㈠ 根号加减乘除运算法则是什么
根号加减乘除运算法则有:先乘除再加减,有括号先算括号(根号里);将根号里的数相乘(根号外)。
例:根号5*根号8=根号40=2倍根号10。
√a+√b=√b+√a;
√a-√b=-(√b-√a);
√a*√b=√(a*b);
√a/√b=√(a/b)。
数学运算法则:
数学运算规则,完成运算,得出结果的方法、程序或途径通常叫做“运算法则”,实质上也就是“运算方法”。运算法则通常将所要求的操作程序分成几点,表述为文本。或者按化归的思想,将当前的运算归结为学生早先已掌握的运算。
如笔算“一位数乘多位数”的法则是:“从个位起用一位数依次去乘多位数各位上的数;乘到哪一位,积的末位就和哪一位对齐;哪一位乘得的积满几十,就向前一位进几。 ”这个法则的实质就是将当前的“一位数乘多位数”归结为“表内乘法”。
㈡ 根号相加减怎么算
根号不能加减,只能保留成表达式,如果数相同就可以,如根号2加根号2等于2倍的根号2 ,也就是2乘根号2,乘除就把里面的数相乘就好了。
如果要加减就必须把它用计算器取近似值,然后运算。
(2)数学根号怎么算加减乘除扩展阅读:
二次根式加减法法则先把各个二次根式化简成最简二次根式,再把同类二次根式分别合并。
同类根式亦称相似根式,是代数学术语,指做加减法时允许合并的诸根式,当几个根式化成最简根式后,如果它们的根指数和被开方数分别都相同,那么这些根式称为同类根式。
若aⁿ=b,那么a是b开n次方的n次方根或a是b的1/n次方。开n次方手写体和印刷体用表示,被开方的数或代数式写在符号左方√ ̄的右边和符号上方一横部分的下方共同包围的区域中,而且不能出界。
根号运算要用到3个二次根式的性质和一个二次根式知识点!
①√ab=√a·√b﹙a≥0b≥0﹚ 这个可以交互使用.这个最多运用于化简,如:√8=√4·√2=2√2
②√a/b=√a÷√b﹙a≥0b﹥0﹚
③√a²=|a|(其实就是等于绝对值)这个知识点是二次根式重点也是难点。
当a>0时,√a²=a;(等于它的本身)
当a=0时,√a²=0;
当a<0时,√a²=-a(等于它的相反数)。
当根式满足以下三个条件时,称为最简根式。
①被开方数的指数与根指数互质;
②被开方数不含分母,即被开方数中因数是整数,因式是整式;
③被开方数中不含开得尽方的因数或因式。
㈢ 如何计算根号的加减法
先把根式化简,如果化简后根号下数字不同不能加减,如果化简后根号下数字相同的可以加减,根号内数字不变,外面的数字相加减。
例如2倍根号21加6倍根号21等于8倍根号21。相减则是同样道理,根号下的永远不变,根式的乘除与加减不同,但也要先化简,化减后两个根号下的数字相乘除,两个根号外的数字相成除。
平方根速记口诀表
负数方根不能行,零取方根仍为零。正数方根有两个,符号相反值相同。2作根指可省略,其它务必要写明。负数只有奇次根,算术方根零或正。
根号是一个数学符号。根号是用来表示对一个数或一个代数式进行开方运算的符号。若a^n=b,那么a是b开n次方的n次方根或a是b的1/n次方。
㈣ 根号的运算 加减乘除
1.根号2乘以2,把2变成根号4再乘,就是根号4乘根号2,再根号下的2乘以4的积,就是根号8,也可化简写成2倍根号2.
如题:√2*2 =2√2 =√2*√4 =√(2*4) =√(2^2*4) =√8
2.根号3乘以根号6就是根号下6乘以3的积,就是根号18,再把18变成9乘以2,因为9可以开根,所以最后化简得出3倍根号2.
如题:√3*√6 =√(3*6) =√18 =√(9*2)=√3^2*2) =3√2
3.根号32乘以根号25,得出根号800,根号800再化简得根号下的400乘以2的积,400又等于20乘以20,就是20的平方,最后化简得出20倍根号2.
如题:√32*√25 =√(32*25) =√800 =√(400*2) =√(20^2*2) =20√2
很简单的 照此公式便可得出
√a*√b=√(a*b)
√a/√b=√(a/b)
注:X^n意思是X的n次方 如2^2=2*2=4 2^3=2*2*2=8
㈤ 根号加减乘除运算法则是什么
根号加减乘除运算法则是√a+√b=√b+√a,√a-√b=-(√b-√a),√a√b=√(ab),√a/√b=√(a/b)等等根号是一个数学符号。
数学运算规则,完成运算,得出结果的方法、程序或途径通常叫做“运算法则”,实质上也就是“运算方法”。运算法则通常将所要求的操作程序分成几点,表述为文本。或者按化归的思想,将当前的运算归结为学生早先已掌握的运算。
如笔算“一位数乘多位数”的法则是:“从个位起用一位数依次去乘多位数各位上的数;乘到哪一位,积的末位就和哪一位对齐;哪一位乘得的积满几十,就向前一位进几。”这个法则的实质就是将当前的“一位数乘多位数”归结为“表内乘法”。
根号
根号是一个数学符号。根号是用来表示对一个数或一个代数式进行开方运算的符号。若aⁿ=b,那么a是b开n次方的n次方根或a是b的1/n次方。开n次方手写体和印刷体用n√ ̄表示 ,被开方的数或代数式写在符号左方√ ̄的右边和符号上方一横部分的下方共同包围的区域中,而且不能出界。
㈥ 根号加减乘除怎么运算
根号下的数拆开如8可以拆成2和4
4正好可以开根号=2,但原先那个2不可以,所以只能留在根号中
所以根号8=2根号2
而至于根号的加减,则需要先将带根号的项用以上方法化到最简,再进行同类项合并
如根号13+根号117=根号13+3根号13=4根号13
㈦ 根号加减乘除怎么算
先把带根号的数化成最简根式,对于同类根式,根号外的数相加减,根式不变。相乘除时,根号内外分别相乘除。
㈧ 根号怎么互相加减乘除
一、二次根式的加减。
二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.
注意:
1、二次根式的加减常分为两大步骤进行,第一步化简;第二步合并;
2、在合并前应注意要先判断清楚它们中哪些二次根式的被开方数是相同的;在合并时类似于以前学过的合并同类项,只需将根号外的因式进行加减,被开方数和根指数不变。
二、二次根式的乘除。
二次根式相乘,等于被开方数的积的算术平方根。
二次根式相除,等于被开方数的商的算术平方根。
(8)数学根号怎么算加减乘除扩展阅读:
其他运算:
1、√a²=|a|(其实就是等于绝对值)这个知识点是二次根式重点也是难点。当a>0时,√a²=a(等于它的本身);当a=0时,√a²=0;当a<0时,√a²=-a(等于它的相反数)
2、分母有理化:分母不能有二次根式或者不能含有二次根式。当分母中只有一个二次根式,那么利用分式性质,分子分母同时乘以相同的二次根式。如:分母是√3,那么分子分母同时乘以√3。
当分母中含有二次根式,利用平方差公式使分母有理化。具体方法,如:分母是√5 -2(表示√5与2的差)要使分母有理化,分子分母同时乘以√5+2(表示√5与2的和)
㈨ 根号怎么加减乘除
先把根式化简,如果化简后根号下数字不同不能加减,如果化简后根号下数字相同的可以加减,根号内数字不变,外面的数字相加减。
例如:
2倍根号21加6倍根号21等于8倍根号21。
相减则是同样道理,根号下的永远不变.根式的乘除与加减不同,但也要先化简,化减后两个根号下的数字相乘除,两个根号外的数字相成除。
例如:
2倍根号3成以6倍根号2等于12倍根号6(成完后如果能化简还要化简)。
除还要复杂一些,涉及到分母有理化,但说白了就是除完了之后八成都要化简,也不难。
例如:
6倍根号2除以2倍根号3等于3倍根号3分之2只要把根号3分之2化简了就可以了,等于3分之根号6,那么原式等于根号6.作根式乘除法的时候,也可以先乘除后化简,由题而定。
计算公式
n次算术根
算术根是唯一的,且是非负数的非负方根。
同次根式
跟指数相同的根式。只有同次根式才能进行乘、除运算。
同类根式
被开方数相同、根指数也相同的根式。只有同类根式才能进行加、减运算。
最简根式
当根式满足以下三个条件时,称为最简根式。
①被开方数的指数与根指数互质;
②被开方数不含分母,即被开方数中因数是整数,因式是整式;
③被开方数中不含开得尽方的因数或因式。
㈩ 根号加减法的运算公式
根号内的数可以化成相同或相同则可以相加减,不同不能相加减。
如果根号里面的数相同就可以相加减,如果根号里面的数不相同就不可以相加减,能够化简到根号里面的数相同就可以相加减了。
举例如下:
(1)2√2 +3√2=5√2(根号里面的数都是2,可以相加)
(2)2√3 +3√2(根号里面的数一个是3,一个是2,不同不能相加)
(3)√5+√20=√5+2√5=3√5(根号内的数虽然不同,但是可以化成相同,可以相加)
(4)3√2-2√2=√2
(5)√20-√5=2√5-√5=√5
(10)数学根号怎么算加减乘除扩展阅读:
一个数有多少个方根,这个问题既与数的所在范围有关,也与方根的次数有关。在实数范围内,任一实数的奇数次方根有且仅有一个,例如8的3次方根为2,-8的 3次方根为-2。
正实数的偶数次方根是两个互为相反数的数,例如16的4次方根为2和-2;负实数不存在偶数次方根;零的任何次方根都是零。在复数范围内,无论n是奇数或偶数,任一个非零的复数的n次方根都有n个。
当根式满足以下三个条件时,称为最简根式。
①被开方数的指数与根指数互质;
②被开方数不含分母,即被开方数中因数是整数,因式是整式;
③被开方数中不含开得尽方的因数或因式。
“有理化分母”,是指通过适当的变形划去代数式分母中根号的运算。
一般情况下,在进行根式运算及把一个根式化成最简根式时,都要将分母有理化,两个含有根式的代数式相乘,如果它们的积不含根号,我们就说这两个代数式互为有理化因式。