❶ 小学数学阶段的数字课程安排了那几个知识领域的内容
在各个学段中,《标准》安排了“数与代数”“空间与图形”“统计与概率”“实践与综合应用”四个学习领域。课程内容的学习,强调学生的数学活动,发展学生的数感、符号感、空间观念、统计观念、以及应用意识与推理能力。
❷ 小学数学都学些什么
(一)整数和小数
1.概念:自然数、整数、小数、无限小数、循环小数、纯循环小数、数位、计数单位、整数和小数的读法和写法、小数的性质、数的改写和省略、四舍五入法、整除、约数、倍数、最大公约数、最小公倍数、质数、合数、分解质因数、互质数、奇数、偶数、能被2.3.5分别整除的数的特征。
2.方法:加减乘除的运算法则、运算顺序、运算定律(简便计算)。
3.解决问题:
(1)分析题意,找出已知条件和所求问题
(2)确定条件和问题之间的数量关系
(3)列式计算。
(二)简易方程
1.概念:等式、未知数、方程、加减乘除各部分之间的关系。
2.运用:字母表示数、解方程、列方程解决问题(数量关系)。
(三)分数和百分数
1.概念:分数、分数单位、真分数、假分数、分数和除法的关系、分数基本性质、最简分数、通分、 约分、百分数(百分率)、成数、折数。
2.运用: 分数、小数、百分数之间的互化、分数加减乘除四则运算、简便运算。
3.解决问题:
(1)求一个量是另一个量的几分之几或百分之几
(2)求一个量比另一个量多或少几分之几或百分之几
(3)求一个量的几分之几或百分之几是多少——单位1已知
(4)已知一个量的几分之几或百分之几是多少,求这个量——单位1未知。
(四)量的计量
1.概念:常见的长度单位、面积单位、体积单位、质量(重量)单位、时间单位、相邻两个单位之间的进率、名数、单名数、复名数。
2.运用:名数改写——高级单位化成低级单位,乘以进率;低级单位化向高级单位,除以进率。
(五)几何初步知识
1.概念:直线、射线、线段、角和角的分类、垂线、平行线、三角形的分类、三角形内角和、平行四边形、梯形、高、圆、直径、半径、圆周率、扇形、轴对称图形、对称轴。
2.操作:量角、画角、画垂线、画平行线、画高(三角形 – 梯形 – 平行四边形)、画长方形、画正方形、画圆、画半圆、画对称轴。
3.计算:面积(三角形 - 梯形 - 平行四边形 - 长方形 - 正方形 - 圆)、
周长(长方形 - 正方形 - 圆 - 半圆)、
表面积(正方体 - 长方体 - 圆柱体)、
体积(长方体 - 正方体 - 圆柱体 - 圆锥体)。
(六)比和比例
1.概念:比、比与除法和分数的关系、比值、比的基本性质、最简比、比例、比例的基本性质、比例尺、正比例、反比例。
2.计算:求比值、化简比、解比例。
3.解决问题:按比例分配、比例尺、正比例、反比例。
(七)简单的统计
1.会画统计表或统计图(条形统计图、折线统计图)
2.依据图表分析问题,解决问题——比如求平均数、一个量比另一个量提高或降低百分之几等等
❸ 小学数学四大领域包括
四大领域
数与代数:数的认识,数的表示,数的大小,数的运算,数量的估计;
图形与几何:空间与平面的基本图形,图形的性质和分类;图形的平移、旋转、轴对称;
统计与概率:收集、整理和描述数据,处理数据;
实践与综合应用:以一类问题为载体,学生主动参与的学习活动,是帮助学生积累数学活动经验的重要途径。
小学数学新课标的基本理念
1.义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,实现:人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。
2.数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象;数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础;数学在提高人的推理能力、抽象能力、想象力和创造力等方面有着独特的作用;数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。
3.学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。
❹ 小学数学四个领域是依据什么划分的
《数学课程标准》在每个学段均安排了数与代数、空间与图形、统计与概率和实践与综合运用这四个领域的学习内容.
在小学阶段,数与代数领域的学习内容有:数的认识、数的运算、常见的量、式与方程、正反比例和探索规律;空间与图形领域的学习内容有:图形的认识、测量、图形与位置、图形与变换;统计与概率领域的学习内容有:统计、可能性;实践与综合运用领域的学习内容包括:实践活动、综合应用.
❺ 小学数学知识可以分成那些板块
小学数学知识大致可分为四大块:1.数与代数 2.图形与几何 3.统计与概率 4.综合与实践 (供参考)
❻ 小学数学分为几大板块
按内容分为:数与代数,几何与图形,统计与概率,实践与综合应用。
按领域分为:知识与技能,数学思考,问题解决,情感与态度。
❼ .小学《数学课程标准》中的四个学习领域是什么
四个学习领域分别是:"数与代数""空间与图形""统计与概率""实践与综合应用"。
数感主要表现在:理解数的意义;能用多种方法来表示数;能在具体的情境中把握数的相对大小关系;能用数来表达和交流信息;能为解决问题而选择适当的算法;能估计运算的结果,并对结果的合理性作出解释。
符号感主要表现在:能从具体情境中抽象出数量关系和变化规律,并用符号来表示;理解符号所代表的数量关系和变化规律;会进行符号间的转换;能选择适当的程序和方法解决用符号所表达的问题。
空间观念主要表现在:能由实物的形状想象出几何图形,由几何图形想象出实物的形状,进行几何体与其三视图、展开图之间的转化;能根据条件做出立体模型或画出图形;能从较复杂的图形中分解出基本的图形,并能分析其中的基本元素及其关系;能描述实物或几何图形的运动和变化;能采用适当的方式描述物体间的位置关系;能运用图形形象地描述问题,利用直观来进行思考。
统计观念主要表现在:能从统计的角度思考与数据信息有关的问题;能通过收集数据、描述数据、分析数据的过程作出合理的决策,认识到统计对决策的作用;能对数据的来源、处理数据的方法,以及由此得到的结果进行合理的质疑。
应用意识主要表现在:认识到现实生活中蕴含着大量的数学信息、数学在现实世界中有着广泛的应用;面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻求解决问题的策略;面对新的数学知识时,能主动地寻找其实际背景,并探索其应用价值。
推理能力主要表现在:能通过观察、实验、归纳、类比等获得数学猜想,并进一步寻求证据、给出证明或举出反例;能清晰、有条理地表达自己的思考过程,做到言之有理、落笔有据;在与他人交流的过程中,能运用数学语言合乎逻辑地进行讨论与质疑。
(7)小学数学知识分哪些领域扩展阅读
数学是人们对客观世界定性把握和定量刻画、.逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。20世纪中叶以来,数学自身发生了巨大的变化,特别是与计算机的结合,使得数学在研究领域、研究方式和应用范围等方面得到了空前的拓展。
数学可以帮助人们更好地探求客观世界的规律,并对现代社会中大量纷繁复杂的信息作出恰当的选择与判断,同时为人们交流信息提供了一种有效、简捷的手段。数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。
义务教育阶段的数学课程,其基本出发点是促进学生全面、持续、和谐地发展。它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。
参考资料来源:网络-全日制义务教育·数学课程标准
参考资料来源:网络-数学课程标准
❽ 小学数学分为几大块每块都包括什么内容
分为四大块,分别是数与代数,图形与几何,统计与概率,综合与实践。
1、数与代数主要包括,数的读写方法(整数,小数,分数),数的改写(化成用万、亿作单位的数,求近似数等),数的大小比较(整数,小数,分数的大小比较),四则运算(计算法则,运算顺序,运算定律等),
量的计量(质量,长度,面积,时间,体积(容积)、人民币等,以及单位间的换算)。
2、几何与图形包括,认识图形(图形的名称,各部分名称,特点,性质,图形之间的关系等等),观察物体,计算平面图形的面积、立体图形的表面积和体积,图形的运动(平移和旋转),位置与方向等。
3、统计与概率主要包括:统计表,统计图(条形,扇形,折线等等)平均数众数,概率等。
(8)小学数学知识分哪些领域扩展阅读:
意义:
小学数学的基础知识包括:概念、定律、性质、法则、公式等,其中数学概念不仅是数学基础知识的重要组成部分,而且是学习其他数学知识的基础。学生掌握基础知识的过程,实际上就是掌握概念并运用概念进行判断、推理的过程。数学中的法则都是建立在一系列概念的基础上的。
❾ 小学数学基础知识包括哪几个方面
数学与计算、量与计量、百分数、比和比例、应用题、代数初步知识、几何初步知识、统计初步知识八大部分