A. 大学数学专业都有哪些课程要详细
专业基础类课程:
解析几何
数学分析I、II、III
高等代数I、II
常微分方程
抽象代数
概率论基础
复变函数
近世代数
专业核心课程:
实变函数
偏微分方程
概率论
拓扑学
泛函分析
微分几何
数理方程
专业选修课:
离散数学(大二上学期)
数值计算与实验(大二下学期)
分析学(1)
代数学(1)
伽罗瓦理论
复分析
代数数论
动力系统引论
基础数论
偏微分方程(续)
一般拓扑学
理论力学
数学建模
微分拓扑
调和分析
常微分方程几何理论
分析专题选讲
组合数学与图论
范畴论
紧黎曼曲面
黎曼几何初步
偏微近代理论
交换代数
代数拓扑
同调代数
流形与几何
小波与调和分析
李群李代数
分析学Ⅱ
代数学Ⅱ
代数K理论
代数几何
多复变基础
泛函分析(续)
B. 大学本科数学专业的,都要学哪些科目
专业基础课有数学分析、高等代数、解析几何、概率论与数理统计:这三者是老三门,将来如果考研时要用到的。
近代数学的新三门是:拓扑学、实变函数与泛函分析、近世代数(也叫抽象代数)。
另外其他的一些常见的分支包括复变函数、常微分、运筹、最优化,数学模型。
C. 数学与应用数学(师范类)要学哪些课程
主干学科:数学。 主要课程:数学分析、几何学、代数学、物理学、概率论与数理统计、微分方程、函数论、离散数学、数学史、数值方法与计算机技术、数学模型、数学实验、教育学与心理学基础、数学教学论、人文社会科学基础。 主要实践性教学环节:包括教育实习、见习、教育调查、社会调查或毕业论文等,一般安排15~20周。 修业年限:四年。 授予学位:理学学士。
D. 大学数学(师范类)主要学什么
大学数学主要学:
1、主干课程:数学分析、高等代数、高等数学、解析几何、微分几何、高等几何、常微分方程、偏微分方程、概率论与数理统计、复变函数论、实变函数论、抽象代数、近世代数、数论、泛函分析、拓扑学、模糊数学。师范类还要学习数学教育学等。
2、主要实践性教学环节:包括计算机的实际操作,深入一线教学实践。
3、在大学的数学学院里,除了基础数学专业外,大多数还设置了应用数学、信息与计算科学、概率与统计精算、数学与控制科学等专业。这些现代数学的分支超越了传统数学的范畴,延伸到了各个社会领域,以数学为工具探讨和解决非数学问题,为人类社会发展做出了巨大的贡献。
(4)大学数学实践教学类是什么课扩展阅读:
一、业务培养:
1、业务培养目标,本专业培养德、智、体、美全面发展的掌握数学与应用数学科学的基本理论、基础知识和基本方法,能够运用数学知识和使用计算机解决若干实际数学问题。
2、具有现代教育观念,适应教育改革需要,以及具有良好的知识更新能力和创新能力的中等学校数学师资和教育、教学管理工作及科学研究的专门人才。
3、要求学生系统学习数学和应用数学的基本理论和方法,受到严格的数学思维训练,掌握计算机的原理和运用手段,并通过教育理论课程和教学实践环节,形成良好的教师素养,培养从事数学教学基本能力和数学教育研究、数学教学研究、数学科学研究、数学实际应用等基本能力。
二、毕业生应获得以下几方面的知识和能力:
1、具有良好的、稳定的思想品德、社会公德、职业道德,能为人师表,有扎实的数学基础,初步地掌握数学科学的基础理论和基本思想方法,有良好的使用计算机的能力。
2、具有良好的教师职业素养和从事数学教学的基本能力,熟悉教育法规,掌握并初步运用教育学、心理学基本理论以及数学教学理论,有较强的语言表达能力和班级管理能力。
3、掌握强身健体的科学方法,养成良好的体育锻炼和卫生习惯,达到国家规定的关于大学生身体素质、心理素质和审美能力的要求。
E. 大学数学课程有哪些
大学数学专业的学生需要学习的课程包括高等代数、数学分析、解析几何、概率论、高等几何、微分几何、复变函数、实变函数、微分方程、近世代数、初等数论、普通物理学、计算机等。
数学的应用空间广阔,就业面相应也比较广阔,无论是进行理论研究、科研数据分析、软件开发,还是从事金融保险、国际经济与贸易、工商管理、通讯工程、建筑设计等行业,都离不开相关的数学专业知识。
数学专业毕业生具有比较扎实的理论基础,只要再学习一些相关知识,他们可以转向很多理工、经济类专业,比如计算机、统计、金融、经济学等,因此他们在找工作的时候是具有很大优势的。
另外,数学对于中考、高考都是十分重要的,数学专业毕业的学生也可以选择考取教师资格证书,做一名专业的数学教师。
F. 数学与应用数学专业都学什么课程
数学与应用数学专业属于基础专业。无论是进行科研数据分析、软件开发,还是从事金融保险,国际经济与贸易、化工制药、通讯工程、建筑设计等,都离不开相关的数学知识。可见数学与应用数学专业是从事其他相关专业的基础。
大一学《高等代数》《数学分析》《立体几何 》《大学英语》《计算机》这些是算学分的,其中除了几何,其他的算学位积分,特重要,下半年有《解析几何》然后就是一些小科。
大二也是《数学分析》、《大学英语》、《计算机》、《马克思》《毛泽东》这些算学分,还有《大学物理》、选修课等。
大三会学《算法初步》、《概率论》、师范生有《教师职业道德》《教育学》《心理学》《普通话》等,非师范生学编程主要就这些《近世代数》《数学发展史》等。
1、IT业职员:兼顾专业与职业发展需要
就业分析:数学与应用数学专业属于基础专业,是其他相关专业的“母专业”。该专业的毕业生如欲“转行”进入科研数据分析、软件开发、三维动画制作等职业,具备先天的优势。
2、商务人员:专业有优势,职业前景好
就业分析:金融数学家已经是华尔街最抢手的人才之一。
G. 数学专业有哪些专业课程
数学专业的专业课程有:
一、数学分析
又称高级微积分,分析学中最古老、最基本的分支。一般指以微积分学和无穷级数一般理论为主要内容,并包括它们的理论基础(实数、函数和极限的基本理论)的一个较为完整的数学学科。它也是大学数学专业的一门基础课程。
数学中的分析分支是专门研究实数与复数及其函数的数学分支。它的发展由微积分开始,并扩展到函数的连续性、可微分及可积分等各种特性。这些特性,有助我们应用在对物理世界的研究,研究及发现自然界的规律。
二、高等代数
初等代数从最简单的一元一次方程开始,初等代数一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组。沿着这两个方向继续发展,代数在讨论任意多个未知数的一次方程组,也叫线性方程组的同时还研究次数更高的一元方程组。
发展到这个阶段,就叫做高等代数。高等代数是代数学发展到高级阶段的总称,它包括许多分支。现在大学里开设的高等代数,一般包括两部分:线性代数、多项式代数。
三、复变函数论
复变函数论是数学中一个基本的分支学科,它的研究对象是复变数的函数。复变函数论历史悠久,内容丰富,理论十分完美。它在数学许多分支、力学以及工程技术科学中有着广泛的应用。 复数起源于求代数方程的根。
复数的概念起源于求方程的根,在二次、三次代数方程的求根中就出现了负数开平方的情况。在很长时间里,人们对这类数不能理解。但随着数学的发展,这类数的重要性就日益显现出来。复数的一般形式是:a+bi,其中i是虚数单位。
四、抽象代数
抽象代数(Abstract algebra)又称近世代数(Modern algebra),它产生于十九世纪。伽罗瓦〔1811-1832〕在1832年运用“群”的概念彻底解决了用根式求解代数方程的可能性问题。
他是第一个提出“群”的概念的数学家,一般称他为近世代数创始人。他使代数学由作为解方程的科学转变为研究代数运算结构的科学,即把代数学由初等代数时期推向抽象代数。
五、近世代数
近世代数即抽象代数。 代数是数学的其中一门分支,当中可大致分为初等代数学和抽象代数学两部分。初等代数学是指19世纪上半叶以前发展的代数方程理论,主要研究某一代数方程(组)是否可解,如何求出代数方程所有的根〔包括近似根〕,以及代数方程的根有何性质等问题。
法国数学家伽罗瓦在1832年运用“群”的思想彻底解决了用根式求解多项式方程的可能性问题。他是第一个提出“群”的思想的数学家,一般称他为近世代数创始人。他使代数学由作为解代数方程的科学转变为研究代数运算结构的科学,即把代数学由初等代数时期推向抽象代数即近世代数时期。
参考资料来源:
网络—数学分析
网络—高等代数
网络—复变函数论
网络—抽象代数
网络—近世代数
H. 新课程标准解读什么是数学实践活动课
数学实践活动课是学生在教师的指导下,以解决某一实际的数学问题为目标,以引起学生的数学思维为核心的一种新型的课程形态。它是对数学学科教学的延伸和发展,是对学生理解、运用数学基础知识和基本技能的升华过程。在这个过程中,始终贯彻着尊重学生的兴趣、爱好和需要,充分发挥学生主体性的思想,着力培养学生的探索精神、合作意识和实践能力,让学生在实践活动中自由舒展身心。它以学生的生活和现实问题为载体和背景,着眼于促进学生个性自主和谐地发展,以学生的直接体验和最新信息为主要内容,以学生的自主探索和主题研究为基本形式,以培养学生的独立思考和解决问题的能力为主要任务。