1. 数学要怎样才能学好
首先聪明和敏捷对于数学学习来说固然重要,但良好的学习方法可以把学习效果提高几倍,这是先天因素不可比拟的.学好数学首先要过的是心理关.任何事情都有一个由量变到质变的循序渐进的积累过程.
一.预习.不等于浏览.
要深入了解知识内容,找出重点,难点,疑点,经过思考,标出不懂的,有益于听课抓住重点,还可以培养自学能力,有时间还可以超前学习.
二.听讲.核心在课堂.
1.以听为主,兼顾记录.
2.注重过程,轻结论.
3.有重点.
4.提高听课效率.
三.复习.像演电影一样把课堂复习,整理笔记,
四.多做练习.
1.晚上吃饭后,坐到书桌时,看数学最适合,
2.做一道数学题,每一步都要多问个别为什么,不能只满足于老师课堂上的灌输式传授和书本上的简单讲述,要想提高必须要一步一步推,一步一步想,每个过程都必不可少,
3.不要粗心大意,
4.做完每一道题,要想想为什么会想到这样做,大脑建立一种条件发射,关键在于每做一道题要从中得到东西,错在哪,
5.解题都有固定的套路.6还有大胆的夸奖自己,那是树立信心的关键时刻,
五.总结.
1.要将所学的知识变成知识网,从大主干到分枝,清晰地深存在脑中,新题想到老题,从而一通百通.
2.建立错误集,错误多半会错上两次,在有意识改正的情况下,还有可能错下去,最有效的应该是会正确地做这道题,并在下次遇到同样情况时候有注意的意识.
3.周末再将一周做的题回头看一番,提出每道题的思路方法.4有问题一定要问.
六.考前复习.
1.前2周就要开始复习,做到心中有数,否则会影响发挥,再做一遍以前的错题是十分必要的,据说有一个同学平时只有一百零几,离高考只有一个月,把以前错题从头做一遍,最后他数学居然得了147分.
2.要重视基础.
3.听老师的话,勤学苦练不可少,成功没有捷径,要乐观,有毅力,要有决心,还要有耐心,学数学是一个很长的过程,你的努力于回报往往不能那么尽如人意的成正比,甚至会有下坡路的趋势,但只要坚持下去,那条成绩线会抬起头来,一定能看到光明.
2. 数学感悟与心得是什么
数与代数”这一基础部分正是搭建这种思维的桥梁。它不仅能在数的运算、公式的推导、方程的求解、函数的研究等活动中通过对现实情境中数量关系及其变化规律的探索促进学生探究和发现,培养初步的创新精神和实践能力,还能利用正数与负数、精确与近似、方程与求解、已知与未知等概念中蕴涵着对立统一的思想,变量和函数概念中蕴涵着的运动、变化的思想,促进学生用数学、科学的观点认识现实世界!
初中数学教学心得体会
数学究竟是什么呢?数学是对现实世界的一种思考、描述、刻画、解释、理解,其目的是发现现实世界中所蕴藏的一些数与形的规律,为社会的进步与人类的发展服务。数学教育的核心问题是学生学习过程的优化,即怎样使学生主动地、有效地、合理地学习需要的数学。在数学教育逐步由“应试教育”向“素质教育”转轨的过程中,我们需要更新观念,开拓创新,大面积提高教学质量,更改现有的教育模式与管理理念,给学生发展的时间和空间,加快课程改革的研究与实施,推进素质教育。下面是笔者在教学过程中所得的体会:
一、让数学教学联系实际生活
新《数学课程标准》指出:“数学教学要紧密联系学生的生活环境,从学生经验和已有知识出发,创设有助于学生自主学习、合作交流的情境,使学生通过观察、操作、归纳等活动,掌握基本的数学知识和技能,发展他们的能力,激发对数学的兴趣以及学好数学的愿望。”
数学源于生活,生活中的数学是最具有鲜活力的,一切脱离生活实际的教和学都显得苍白无力。在我们的生活中,到处都充满着数学,教师在教学中要善于从学生的生活中抽象数学问题,让学生熟知的生活数学走进学生视野,进入课堂,使之产生亲近感,变的具体、生动,诱发学生的内在知识潜能,使学生主动地动手、动口、动脑,想办法来探索知识的形成过程,以达到对自我生活、心理需要的满足,获得成功的喜悦感。同时也增强其学习数学的主动性,发展求异思维,培养实事求是的科学态度和勇于探索、创新的精神。为此,笔者经常引导学生提供他们所熟悉的经验,充分利用学生现有的知识经验和他们所熟悉的事物组织教学,使学生能较好地感知和理解所学的内容。
数学学习应该是一种有广泛的思维空间和实践空间,且生动有趣的学习活动,学生是可以用心去体会感悟的。而以往的数学学习,常常使学生们感到离自己的生活实践太远,枯燥乏味。其实,数学学习完全可以将学生的学习范围延伸到他们力所能及的社会生活和各项活动之中,将教育和生活融为一体,让学生获得更多的直接经验和感受体验。教给学生思维方式与思维的习惯,让学生去体会感悟数学的智慧与美。
二、精心准备,认真备课
教学是一门艺术,备好课是搞好艺术的基本条件。每一课都要做到“有备而来”,每堂课都在课前做好充分的准备。要备起点,所谓起点,就是新知识在原有知识基础上的生长点;要备重点,重点往往是新知识的起点和主体部分,备课时要突出重点;要备难点,所谓难点,即数学中大多数学生不易理解和掌握的知识点;要备交点,即新旧知识的连接点;要备疑点,即学生易混、易错的知识点。
三、培养学生自主学习数学的能力
每个学生都是一个独立的人,学习是学生自己的事情,这是教师不能代替也是代替不了的,教师只是起指导作用,现行教学改革要求改变单纯接受式学习,讲究从“一刀切”教学向关注个体差异的教学转变,强调发现学习、探究学习、研究学习及自主学习。因此,培养学生自主学习数学的能力显得十分重要,这不但有利于学生能更快更好地掌握吸收所需知识,学会学习,还能培养他们的探索能力、解决问题的能力、应用意识和创新精神。
四、培养学生在数学课堂上的参与意识
数学课堂通常是被认为比较枯燥、缺乏生动和激情,因此,努力创建既宽松、富有人情味又便于学生善于思考、乐于探究的教学环境显得尤为重要。让学生在课堂学习活动中形成正确的学习方式和对数学的态度,只有当学生体会到数学的乐趣,学生才会主动感悟数学,数学教学才能为学生的未来发展服务。
课堂教学效果很大程度上也取决于学生的参与情况,这就首先要求学生要有参与意识,加强学生在课堂教学中的参与意识,使学生真正成为课堂教学的主人,这是现代数学教学的趋势。为此,在数学课堂上应充分让学生“动”起来。即让学生的个性表露出来,思维活跃起来,手脚解放出来,这将会极大地提高教学效率。
创设民主和谐的课堂教学氛围,使学生勤于动脑,善于发言;养成良好的课堂习惯,使学生在讨论交流的氛围中学习。
良好的课堂习惯对学生而言意味着心态的开放、主体地位的凸现、个性的张显、创造性的解放,对教师而言意味着与学生分享理解,是生命的活动,专业所长,自我实现的过程,教师在成就学生的同时成就着自己。
五、立足基础,帮助提高
在初中数学学习,部分学生缺乏良好的学习习惯,不能认真地、持续地听课,有意注意的时间相当短;缺乏正确的数学学习方法,仅仅是简单的模仿、识记;上课时,学习思维迟延,跟不上教师的思路,造成不再思维、不再学习的倾向;平时学习中对基础知识掌握欠佳(定理、定义、公式等),从而导致在解题时缺乏条理和依据,造成解题思路的“乱”和“怪”;心理压力较大,不敢去请教,怕被人认为“笨”,日积月累,造成对学习数学存在一定的困难性。
学习困难生在数学学习上既有困难又有潜能,因此,教学的首要工作是转变观念,正确地对待学习困难的学生,认真分析学困生学习困难的原因,有意识地“偏爱差生”,允许学生数学学习上的反复,从中来激发他们学习数学的自信心,并创造条件,让学困生体验在学习上取得成功的喜悦。学困生在过去数学中受到的肯定、鼓励相当少,因此要积极创造条件充分地鼓励肯定他们,促使他们对数学产生兴趣,让他们在数学学习上取得成功,使他们感到自己能学好数学。从学生的实际情况出发,降低和调整某些教学要求,以满足某一层次学生的需要,促使教与学的适应,教与学的促进,教与学的统一。
在教学中,实行“低起点、多归纳、勤练习、快反馈”的课堂教学方法,帮助学习困难的学生树立起学习数学的信心,为他们学好数学准备条件,但单靠有信心还是学不好数学的,如果学生没有产生一种自己学好了数学的切身感受和兴趣,那么这种信心就不会持久,而且又会造成更大的失败和自卑。因此在帮助学生树立起学习数学的自信心后,更重要的工作是创造条件使学习困难的学生真正地学习和掌握大纲教材所要求的数学知识,使他们感到自己学好了数学。要做到这一点就要立足于课堂教学的改革,实行“低起点、多归纳、勤练习、快反馈”的课堂教学方法,重点就是培养、发展学生的学习能力。
六、做好课外辅导工作
现在的学生在学习习惯、行为习惯、学习态度上都出现了一定的滑坡,有相当一部分学生缺乏学习的自觉性和主动性,经常不能按时完成基本学习任务,甚至有的出现厌学情绪。针对这种现状,课外辅导和心理沟通就显得尤为重要。在课后,为不同层次的学生进行相应的辅导,以满足不同层次的学生的需求。让他们意识到学习的重要性和必要性,使之对学习萌发兴趣,要通过各种途径激发他们的求知欲和上进心,让他们意识到学习并不是一项任务,也不是一件痛苦的事情,而是充满乐趣的,从而自觉地把身心投放到学习中去,使学习成为他们自我意识中的一部分。在此基础上,再教给他们学习的方法,提高他们的技能,并认真细致地做好查漏补缺工作。
七、加强学习,不断提高个人综合素质
教师要不断更新教学形式,新课标下的数学教学需要教师组织大量的数学活动,让学生体会知识的产生发展过程。教师要不断更新教学语言、素材,生动的素材能在学生心目中留下永恒的记忆,而活泼的语言又是激发学生求知欲的良方。不同年龄段的学生有自己的思维方式和思维习惯,教师要针对他们的特征,选择适当的素材,采用贴切的语言才能收到预期的效果。教师要不断更新教学手段、掌握数学技术,新课标下的数学教学只靠传统的粉笔加黑板是无法达到要求的。有许多图片、图像需要多媒体展示,许多知识的发生发展过程需要电脑演示。在教学中,我们会经常遇到用较多的语言说明一些概念、公式等现象,而且它往往又是教学的重点和难点,借助多媒体辅助教学,可以活化这些现象,而且特别直观、形象,从中不需要教师多言语,学生就可以自己感悟到数学知识。教师必须掌握现代化教学手段,才能为学生提供丰富的知识和素材。
我们只有不断加强学习,不墨守成规,注重教学积累和教学实践,不断提高教师个人综合素质,才能顺应教学发展的需要。
3. 如何才能学好数学!
按照你所说的,你应该是解析几何和代数基础不太好,函数基础不好主要原因是概念不清楚,函数所包含的概念比较多,而且稍微不细心就会出错,尤其是定义域值域函数关系的了解。函数虽然比较复杂,但是还是有规律的,在自己做过的题目中找找规律总结理解。解析几何不好的话是几何基础不好,几何基础需要对定理等概念性的东西了解很透彻,需要能够熟练运用,同时辅助线,解析公式等知识点需要加强。慢慢来,打好基础,平时做题要学会总结思考。
4. 学习数学需要我们具备什么素质
首先就是持之以恒的态度,因为在数学学习的过程是比较艰苦的,毕竟逻辑的事情不是一时半会就能搞清楚的,必须有不放弃的钻研态度才能够解决数学问题,所以持之以恒的态度是必须得有的。
其次就是敏捷的思维能力,数学问题还是比较复杂的没有敏捷的思维能力是不可能完成数学的学习的。所以敏捷的思维能力也是数学学习必备的素质。
5. 教学总结:初中数学常见的几种数学思想
与数学基础知识一样,数学思想也是数学的重要内容之一。重视与加强中学数学思想的教学,这对于抓好双基,培养能力以及培养学生的数学素质都具有十分重要的作用。本人结合几年的初中数学教学实践,认为初中数学常见的数学思想有以下几种:
一、字母代数思想
用字母代替数字,是初中生最先接触到的数学思想,也是初等代数以至整个数学最重要最基础的数学思想。
在初中数学中,用字母代替数字,各种量、量的关系、量的变化以及量与量之间进行推理与演算,都是以符号形式(包括数字、字母、图形和图表以及各种特定的符号)来表示的,即进行着一整套的形式化的数学语言。例如:用∣a︱表示某个数的绝对值,用— a表示某个数的相反数,用an表示n个a连续相乘的积,用s=40t表示路程与时间的关系,用一对有序实数对(x,y)表示某个点在平面直角坐标系中的位置。
初中数学教材在七(上)第三章讲解用字母代替数字,也就是当学生刚从小学生转变为初中生,便开始从原有的数字与数字的运算转变为用字母代替数字进行推理与运算,这对大多数学生来说要有一个转变适应的过程,所以苏科版新教材以一些丰富、贴近学生生活的情境来引导学生逐渐掌握用字母代替数的数学思想。用字母表示数是“代数”的基础和出发点,也是“符号感”的主要表现之一。其实,日常生活中人们经常用符号表示某种意义,例如:天气预报图标、交通标志、五线谱等,从这样的情境出发,有助于学生借助已有经验感受“在数学中,经常用字母表示数”。
用字母表示数是从算术到代数的重要转折点,但是,它的学习是建立在算术学习基础上的。教师应当通过具体数字运算,让学生观察,总结规律,形成对“用字母表示数”的必要性的认识。实际上,过去学过的运算律(交换律、结合律、分配律等)、简单几何图形的面积、行程问题等知识,都能说明用字母表示数的重要意义:普遍性、应用的广泛性等。
总之,要学好初中数学首先必须掌握好用字母代替数的数学思想。
二、化归转换思想
化归,即转化与归结的意思。把有待解决或未解决的问题,通过转化过程,归结为所熟悉的规范性问题或已解决的问题中去,从而求得问题解决的思想。
人们在研究运用数学的长期实践中,获得了大量的成果,也积累了丰富的经验,许多问题的解决已经形成了固定的方法模式和约定俗成的步骤。人们把这种有规定的解决方法和程序的问题,叫做规范问题,而把一个未知的或复杂的问题转化为规范问题的过程称为问题的化归。
例如,对于整式方程(如一元一次方程、一元二次方程),人们已经掌握了等式基本性质、求根公式等理论,因此,求解整式方程的问题是规范问题,而把有关分式方程通过去分母转化为整式方程的过程,就是问题的规范化。
为了实现“化归”,数学中常常借助于“代换”,又称之为转换。代数中有恒等变换,方程、不等式的同解变换;几何中全等变换、相似变换、等积变换。转换是手段,揭示其中不变的东西才是目的,为了不变的目的去探索转换的手段就构成解题的思路和技艺。例如,已知x2+y2+2x—6y+10=0,求xy。对于初中生来说本题无法直接解出关于x,y的二元二次方程。但是如果从完全平方公式着手,已知条件可以转换为(x+1)2+(y—3)2=0。又因为偶次幂具有非负性,即(x+1)2≥0,(y—3)2≥0,所以(x+1)2=0,(y—3)2=0,从而得出x=—1,y=3。最终问题得以解决。
三、分解组合思想
当面临的数学问题不能以统一的形式解决时,可以把涉及的范围分解为若干个分别研究问题局部的解。然后通过组合各局部的解而得到原问题的解,这种思想就是分解组合思想,其方法称为分类讨论法。
分解组合,是重要的数学思想之一。对于复杂的计算题、证明题等,运用分解组合的思想方法去处理,可以帮助学生进行全面严谨的'思考和分析,从而获得合理有效的解题途径。例如,等腰三角形两边长分别是4和5,求这个等腰三角形的周长。解决本题首先分类讨论:①若4为底,则5为腰,三边长分别为4,5,5,可以构成三角形,此时周长为14;②若5为底,则4为腰,三边长分别为5,4,4,可以构成三角形,此时周长为13。
四、方程函数思想
方程的思想和函数的思想是处理常量数学与变量数学的重要思想,在解决一般数学问题中具有重大的意义。在初中数学中,方程与函数是极为重要的内容,对各类方程和简单函数都作较为系统的学习研究。对一个较为复杂的问题,常常只须寻找等量关系,列出一个或几个方程(方程组)或函数关系式,就能很好地得到解决。
例如,某灯具店采购了一批某种型号的节能灯,共用去400元。在搬运过程中不慎打碎了5盏,该店把余下的灯每盏加价4元全部售出,然后用所得的钱又采购了一批这种节能灯,且进价与上次相同,但购买的数量比上次多了9盏,求每盏灯的进价。
五、数形结合思想
数形结合不仅使几何问题获得了有力的代数工具,同时也使许多代数问题具有了显明的直观性。数形结合是初中数学中十分重要的思想,在数学问题的解决中具有数学独特的策略指导与调节作用。例如,二元一次方程组的图像解法,把数量关系问题转化为图形性质问题;A,B两地之间修建一条100千米长的公路,C处是以C点为中心,方圆50千米的自然保护区,A在C西南方向,B在C的南偏东30度方向,问公路AB是否会经过自然保护区?
当然,初中数学所涉及到的数学思想不止这五种。以上只是本人对初中数学常见的几种数学思想的浅见,在今后的教学实践中本人将更加重视与加强对学生进行数学思想的数学,提高学生的解题能力,培养学生的数学素养。
一学期来,本人认真备课、上课、听课、评课,及时批改作业、讲评作业,做好课后辅导工作,广泛涉猎各种知识,形成比较完整的知识结构,严格要求学生,尊重学生,发扬教学民主,使学生学有所得,不断提高,从而不断提高自己的教学水平和思想觉悟,并顺利完成教育教学任务。
下面是本人的教学经验及教训。
1、 要提高教学质量,关键是上好课。为了上好课,我做了下面的工作:
⑴课前准备:备好课。
①认真钻研教材,对教材的基本思想、基本概念,每句话、每个字都弄清楚,了解教材的结构,重点与难点,掌握知识的逻辑,能运用自如,知道应补充哪些资料,怎样才能教好。
②了解学生原有的知识技能的质量,他们的兴趣、需要、方法、习惯,学习新知识可能会有哪些困难,采取相应的预防措施。
③考虑教法,解决如何把已掌握的教材传授给学生,包括如何组织教材、如何安排每节课的活动。
⑵课堂上的情况。
组织好课堂教学,关注全体学生,注意信息反馈,调动学生的有意注意,使其保持相对稳定性,同时,激发学生的情感,使他们产生愉悦的心境,创造良好的课堂气氛,课堂语言简洁明了,克服了以前重复的毛病,课堂提问面向全体学生,注意引发学生学数学的兴趣,课堂上讲练结合,布置好家庭作业,作业少而精,减轻学生的负担。
2、要提高教学质量,还要做好课后辅导工作。
初中的学生爱动、好玩,缺乏自控能力,常在学习上不能按时完成作业,有的学生抄袭作业,针对这种问题,就要抓好学生的思想教育,并使这一工作惯彻到对学生的学习指导中去,还要做好对学生学习的辅导和帮助工作,尤其在后进生的转化上,对后进生努力做到从友善开始,比如,握握他的手,摸摸他的头,或帮助整理衣服。从赞美着手,所有的人都渴望得到别人的理解和尊重,所以,和差生交谈时,对他的处境、想法表示深刻的理解和尊重,还有在批评学生之前,先谈谈自己工作的不足。
3、 积极参与听课、评课,虚心向同行学习教学方法,
博采众长,提高教学水平。
4、培养多种兴趣爱好,到图书馆博览群书,不断扩宽知识面,为教学内容注入新鲜血液。
5、"进无足赤,人无完人",在教学工作中难免有缺陷,例如,课堂语言平缓,平时考试较少,语言不够生动。
走进21世纪,社会对教师的素质要求更高,在今后的教育教学工作中,我将更严格要求自己,努力工作,发扬优点,改正缺点,开拓前进,为美好的明天奉献自己的力量
思想工作总结
半年来,在各位领导和我们备课组老师,特别是我的指导教师孙宁老师的亲切关怀和热情帮助下,我努力做好教育教学工作。现将我这半年的工作做一总结如下:
一、师德表现
平时积极参加教职工大会,班主任会议及各项教育教学活动。每周按时参加升旗仪式,按时出勤,始终坚持”教师无小节,事事是育人”的思想,平时注意自己的教师形象,以身作则,尊敬师长,服从学校统一的安排,与同事们关系融洽。
二、教学工作
20**年—20**学年,学校安排我教高一十班和十班的数学课,在教学工作中,我努力做到以下几点:
(一)备课认真仔细,尽力做到科学。准确。严密。
由于刚刚参加工作,没有任何的教学经验。所以在备课的过程中,我除了认真专研教材,多方参阅各种有关书籍外,积极向孙老师及备课组其他老教师请教,力求深入理解教材,准确把握重点和难点。同时我还注意认真编写教案,并不断归纳总结教学中的经验和教训。
1、突出新教材新思路新方法。
要提高教学质量,还要做好课后辅导工作,小学阶段的学生爱动、好玩,缺乏自控能力,常在学习上不能按时完成作业,有的学生不能完成作业,针对这种问题,就要抓好学生的思想教育,并使这一工作贯彻到对学生的学习指导中去,还要做好对学生学习的辅导和帮助工作,尤其在后进生的转化上,对后进生努力做到从友善开始,比如,握握他的手,摸摸他的头,或帮助整理衣服。从赞美着手,所有的人都渴望得到别人的理解和尊重,所以,和差生交谈时,对他的处境、想法表示深刻的理解和尊重,还有在批评学生之前,先谈谈自己工作的不足。
积极参与听课、评课等教研组活动,虚心向同行学习教学方法,博采众长,补己之短,提高教学水平。
培养多种兴趣爱好,到图书馆博览群书,不断扩宽知识面,为教学内容注入新鲜血液。
“金无足赤,人无完人”,在教学工作中难免有缺陷,例如,课堂语言平缓,平时考试较少,语言不够生动,对于后进生的态度经常是比较急躁,这些都需要我在工作中逐步的改进,认真对待每一位学生。
走进新的世纪,社会对教师的素质要求更高,在今后的教育教学工作中,我将更严格要求自己,努力工作,发扬优点,改正缺点,开拓前进,为美好的明天奉献自己的力量
6. 数学课要培养学生哪些方面的能力
一、培养学生主动学习,发展思维的数学意识。 现在的课堂不再是老师在上面讲学生在下面听这么简单的过程了,新理念要求教师只是学生学习的引导者,课堂学习是师生的互动过程,这就要求学生大胆主动积极参与到教与学的这个互动过程中来,只有积极地探索,主动的学习,才能学到数学课堂上的新知识。
二、培养学生数学的推理意识,增强数学推理能力。 严密的推理能力并不能靠向学生输一些法则,让他们死搬硬套的模仿。首先,教师可用通俗易懂的语言告诉学生推理的实质。
三、培养应用数学解决实际问题的意识,能主动应用数学来解决实际问题。数学源于现实,寓于现实,最终用于现实。数学最终目的是使学生获得解决日常生活中遇到的数学问题能力,并能解决问题。
四、培养学生运用数学语言进行交流的能力 在数学学习中体现数学交流,大致有以下几个方面。
1、在形象直觉的观念与抽象符号空间建立起联系时需要交流。
2、把实物的、图画的、符号的、口头描绘的数学家概念联系起来需要交流。
3、发展和深化学生对数学的理解需要交流。因为解释、推理和对自己思想进行口头和书面的表述可以使学生加深对概念、规律、公式和原理的理解。
五、培养良好的数学心理素质主要包括以下几个方面。
1、对学生进行爱国主义、爱科学和学习目的的思想教育。
2、培养学生对数学、数学学习活动的兴趣和动机。包括好奇心、求知欲以及对数学学习活动中的主动参与等。
3、学好数学的自信心和克服学习困难的意志。
4、学习数学的态度和习惯。
(6)学数学要有什么觉悟扩展阅读:
数学教育史中曾经存在两种基本倾向:
1、实用主义倾向,把数学看作有助于解决实际问题的实用课程。
2、形式陶冶的倾向,把数学看作锻炼思维的课程。
这两种基本倾向在不同历史时期有不同的发展,在现代数学教育中也有不同程度的反映,中国的学校数学教学目的是根据教育方针培养德、智、体、美、劳全面发展的,有社会主义觉悟、有文化的劳动者一般地,对数学教学目的的规定,包括了三方面的内容:
1、知识和技能方面的要求。切实学好现代社会中每一个公民适应日常生活、参加生产和进一步学习所必需的数学基础知识与基本技能(一般称为“双基”),包括基本的数学思想和数学方法。
2、发展能力方面的要求,培养数学运算能力、逻辑思维能力、空间想象能力,逐步形成分析和解决实际问题的能力。
7. 数学需要什么思维
我是学数学与应用数学专业的,对于数学来说,我自己的经验认为,学习数学,绝不能少的以下几个思维:1、逻辑思维。他是对于数学的基础,强大的逻辑思维,对于学好数学必不可少。2、抽象思维。抽象思维是解决我们的空间,近世代数,高等代数,实变函数等,需要理解抽象概念的基本思维。
8. 学数学需要什么思维
学数学需要什么思维
学数学需要什么思维,学习不是像一只没头苍蝇一样,许多同学到了高三数学成绩还是很渣,如果没有扎实的基础,在之后的学习中就会手足无措了,以下分享学数学需要什么思维
1、转化思维
转化思维,是指在解决问题的过程中遇到障碍时,通过改变问题的方向,从不同的方向来将我呢提转化为另一种形式,然后找到更好的解决方法,这种思维是在我们遇到难题碰到钉子的时候往往能取得很好的效果。
2、 逻辑思维
逻辑思维是学习数学必须具备的一项重要能力,是最重要的一种思维能力,因为数学是一门有很强逻辑性的学科,借助于概念、判断、推理等思维形式对事物进行观察、比较、分析、综合、抽象、概括、判断、推理的思维过程
一般来说我们解决问题最先用到的就是我们的逻辑思维,先判断题目考察什么知识点,然后通过我们学习到的知识点对问题进行分析,然后推理出正确的答题过程。
3、 逆向思维
逆向思维用一句话来说就是得知结果反推过程,我们可以从问题相反面深入地进行探索,有时候我们反而能在这种逆向思维中找寻真正的破题方法。
怎样学好数学的技巧
1、重视计算
数学的计算学习就像语文的识字学习,是最基本的。
不识字,语文读不好;计算差,数学同样学不好。而且计算好,会给孩子数学学习提供很大的帮助。
家长可以每天让孩子做2分钟口算。一开始,2分钟内能只能做完20道口算,但之后,你会发现孩子会越来越快,正确率越来越高。
2、重视生活中的数学
其实数学的学习对生活的影响很大,它能提供很多的帮助。
例如:
买东西、计算利率、盈利等等,这些都用到数学。你可以在生活中,有意识的跟孩子提数学问题,让他解答。很简单,你带孩子去买菜,一斤苹果5元,买3斤多少钱,给阿姨20元,找回多少钱。
别小看这些,在小学数学学习中,解决问题占的分数是最多的,而解决问题无非就是判断用加减乘除中的哪种来列式解答,这些问题其实就是生活中的问题,孩子在生活中接触多,自然就会解答。
3、主动预习
新知识在未讲解之前,认真阅读教材,养成主动预习的习惯,是获得数学知识的重要手段。因此,培养自学能力,在老师的引导下学会看书,带着老师精心设计的思考题去预习。
如自学例题时,要弄清例题讲的什么内容,告诉了哪些条件,求什么,书上怎么解答的,为什么要这样解答,还有没有新的解法,解题步骤是怎样的。
抓住这些重要问题,动脑思考,步步深入,学会运用已有的知识去独立探究新的知识。
有些家长头疼孩子上课效率很差;这其中很关键的原因是没有做好预习;自然也就做不到有的放矢
4、思考是数学学习方法的核心
一些孩子对公式、性质、法则等背的挺熟,但遇到实际问题时,却又无从下手,不知如何应用所学的知识去解答问题。
如有这样一道题让学生解“把一个长方体的高去掉2厘米后成为一个正方体,他的表面积减少了48平方厘米,这个正方体的体积是多少?”
孩子对求体积的公式虽记得很熟,但由于该题涉及知识面广,许多同学理不出解题思路,这需要学生在老师家长的引导下逐渐掌握解题时的思考方法。这道题从单位上讲,涉及到长度单位、面积单位;从图形上讲,涉及到长方形、正方形、长方体、正方体;
从图形变化关系讲:长方形→正方形;从思维推理上讲:长方体→减少一部分底面是正方形的长方体→减少部分四个面面积相等→求一个面的`面积→求出长方形的长(即正方形的一个棱长)→正方体的体积;
经启发,孩子分析后,学生根据其思路(可画出图形)进行解答。
有的学生很快解答出来:
设原长方体的底面长为X,则2X×4=48
得:X=6(即正方体的棱长),
这样得出正方体的体积为:6×6×6=216(立方厘米)。
所以说,在学习过程中,老师家长最大的作用是:启发。
孩子在老师家长的引导下,去主动思考解题的思路,掌握学习方法!
5、培养阅读兴趣
假期和一位资深老师聊到孩子数学学习问题,分享一段重点:
“您孩子数学学习是什么情况?”老师问。
“题不难成绩还不错。一遇难题,就好像深入不进去。”提起女儿的数学,我真头疼。
“那她平时喜欢读书吗?”
“不是特别喜欢,但也不是一点不读。平时喜欢看漫画之类。”我想了想说。
“哦,那科普读物和一些经典名着读过吗?”老师接着问。
“没有,我认为对学习有用的书她都读不懂,也不愿意读。”我有些不好意思地回答。
“是有些问题。”老师顿了顿说,“孩子将来中学要想学好数理化,必须小学得多读书,特别是有深度有人文素养的好书。多读好书的孩子思维活跃,视野也开阔,到了高年级就更能显示出优势。”
“我们带过的数学成绩好的同学大多6、7岁就能看书,在小学阶段就大量阅读有深度有人文素养的好书,爱思考,爱看书,这群孩子问问题的深度和广度有时把我都难倒了。
听她这么一说,我这才更加理解“学生读书越多,他的思维就越清晰,他的智慧力量就越活跃。”
阅读对数学的重要性
很多家长总觉得阅读所带来的改变很缓慢,而考试就在眼前,所以还是觉得不如补课来得直接,效果更显着。
其实:阅读的功效绝不仅仅是丰富文化积淀,提高语文素养,而是帮助孩子点燃思维的火花,拓展视野,深化思维,提高学习力。
所以,阅读不仅仅是语文的事情,它对于任何一门学科来说都是首要的.。有研究发现,一年级或更早开始大量阅读的孩子比三年级开始阅读的孩子在其后的中小学学习,尤其是数理化学习方面潜力更大。
因为前者在其后的学习生涯中具备了深阅读能力和习惯,也就是理解能力很强,而后者阅读时思维很肤浅,理解能力自然很弱。这个现象在初二这个分水岭年级就表现得很明显了。
所以,不要等到中小学遇到困难才没完没了地补课“拉一把”,而是要让孩子4-7岁解决识字问题,6-9岁就能爱看书,9岁后就会大量阅读、读好书。
学好数学的好方法
一、预习方法
初一学生往往不善于预习,也不知道预习起什么作用,预习仅是流于形式,草草看一遍,看不出问题和疑点。学生预习时应要求学生做到:一粗读,先粗略浏览教材的有关内容,掌握本节知识的概貌。二细读,对重要概念、公式、法则、定理反复阅读、体会、思考,注意知识的形成过程,对难以理解的概念作出记号,以便带着疑问去听课。方法上可采用随课预习或单元预习。
二、听课方法
在听课方法的指导方面要处理好“听”、“思”、“记”的关系。
“听”是直接用感官接受知识,学生在听的过程中注意:(1)听每节课的学习要求;(2)听知识引人及知识形成过程;(3)听懂重点、难点剖析(尤其是预习中的疑点);(4)听例题解法的思路和数学思想方法的体现;(5)听好课后小结。
“思”是指学生思维。没有思维,就发挥不了学生的主体作用。(1)多思、勤思,随听随思;(2)深思,即追根溯源地思考,善于大胆提出问题;(3)善思,由听和观察去联想、猜想、归纳;(4)树立批判意识,学会反思。可以说“听”是“思”的基储关键,“思”是“听”的深化,是学习方法的核心和本质的内容,会思维才会学习。
“记”是指学生课堂笔记。初一学生一般不会合理记笔记,通常是教师黑板上写什么学生就抄什么,往往是用“记”代替“听”和“思”。有的笔记虽然记得很全,但收效甚微。要求学生:(1)记笔记服从听讲,要掌握记录时机;(2)记要点、记疑问、记解题思路和方法;(3)记小结、记课后思考题。使学生明确“记”是为“听”和“思”服务的。
适合学生的数学学习方法
理解之一——定义
数学跟其他学科一样,也是有很多概念性的东西,学好数学的基础就是明白定义到底说的是什么。比如数学中的平方,立方,绝对值的含义。我们知道平方就是两个相同的数相乘,当然立方就是三个相同的数相乘,绝对值就是大于或者等于0的数值,明白了定义的真正含义,也就走出了第一步,为后面的学习打下了坚实的基础。
理解之三——勤于练习
前面我说过。数学不是背出来的,是用笔杆子算出来的。所以针对一个公式或者一个定义,只有把关于这个问题的题目多做上几道,自然的就运用和真正理解了其中的意义。因此对于数学,一定不要偷懒,只看不算,只有多动脑,多动手,这样才会更加灵活的学好数学。
理解之二——实践
数学跟其他学科不同之处就是不需要死记硬背,因为数学不考试问答题,而是计算这是最大的不同。怎么实践呢,具体的说一下。
数学的许多题都是从定义出发的,前面我说过,定义明白了,也就好下手了。比如合并同类项,先想定义,就是同类的项,简单点就是都有的那个东西,明白了定义,然后下手做题,当然就事半功倍了。
9. 怎样学习数学
怎样学好数学 <1>真正了解数学定义,千万不要有似是而非。 <2>培养解题的逻辑思维,明白从何入手。. 从条件入手:了解题目中的条件的作用,以及他们起来的作用,快速地推测由此能得到的结论和结果。进而结合并列的条件得出更进一步的结论,并最终解决问题。 从结果入手:当不能确定条件的作用的时候,可以考虑从结果入手,首先必须结合题目的非条件部分,想到可以得到此结论的可能的必要条件。然后由此推进到题目所给的原始条件,解决问题。 〈3〉培养良好的数学精神 首先,在立足结论和答案的基础上,仔细深入地了解解题的过程,自己是否真的知道各个结论的得来,如果不明白,千万不要庆幸自己得到的答案,而应该自己再次地去解答或者询问老师或同学。要求每一步都必须有严谨的推导依据,或是定理或是公理,决不要想当然。不就问,这一点对于学习数学非常重要,培养良好的数学精神就必须多问。 〈4〉选择难度适中的题目训练自己。 习题的选择有两点要求:广度和经度。根据课本知识和教师讲课内容,总结出学习的重点,听老师讲.看同学做是一个很好的节省时间的方法。同时要求对学过的知道点都必须照顾到,每一个知道点都应该练习,如果知识点较简单就可以选择难度教大的习题,相应如果难度大,就应该选择难度适中的习题,没有必要太难,并做到多练。 经典的习题总是包含较多的知识点,要求做题者具有较强的综合能力及数学思维,能够很好地利用条件。它的难度并不是很大,但要求有很强的洞察力和决策能力,对结论条件同时推进,然后在某个地方会合,解决问题。 〈5〉培养数学兴趣 千万不要认为数学难题是科学家,最多也只到老师那一级。其实并非如此任何人都应该用一种怀疑的眼光去看整个世界。不要怀疑自己的不同意见,在经过自己判断后,仍然有异议,就应该勇敢地提出来,不要因为自己一两次的失误就放弃自己的独立见解。这不仅仅是解题的重点,更是良好的生活习惯培养的重点。没有怀疑就没有创新。 许多同学对数学没有兴趣是因为自己曾经在考试中没有考好,因此否定自己,甚至放弃数学。所以必须端正对考试的看法,它只是教师和同学自己检验自己的学习状况的方法,自己在哪个地方失败了,就在哪个地方爬起来。自己是否是因为粗心大意,还是因为确实没有掌握,无论是因为什么,没有关系。粗心一般是由于平时没有养成良好的习惯,于是在考试时思维不集中,没有仔细地思考就轻易地作答,错误就在所难免了。而另外一点就更加容易,只要再多花一点时间去复习,就可以杜绝它的再次发生。只要养成良好的数学精神和思维就可以在考试中大展身手了。 学习数学不单单是要学会解题,更重要的是学会观察生活,改善生活。培养对生活的观察能力和兴趣,在自己将来的生活就会受益无穷的。将来的社会要求的是会出题的人才而不是仅仅会解题的书呆子。只会解题的人永远是落后的,没有创造力,没有竞争力。 多做题 多练习 多问老师 要有个好的心态 别给自己太多压力 还可以去看看高中的复习题 多和老师同学交流,增加对数学的兴趣 1.我不否认数学好与天才有关,但数学好并非是天才的专利. 2.数学考察的是反应的灵敏度,也就是我们通常说的数学意识,我们要在瞬间联想到一切与之相关的知识点才能做好一道题.这既是数学难学的地方,但它又恰恰是它的放光点. 3.学好数学首先一点是要焖心自问,自己是否是真心的想要学好它,如果你真的能做到这一点,那么你就成功了五分之一. 4.付诸实践."有志者,事竟成,破釜沉舟,百二秦关终属楚.苦心人,天不负,卧薪尝胆,三千越甲可吞吴."也就是说从现在开始努力.我可以给你介绍几种方法:a.提前预习.至少比老师的进度快两倍,同时搞懂课后习题,切记不懂就问.b.向老师咨询,买一至二套适合自己的卷子,当然如果幸运的话你的老师会把自己出的一些卷子给你.c.要有意识地做题,学会举一反三,尝试着去举一反三,联系几何与代数知识综合运用(主要是应用几何知识解决代数问题)d.学会记笔记,并非数学题每一个步骤都要记,而是要记的越简略越清晰越好,同时记完一道题后要停下来想想,总结出规律,写下标注. 5.数学学习和考试又有些不同,考试需要一种亢奋的状态,但做题时又要使内心静若止水,冷静审题,灵活答题,学会放弃,不要因小失大. 最后,祝你成功.送你一句话"没有什么事是不可能的" 一、课内重视听讲,课后及时复习。 新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。 二、适当多做题,养成良好的解题习惯。 要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。 三、调整心态,正确对待考试。 首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。 在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。 由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。 最后,祝你在下次考试中取得回报。