这一角度来进行评价的。所以在教学过程中,教师要重视说的训练,尤其是学困生,更应该激发他们说的欲望,使他们不仅仅是想说,而且是要说;给他们一个说的舞台,让他们充分表现自己,体验到成功的快乐。因此,说的时候应尽可能采用个人说的方式进行,以便更好地了解学生。此外,还要要重视说的依据,也就是根据什么来说的。只有把依据弄得一清二楚,学生才能明白应用题是如何体现基础知识点的,才能判断自己思的结果是否正确。这样不仅能让学生更好地掌握和运用基础知识,加深对应用题的理解,学会思的方法,而且能使学生正确认识自己,建立自信。 5、记
记,指将学生说的内容简单明了地写下来。就条件和问题来说,记的实质是对原题进行删节、组装、制作的过程,是对原题的一种精加工。就整个这一环节来说,记的目的是变复杂为简单,加深记忆,强化理解,以便于学生观察、分析和综合运用。常言道:好记性不如烂笔头。学生通过“读”“思”“说”的训练后,得到的材料往往是零乱的,因而运用时常常丢三落四。在现实生活中,应用题也并非要像书上那样详细地写出来,而只需要进行简单地记载即可。记,还是学生概括能力的表现之一。通过观察记的内容是否完整简洁,可以看出学生提练语言的水平。因此,教师有必要培养学生记的能力,尤其是较复杂的应用题,记就更有必要了。记,最好在草稿本上进行,当然,如果觉得有必要,也可以在作业本上进行,但一定要注意题目中具有隐蔽性的那种条件,记的时候应当把缺省部分写出来。
例如:“一个儿童体内所含的水分有28千克,占体重的4/5。这个儿童的体重是多少千克?”在这道题中,“占体重的4/5”是一个缺省条件,应该把缺省的部分“水分”补出来,记为“水分占体重的4/5”只有这样,才能为学生扫清第一道障碍。 6、找
找,指学生根据已知条件和问题,找出题目的突破口和单位“1”等,进而找出题目中
的数量关系(等量关系),属于分析的过程。
突破口一般是一个比较难理解的句子,是学生理解题的拦路虎,通常是带比、分数或几倍等的语句。教师应当设法使学生找出这种句子进行理解。单位“1”是用来衡量的量,一般是紧接分数或几倍前的那个量;有比时,通常是相比的几个合起来的总量;或者就是题目中的总路程、总工作量等。总的说来,和谁进行比较,谁就是单位“1”。单位“1”是学生解答应用题的基础之一。学生是否找准单位“1”,常常影响解题的对错。因此,教学中,教师要要引导学生弄清用来比较的量,教给学生识别比较量的方法,以便找出单位“1”的量。值得注意的是有的题目中存在着两个甚至三个单位“1”,解题时要注意单位“1”的统一。数量关系是应用题的灵魂,是学生解答应用题的前提和根本,也是学生解答应用题最大的困难。数学教学不仅要使学生了解人类关于数学方面的文化遗产,学到一定的数学知识,还要使学生学会用知识来认识事物,解决实际问题。因此,教师不仅要使学生能获取数学基础知识,而且要重视培养学生的数学意识和从具体题目中找数量关系的能力。只有找到正确无误的数量关系,才能根据数量关系进行正确的解答。
找数量关系的方法有三种: ①对已知条件和问题逐一找; ②对已知条件和问题综合找;
③明确单位“1”,画线段图找。画线段图时,一般是先任意画一条线段来表示单位“1”的量,然后确定应该分的段数……单位“1”的量画好了,再画其他的量。
例如:“一条裤子的价格是75元,是一件上衣的2/3。一件上衣多少元?”在这道题中,“是一件上衣的2/3”是一个缺省条件,是题目的突破口,应注意理解;应该把“上衣”看作单位“1”。学生这样理解后,自然能找出“裤子单价=上衣单价×2/3”这一数量关系,或者画出下面的线段图,找出数量关系。 7、研
研,指学生根据信息数据,利用找到的基本数量关系及某一条件或问题,研究出其他的数量关系,也就是从不同的角度进行思考,灵活运用后学知识,尝试多种多样化的解题方法,是解题思维的拓展,能培养学生思维的灵活性。其具体做法可以是利用加减乘除各部分间的关系对数量关系进行变式,也可以是对题目中能进行转换说法的条件(多数是
带几倍分数或比的条件)进行换说法,也就是运用多种方法表达所学知识,)3找出新的数量关系进行解答。
例如:“一个农场计划在100公顷的地里播种大豆和玉米。播种面积的比是3:2。两种作物各播种多少公顷?”本题中有一个明显的数量关系:“大豆面积 玉米面积 = 100 ”利用加法各部分间的关系,可以得到两个数量关系:“大豆面积 = 100 - 玉米面积”和“玉米面积 = 100 - 大豆面积”。题目中的关键句是“播种面积的比是3:2”,也是一个缺省条件,补完整就是“大豆面积与玉米面积的比是3:2,即,大豆面积:玉米面积=3:2 。对这一条件进行换说训练,又可以得到以下说法和理解: ①玉米面积:大豆面积 = 2:3
②大豆面积是玉米面积的3/2(豆=玉×3/2;玉为单位“1”) ③玉米面积是大豆面积的2/3(玉=豆×2/3;豆为单位“1”)
④大豆面积比玉米面积多1/2〈 豆=玉 玉×1/2;豆=玉×(1 1/2);玉为单位“1” 〉 ⑤玉米面积比大豆面积少1/3 玉=豆-豆×1/3;玉 = 豆×(1-1/3);豆为单位“1” ⑥大豆面积3份,玉米面积2份,共5份。
又如:“一张课桌比一把椅子贵10元,如椅子的单价是课桌的3/5。课桌、椅子各是多少元?”本题中的“ 椅子的单价是课桌的3/5”这一条件也可以理解为“椅子单价:课桌单价=3:5”这样又可以像上一例一样进行探究,从而找出多种多样的数量关系,这样不仅加深了理解,丰富了解法,更有助于发展学生的思维。
总之,研究出的数量关系越多,“脑野”越开阔,思路越清析,解题方法越丰富灵活。因此,教学中教师不能仅仅满足于得出正确的结果,而要进行必要的研究。只有这样才能使学生能灵活运用不同的方法解决问题,做到活学活用,也只有这样才能满足于优秀学生的求知欲,使其在数学上得到更好的发展。
以上七个环节,并非是孤立的,每一环节都可能会有其他环节的相随或参与。《数学课程标准》指出:学生是学习的主人,教师是数学教学的组织者,引导者与合作者。因此,在七环教学法中,教师要把握好自己的角色。提高学生解应用题的能力,是一个长期而复杂的过程,不能一蹴而就。教师要转变思想观念、教学方式和学习方式,经常以思为中心,让说贯穿始终,充分调动学生感观,使学生的脑、眼、口、手齐头并进,勇于让学生以合作交流等方式去主动探究。只有这样,才能培养学生思维,拓宽解题思路。学生遇到应用题时,才能迎刃而解。
如何做好小学数学应用题教学
我们大家都知道,小学阶段的学习是人的终身教育的起始站,学习数学不应仅仅是为了获取有限的知识和技能。我们的教学更要注重让学生学习自行获取数学知识的方法,学习主动参与本领,获得终身受用的可持续学习的发展性学力,即让学生学会学习,为他们将来走向社会和终身学习打下基楚,由此,“以学生的发展为本”应是我们课堂教学的出发点和归宿。
通过实践教学获得的经验,我认为应用题难学的学生占63%,很多学生家长也认为辅导子女学习应用题比较困难。存在这种现象的原因:一是题材内容不符合当地的实际情况,往往有些题型的内容在我们农村孩子从来都没有见过或接触过,也就是说现在教材中的应用题有许多内容脱离学生的实际生活,这就增加了学生对题目的理解缺乏兴趣,缺少与其学科的联系与沟通,从而影响到对其他学科的学习,教师只有普遍采用一问一答的讲解;二是教学目标注重解题技能、解题技巧的训练,忽视应用意识、应用能力及创新意识、创新精神的培养;。三是解法不活,解题思路不够开阔,学生仅仅是模仿解题,没有选择的权利,没有思考想象的机会,更没有主动探究、创新思维的时间与空间。影响学生灵活运用知识。导致学生对应用题理解困难。四是应用题的呈现方式主要以城市为主,把农村的教育忽略,缺乏与农村知识的沟通,导致学生学得不明不白。教学模式单一,多为一例一练,应用性不强,学生学的时候好像明明白白,用的时候无从下手。因此,应用题的教学应该从上面这几个问题去思考。从而增强应用题的应用味,提高学生解决实际问题的能力,提高应用题教学的效果。
如何使应用题更应生活化呢?我认为教师应该让学生喜欢充满乐趣的生活中的数学问题,所以有必要对教材中应用题的选材,作一下改编。例如教学相差关系的应用题时,老师提供给学生几条信息:苹果有20筐,梨子有12筐,苹果比梨子多8筐。应该把“筐”改为“颗”或“个”就把学生带入了身边的情境中,让学生感受到了数学就在身边,使应用题有了“应用味”。?此外,应用题应具有多样性和灵活性。多样的、灵活的呈现应用题,能让学生全面参与教学的过程,教师跟着学生的思路走,适时予以点拨,充分体现了学生学习的主体性。才能更有效的解决问题,既扩大农村孩子的眼界,又扩展孩子的知识面。这样就能使得教育教学质量得到更好的提高。
如何教学应用题
小学三年级应用题是整数应用题的总结。在这一阶段把整数应用题中的一般应用题和典型应用题作了一个全面的汇总。所以小学三年级应用题的教学是一个非常重要的阶段,涉及一般应用题到典型应用题,从一步应用题到几步应用题,这就要求学生掌握从普遍到特殊,从简单到复杂的解答方法,也要求教师要帮助学生不断地归纳、综合,让学生从已学习到的解题方法中找出规律,把握特点。
在小学三年级数学整数应用题的教学中,应注意抓住解答应用题的一般方法,教会学生解答应用题的切入点。我们知道解答一般思考应用题的方法是:问题〈--〉已知。解答过程是:1、读题,2、分析,3、解答,[列式],4、检查。而在教学实践中,我觉得最难的是要教会学生把这个程有机的结合。于是,我就提出一些要求,让学生知道解题过程中各个环节中应达到的目的,使学生有的放矢。例如在教学:“三年级一班栽树40棵,二班栽的比一班多5棵。两个班一共栽树多少棵?”
这道应用题时,我就提出一系列的问题要学生思考:这道题说的什么事?有几个班栽树?拿个班栽得多?“一共”是什么意思?求“一共”用什么方法?这一串问题使学生在思考的过程中把解题的方法也有机的结合起来。教会了学生怎样去发现问题,提出问题,解决问题。也就教会了学生在不知不觉中运用从问题〈---〉已知的一般的解题方法。
小学三年级应用题中还涉及到许多典型应用题。如:路程除以速度=时间,总产量除以工效=工作时间,总产量除以单产量=数量,总价除以数量=单价。之所以把它们叫做典型应用题,是因为这类应用题有着极强的规律性。虽然这类应用题也可以用解答一般应用题的方法来解答,但如果学生把握到它的规律性,用它特有的典型关系式来分析、解答就会更加简便。例如:商店有12箱水瓶,每箱5个,每个10元。着些水瓶一共可以卖多少元?(这道题是求总价,关系式是:总价=单价乘以数量)
这样根据数量关系式就能轻松的解决这道题。当然一般典型应用题都不是一步的简单应用题,这就要求学生要熟练地、准确地应用各种关系式子。在教学中教师要准确的定义关系式子中的一些慨念。如:“速度”,“单价”,“工效”等等。并列举生活中有关慨念的例子,让学生判断、理解,逐步掌握、运用,以利于学生更好的解决典型应用题。
以上是我的一管之见,在大力实施素质教育的今天,学生素质的提高,有赖于教师素质的提高。希望我们不断的研究教材,探索教法提高自身的素质,从而更好的贯彻素质教育。
如何教小学生解应用题
在小学数学的学习中,应用题的占的比率很大。而在现实生活中,我们也可以利用所学到的应用题来解决实际的问题。例如,费用的支出和收入、盈亏问题,行程问题,工程问题等等。因此,可以说应用题是生活的需要,无所不有,无处不在。其实应用题的学习是对小学生进行思维训练,培养小学生的数学逻辑思维能力,提高其数学素质。因此,应用题教学是小学数学教学中的一个重点。

我认为应用题的教授一定要加强其思维的训练,语言的训练,这样才能提高学生灵活解决实际问题的能力。所以我总结了以下几个步骤:读——划——思——解,现分述如下,希望可以帮助学生更好的学习应用题。
1:读
应用题是用语言表述的一类题型,对语言的理解能力要求非常高。因此,读题便成为解应用题的一个重要环节是学生自己感知信息数据的过程。读看起来很简单,但数学应用题的读并非泛泛而读,它要求讲究一定的方式,数学中的读不讲究抑扬顿挫、优美动听,但需要用心、用脑、集中注意的读,一般来讲要读三遍:第一遍初读,对题目有初步印象;第二遍应逐字逐句的读,重点理解每个词、术语的实际含义;第三遍连贯起来读,重点掌握题目的已知条件和所求问题。
例:星火煤厂上半年原计划产煤6.6万吨,实际每月比原计划多产2.2万吨,照这样计算,完成上半年计划需用几个月?
在读这个题目时需要通过大脑反映弄清四个问题: (1)这道题叙述的是哪个单位的什么事?
(2)题目第一个条件是什么?“上半年”和“原计划”又是什么? (3)题目第二个条件是什么?关键词是什么?谁和谁比?比什么?比的结果怎样?
(4)问题是什么?“照这样计算”是什么意思?
划。顾名思义就是把什么圈出来。这一步对小学生而言是无论如何都不能省略的,它是在读完题后进行的,是在读的基础上进一步明确题意,抓住重点的关键。例如:在教《分数加减法》时,经常会遇到这样的题目,一块地公顷,其中种大豆, 种棉花,其余种玉米,玉米的种植面积占这块地的几分之几?
这道题主要是让你区别给你的分数是分率还是一个数。这个时候我就要求学生必须把有单位名称的数字圈出来,这样可以提醒自己,数和分率是不同的,不可以进行加减法。同时划出“几分之几”明白的告诉学生求的是一个分率,和 公顷无关。划是一个很好的习惯,可以提醒学生在今后的思考中注意一些细小的地方,以免出现不该有的错误。
思:
学生读题后,获取了一知和问题后,接下来就是在大脑中对这些信息进行加工,也就是思。一般来说,思有两种思考方法:
(1)顺着思考,即由已知——结论,从已知中获取信息,一步步推出过程量,慢慢靠近所求结果:
例果园里有4行苹果树,每行18棵,还有2行梨树,每行12棵,苹果树是梨树的几倍?
解:我们可以用图把思考过程表示如下(顺推) 已知
4行苹果树 2行梨树 每行18棵每行12棵 苹果树总数 梨树总数 苹果树是梨树的几倍?
(2)倒推法,即从问题入手——想要解决这个问题需要知道些什么条件,这些条件是题目中的已知的,还是未知量,要知道这个未知量又需要什么条件,需要什么样的数量关系来解决,直到在题目中找到已知:
同上例:执果溯因(倒推图解) 问题: 苹果树是梨树的几倍? 苹果树有多少棵? 梨树有多少棵? 4行苹果树 2行梨树 每行18棵每行12棵
已知
综上,思考应用题是培养学生思维能力的中心环节。因此,教学中教师要加强引导,切实做好学生的引导者,设法调动学生的大脑器官。要留给学生充分思考的余地,为学生提供一个独立思考的机会。
解,指的是学生的解答。或许学生认为这一部分他们是最会的。其实要把一道应用题完整的写下来,让老师给你满分。同样需要锤炼。学生需要把刚才思考的过程用数字的形式表示出来。在解应用题时,题目中没有出现过的数学是不可以出现在题目中的,即使是显而易见的数字也需要你进行一定的说明。这是数学的严谨性。所写的式子,要让别人看了也完全明白你的思路,这样才是一个漂亮的式子。应用题写的时候要注意:如果是方程,学生的解设就是不可或缺的。所列的方程未知数后面并不需要有单位名称。但如果是一般的式子,单位名称则需要写上去。当然求比率、分率等是没有单位名称的。最后是写上完整的答句。其实要完成一道应用题,每一个部分都不可以忽略。所以更需要学生通过前面的认真读、仔细划,努力想才能最终完整的写完。
其实,要完成一道应用题,每一个部分都是不可忽略的,而做到以上步骤的前提是掌握基础知识和各种基本用算法则,这就需要教师在平时的教学中不断训练和督导,每讲完一道题后,引导学生进行反思:对该类型题进行再分析、进一步解剖题干、挖掘其等量关系,并进一步总结;例如:“相遇问题”,题后思考总结:1、什么样的题目表述的是相遇问题?2、这类问题的等量关系是什么?3、拿到这样的题目该怎样列式计算?4、它与“追及问题”有什么异同等等?
总之,学生的思路越清析,解题方法也就越丰富灵活。因此,教学中教师不能仅仅满足于得出正确的结果,而要进行必要的研究。只有这样才能使学生能灵活运用不同的方法解决问题,做到活学活用,也只有这样才能满足于学生的求知欲,使其在数学上得到更好的发展。

㈤ 如何解答好数学上的应用题

文章摘要: 应用题不像客观题那样单纯,由于要求全,解题时既要综观全局,又要层次分明,难度自然就比较大了。但话说回来,正因为数学应用题在分析思考和联系实际方面的能力要求较高,对我们解题能力的锻炼就更大。…

第一、文理关。 应用题总是用文字来表述的,也就是说应用题总是文字题,是“文章数学”的形式。既然是“文章”,就有一个疏通文字的问题。大家感到数学应用题难,恐怕首先就在于这第一关“文理关”过不去。叶圣陶先生曾说过:“任何教材都是语文教材”,这句话讲得很确切,它告诉我们解数学应用题,要注意提高自己分析文字的能力。如果这第一关就过不去,解应用题就无从谈起。

客观题只要按照运算法则和步骤去做就可以了。而应用题则不然,已知是什么,要求的是什么,它们之间有什么联系,都得你自己去分析。再从解题步骤来看,解数学应用题的一般步骤是:审(题),画(图表),析(分析),解(运算),查(检查),答(案),解题步骤比较全面,不像式子题那样单纯。由于要求全,解题时既要综观全局,又要层次分明,难度自然就比较大了。但话说回来,正因为数学应用题在分析思考和联系实际方面的能力要求较高,对我们解题能力的锻炼就更大。这也说明,要学好数学,必须具备一定的语文基础,还要有一定的常识。广博是精深的'基础,尤其是初中阶段,更需要注意这一点。

第二、事理关。 既然应用题具有一定的事实,当然其中就有一定的事理。是生活中的问题,离不开生活经验;是工农业生产和科学技术中的知识,当然就应该懂得这方面的内容。如果对应用题中所涉及的事理不了解,自然就无法解应用题了。初中数学应用题涉及的事理不外三方面:生活常识;工农业生产或科学技术中普通的知识;初中理、化、生物等自然学科中有关的知识。

第三、数理关。 文字流通了,事理明白了,剩下的才是运用数学知识和规律去解题,这就是“数理关”。

综上分析,应用题用文字表述,且具有一定的事理,它和式子题有明显的不同。式子题有现成的式子,计算方法和次序都是明确的。

㈥ 数学应用题解答格式

初中数学题一般会遇到:

一般应用题、一般几何应用题、几何证明题。

下列为解题步骤:

一般应用题:

解:(需设x的话设x)

答题过程

答:……。(所问的问题)


一般初中应用题都在与几个模式,在熟练地练会一道题,一类题基本就都可以做出来。

而且初中题都在勤练,仔细审题,找出其中的关系,一般问题就迎刃而解了。

(6)数学应用题如何答扩展阅读:

解初中应用题的技巧:

1、厘清问题中的数量关系,从提问者的角度考虑问题。

2、规范解题过程。

3、审题应该注重严谨性、深度性、细节性。

4、记住做懂题,由一推百。

5、可以从问题发推过去。

6、善于用变更法诱导解题思路。

7、注重进行高效的阅读题目。

8、应该科学性的做题。

9、培养出认真钻研的习惯。

㈦ 数学的应用题有几种方法

分析法:分析法是从题中所求问题出发,逐步找出要解决的问题所必须的已知条件的思考方法。

02、 综合法:综合法就是从题目中已知条件出发,逐步推算出要解决的问题的思考方法。

03、 分析、综合法:一方面要认真考虑已知条件,另一方面还要注意题目中要解决的问题是什么,这样思维才有明确的方向性和目的性。

04、 分解法:把一道复杂的应用题拆成几道基本的应用题,从中找到解题的线索。

05、 图解法:图解法是用画图或线段把题目听条件和问题明确地表示出来,然后“按图索骥”寻找解答应用题的方法。

06、 假设法:假设法就是解题时,对题目中的某些现象或关系做出适当的假设,然后,用事实与假设之间的矛盾中找到正确的解题方法。

例:冰箱厂生产一批冰箱,原计划每天生产800台,而实际每天比计划多生产了120台,结果比原计划提前3天完成了任务。实际用了多少天?解法一:(800+120)×3÷120—3=20(天)(这是一种常规的解法);解法二:假设原计划少生产3天,则共少生产了800×3=2400台冰箱。这时计划生产的天数就等于实际生产的天数,造成少生产2400台的原因是每天计划比实际少生产120台,所以实际生产天数为:2400÷120=20(天)即列式为:800×3÷120=20(天)。

07、 转化法:转化方法就是把某一个数学问题,通过数学变换,转化成另一个数学问题来处理,然后把它解答出来的方法。

例:一辆货车从甲城开往乙城需10小时,一辆客车从乙城开往甲城需6小时,两车同时出发,相向而行,已知甲、乙两城相距600千米,几小时后两车相遇?解法一:600÷(600÷10+600÷6)解法二:把两地路程看作单位“1”,货车的时速是1/10,客车的时速是1/6,依然是用路程除以速度和,得到相遇时间:1÷(1/10+1/6)

08、 倒推法(还原法):从条件的终结状态出发,运用加与减、乘与除之间的互逆关系,从后向前一步一步地推算,从而解决问题的方法,称为倒推法或还原法。

例:某仓库货物若干袋,第一次运出了1/3少4袋,第二次运出余下的一半少2袋,库中还剩106袋,仓库原有货物多少袋?【(106—2)×2—4】÷(1—1/3)=306(袋)

09、 找对应关系的方法:在某些数学题中,存在着一些相关的对应量,通过分析条件之间的某些数量的对应关系,实现未知向已知的转化,这种思考方法,可称为“对应法”。

例:一本书,第一天读了32页,第二天读了40页,剩下的页数占全书页数的1/4。这本书还剩下多少页没有读?(找出各相关对应量)

10、 替换法:“替换”就是等量代换。用一种量(或一种量的一部分)来代替和它相等的另一种量(或另一种量的一部分),从而减少问题中的数量个数,降低解题的难度,然后设法将这个被代换的量求出。

例:食堂三天用完一桶油,第一天用了6千克,第二天用了余下的3/7,第三天用的恰好是这桶油的一半。第二天和第三天共用油多少千克?(分析:6千克对应余下1/7即1-3/7-3/7,找到这个对应关系,余下的量正好是题目所求的第二天和第三天共用的油量:6÷(1—3/7-3/7)=42(千克)

11、 从变量中找不变量的解题方法:

(1) 变中有不变——和不变:例:甲、乙两个施工队共180人,从甲队抽出自己人数的2/11调到乙队后,两队人数则相等,求两队原来各有多少人?甲队:180÷2÷(1—2/11)=110(人)

(2) 变中有不变——差不变:例:甲储蓄2000元,乙储蓄400元。如果从现在开始,每人每月各存200元,几个月后甲储蓄的钱数是乙储蓄的钱数的3倍?(分析:甲比乙多储蓄1600元,而这1600则刚好是乙几个月后钱数的2倍,则列式为:【(2000—400)÷(3—1)—400】÷200=2(个))

(3) 变中有不变——某一部分量不变:例:要从含盐16%的盐水25千克中蒸发去一部分水,得到含盐40%的盐水,应当蒸发去多少千克水?(析:这道题的总量是盐水的重量,它是由盐和水两个部分量组成。盐水蒸发后,水的重量减少了,盐水的总重量也随它减少,浓度也随着发生了变化。但要看到变中有不变,盐的重量始终没变,抓住盐这个不变量入手分析,便可得出答案:25—25×16%÷40%=15(千克))

(4) 变中有不变——形变体不变:例:把一个长、宽、高分别为9厘米、7厘米、3厘米的长方体铁块和一个棱长5厘米的正方体铁块,熔铸成一个圆柱体,这个圆柱体底面直径为20厘米,高是多少厘米?(分析:形态虽然发生了变化,但是总体积却没有变化:(9×7×3+5×5×5)÷【3.14×(10×10)】=1厘米)五年级上册的组合图形也可以用这种方法来分析。

12、 构造法:在计算某些图形题时,把原来不易处理的,不规则的图形,通过平移、旋转、翻折后,重新构造成一个新的更便天处理的图形为解决问题,这个思考方法,称为构造法。

13、 列举法:数量关系比较复杂,很难列出算式或方程求解。我们就要根据题目的要求,把可能的答案一一列举出来,再进一步根据题目中的条件逐步排除非解或缩小范围,进行筛选出题目的答案。

例:有一个伍分币,4个个贰分币,8个壹分币,要拿8分钱,有几种拿法?

14、 消去法:在一道数学题中,含有两个未知数,在解题时,通过简单的运算,先消去一个未知数,再求另一个未知数。这种解题的思考方法称为消去法。

例:百货商店里,2支圆珠笔和3支钢笔共值6元6角,3支圆珠笔和3支钢笔共值7元2角。一支圆珠笔多少钱?

15、 设数法:有的题目含有某个不定的量,按照一般的解题思路,不易找出解题方法,如果我们把题目中某个不定量设定为具体的数,就可以使原题化抽象为具体,使难题变容易,这种解题的思考方法称为设数法。

例:小华参加爬山活动,从山脚爬到山顶后,按原路下山,上山时每分钟走20米,下山时每分钟走30米,求小华上、下山的平均速度。(分析:根据“总路程÷时间=平均速度”题中没有给出路程,可以设为600米。则列式为:600×2÷(600÷20+600÷30)=24(米/分))

㈧ 小学数学应用题解题技巧有哪些

小学数学应用题解题技巧如下:

注意审题。即在作题之前先把题目读上三遍,理解题目的意思、数量关系、问题是什么、有几问。明白符合加、减、乘、除的哪种算理,确定方法。确定需要几步解答。

注意格式。小学三年级解答应用题的一般格式:算式、单位、答语。往往有些孩子因忘写单位、忘写答语而丢分。

注意特殊问题。如有余数的,解答时既要写余数又要写商;和生活实际问题相关的,租车问题(有余数时得数加1);载树问题(两头都栽得数加1);有多余条件的(不要给什么条件都要用)。

做数学题注意事项

善于挖掘隐含条件

题目中的隐含条件,有时对题目的条件进行补充或结果进行限制。审题时,善于挖掘隐含条件,还其庐山真面目,便为解题提供了新的信息与依据,解题思路也油然而生。

仔细审题

数学语言的表达往往是十分精确,并具有特定的意义。审题时,就要仔细看清题目的每一个字、词、句,只有领会确切的含义,才能寻找解题的突破口,叩开解答之门。

善于“转化”和“建模”

一道数学题目,在审题时应先把文字语言“转化”为数学语言,并结合题意,建立数学模型、构造数学算式。

总之,审题时,一定要对题目中的文字语言反复推敲,提取信息,处理信息,获取解题的途径。

让孩子培养好的审题习惯,提高审题能力,并在审题中学会动脑,才能提高分析问题解决问题的能力,还可以无形中培养孩子的严谨做题习惯,真的是受益良多。

㈨ 小学数学应用题的解题步骤和方法

小学数学10道经典应用题解题思路及答题

网络网盘链接:https://pan..com/s/1vUkp3x_qJYZqH5Y0E394hQ

提取码:ae3g

若资源有问题欢迎追问~

㈩ 小学数学应用题的解题步骤和方法

掌握解题步骤是解答应用题的第一步,要想掌握解答应用题的技能技巧,还需要掌握解答应用题的基本方法。一般可以分为综合法、分析法、图解法、演示法、消元法、假定法、逆推法、列举法等。在这里介绍这些方法,主要是帮助同学掌握在遇到应用题时,如何去思考,怎样打开自己的智慧之门。这些方法都不是孤立的,在实际解题中,往往是两种或三种方法同时用到,而且有许多问题,可以用这种方法分析,也可以用那种方法分析。问题在于掌握了各种方法后,可以随着题目中的数量关系灵活运用,切不可死记硬背,机械地套用解题方法。
1.综合法
从已知条件出发,根据数量关系先选择两个已知数量,提出可以解答的问题,然后把所求出的数量作为新的已知条件,
与其它的已知条件搭配,再提出可以解答的问题,这样逐步推导,直到求出所要求的结果为止。这就是综合法。在运用综合法的过程中,把应用题的已知条件分解成可以依次解答的几个简单应用题。小学数学网
例1.一个养鸡场一月份运出肉鸡13600只,二月份运出的肉鸡是一月份的2倍,三月份运出的比前两个月的总数少800只,三月份运出多少只?
综合法的思路是:
算式:(13600+13600×2)-800
=
(13600+27200)-800
=40800-800
=40000(只)
答:三月份运出40000只。
另解:13600×(2+1)-800
=13600×3-800
=40800-800
=40000(只)
例2.工厂有一堆煤,原计划每天烧3吨,可以烧96天。由于改进烧煤方法,每天可节煤0.6吨,这样可以比原计划多烧几天?
解答这道题,综合法的思路是:
算式:3×96÷(3-0.6)-96
=288÷2.4-96
=120-96
=24(天)
答:可比原计划多烧24天

阅读全文

与数学应用题如何答相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:740
乙酸乙酯化学式怎么算 浏览:1406
沈阳初中的数学是什么版本的 浏览:1353
华为手机家人共享如何查看地理位置 浏览:1045
一氧化碳还原氧化铝化学方程式怎么配平 浏览:886
数学c什么意思是什么意思是什么 浏览:1411
中考初中地理如何补 浏览:1300
360浏览器历史在哪里下载迅雷下载 浏览:703
数学奥数卡怎么办 浏览:1388
如何回答地理是什么 浏览:1025
win7如何删除电脑文件浏览历史 浏览:1058
大学物理实验干什么用的到 浏览:1487
二年级上册数学框框怎么填 浏览:1701
西安瑞禧生物科技有限公司怎么样 浏览:974
武大的分析化学怎么样 浏览:1250
ige电化学发光偏高怎么办 浏览:1339
学而思初中英语和语文怎么样 浏览:1651
下列哪个水飞蓟素化学结构 浏览:1425
化学理学哪些专业好 浏览:1488
数学中的棱的意思是什么 浏览:1059