㈠ 数学的用处有哪些
1、首先天天都会遇到买菜等的算账 、结算。会用到数学。
2、搞机械设计首先要核算机械的强度、寿命、可靠性、性能等等都需要进行数学分析。
3、搞家庭理财也首先也要用到数学知识,如统计知识、驴打滚的利息计算等等。
4、学数学能提高人的智商和思维能力。
5、买彩票和博彩会遇到概率的计算问题。
㈡ 数学的用处有哪些
数学能够帮助人们处理数据,进行计算、推理和证明,数学可以提供自然现象、社会系统的数学模型,为其他科学提供了语言、思想和方法,是一切重大技术发展的基础;在提高人们的推理能力、想象力和创造性等方面有着独特的作用;数学又是人类的一种文化,它的内容、思想、方法和语言已经成为现代文明的重要组成部分,它是人们生活、劳动和学习必不可少的工具。
㈢ 数学有什么用处
1、有了代数的算法作支撑,才有了动画电影、投资策略和机票的价格。
2、数学提供了量化工具和锻炼了我们的抽象思维能力。
3、数学分析:主要包括微积分和级数理论。微积分是高等数学的基础,应用范围非常广,基本上涉及到函数的领域都需要微积分的知识。级数中,傅立叶级数和傅立叶变换主要应用在信号分析领域,包括滤波、数据压缩、电力系统的监控等,电子产品的制造离不开它。
4、实变函数(实分析):数学分析的加强版之一。主要应用于经济学等注重数据分析的领域。
5、复变函数(复分析):应用很广的一门学科,在航空力学、流体力学、固体力学、信息工程、电气工程等领域都有广泛的应用,所以工科学生都要学这门课的。
6、高等代数,主要包括线性代数和多项式理论。线性代数可以说是目前应用很广泛的数学分支,数据结构、程序算法、机械设计、电子电路、电子信号、自动控制、经济分析、管理科学、医学、会计等都需要用到线性代数的知识,是目前经管、理工、计算机专业学生的必修课程。
7、高等几何:包括空间解析几何、射影几何、球面几何等,主要应用在建筑设计、工程制图方面。
8、微分方程:包括常微分方程和偏微分方程,重要工具之一。流体力学、超导技术、量子力学、数理金融、材料科学、模式识别、信号(图像)处理 、工业控制、输配电、遥感测控、传染病分析、天气预报等领域都需要它。
9、泛函分析:主要研究无限维空间上的函数。因为比较抽象,在技术上的直接应用不多,一般应用于连续介质力学、量子物理、计算数学、控制论、最优化理论等理论。
10、拓扑学:研究集合在连续变换下的不变性。在自然科学中应用较多,如物理学的液晶结构缺陷的分类、化学的分子拓扑构形、生物学的DNA的环绕和拓扑异构酶等,此外在经济学中也有很重要的应用。
11、非欧几何:主要应用在物理上,最着名的是相对论。
12、数论:数论的用武之地——密码学。
㈣ 学习数学到底有什么用
解决因人类实际需要而提出的各种问题,包括商业、航海、历法计算、桥梁、寺庙、宫殿的建造、武器的制造等方面;数学本身就是一种精神,一种探索精神,这种精神的两个要素,即对理性或真理与完美的追求,帮助人们处理数据、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象。
在中国古代,数学叫作算术,又称算学,最后才改为数学。中国古代的算术是六艺之一(六艺中称为“数”)。
数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题。从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献。
基础数学的知识与运用是个人与团体生活中不可或缺的一部分。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。从那时开始,其发展便持续不断地有小幅度的进展。但当时的代数学和几何学长久以来仍处于独立的状态。
代数学可以说是最为人们广泛接受的“数学”。可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学。而数学作为一个研究“数”的学科,代数学也是数学最重要的组成部分之一。几何学则是最早开始被人们研究的数学分支。
直到16世纪的文艺复兴时期,笛卡尔创立了解析几何,将当时完全分开的代数和几何学联系到了一起。从那以后,我们终于可以用计算证明几何学的定理;同时也可以用图形来形象的表示抽象的代数方程与三角函数。而其后更发展出更加精微的微积分。
㈤ 学习数学有什么用处
数学是对现实世界的一种思考、描述、刻画、解释、理解和应用,其目的是发现现实世界中所蕴藏的一些数与形的规律,为社会的进步与人类的发展服务。数学是一个非常美的领域,这是因为数学的主要部分是由人类的心灵创造和构成的。数学与科学技术、人文科学、经济发展等都有着广泛的联系。“数学来源于生活,又运用于生活。”在我们身边的大千世界中蕴涵着大量的数学信息,而数学在现实世界中也有着广泛的应用。x0dx0a一、对数学的认识x0dx0a说到数学,大家都会觉得只是“计算”和“证明”,学生学数学只要会做题就行了。而在使用新教材的过程中,我逐步体会到了,数学它本身不只是“数字符号”,它有更丰富的内涵,它与人的生活息息相关。数学是对现实世界的一种思考、描述、刻画、解释、理解,其目的是发现现实世界中所蕴藏的一些数与形的规律,为社会的进步与人类的发展服务。我们可以自由探索自己心目中的数学世界,正是这种自由探索才是数学美的体现。我认为,数学学习应该是一种有广泛的思维空间和实践空间,是生动有趣的学习活动,学生是可以用心去体会感悟的。x0dx0a1、数学来源于生活x0dx0a数学是生活的一部分,它是在这个现实世界中生存的,离开了现实生活这个世界,数学将是一片死海,没有生活的数学是没有魅力的数学。同样,人类也离不开数学,离开了数学人类将无法生存和发展。为了使学生切实体会到数学源于生活,我提倡学生写数学日记,记录生活中发现的数学问题,达到了很好的效果,学生的日记中体现着他们对数学的发现、应用和理解。x0dx0a2、数学是一种文化x0dx0a数学是思维与线条的文化。数学是研究现实世界中的数量关系与空间形式的一门科学。由于实际的需要,数学在古代就产生了,现在已发展成一个分支众多的庞大系统。数学与其他科学一样,反映了客观世界的规律,并成为理解自然、改造自然的有力武器。x0dx0a作为21世纪的数学教师,不能只让学生学会做各种各样的“习题”,而是要让学生去体会到数学的一种社会价值,并且从生活中去体会一种数学思想。数学里包含着丰富的哲学道理和人文精神,教师在教学的过程中应当积极发掘数学中蕴涵的宝贵的东西。无论是哪一种学科,都要考虑到人的全面发展,数学学科尤其重要,应结合一定的教学情境,培养学生良好的思想品德及优良的学习习惯,老师不仅要做经师,更重的是要做人师,教书的同时一定要育人,把育人放在首位。x0dx0a二、对新课改数学教学的思考:数学教学应该教给学生什么?x0dx0a《数学课程标准》建议教师“让学生在现实情境中体验和理解数学”,可见在体验中感悟数学知识是学生掌握数学知识和技能的重要途径。作为数学教师要为学生感悟数学创设和谐的情境,触动学生的生活积累,使学生能有所悟,能自悟自得,并能在实践活动中深化感悟。x0dx0a一般来说,中小学数学教学的功能包括两个方面:一是实践功能,即它与人们的生产活动和日常生活有着密切的联系。数学教学的内容来自于人类日益丰富、不断提高的生产活动和社会生活,并通过对一代代新人的培养,而越来越明显和能动地促进各个时代,尤其是现代社会的生产活动和社会生活的发展和进步。二是精神功能,即它联系于人们的思维与方法。通过对儿童的数学教学,在早期就尽可能充分地开启儿童的智慧,发展儿童的思维品质和思维能力,丰富儿童的精神世界,能为他们日后乃至终身的良好发展,创造高质量的生活,奠定不可或缺的极为重要的基石。x0dx0a我认为,数学学习应该是一种有广泛的思维空间和实践空间,是生动有趣的学习活动,学生是可以用心去体会感悟的。而以往的数学学习,常常使学生们感到离开自己的生活实践太远,枯燥乏味。其实,数学学习完全可以将学生学习范围延伸到他们力所能及的社会生活和各项活动之中,将教育和生活融为一体,让学生获得更多的直接经验和感受体验。教给学生思维方式与思维的习惯。让学生去体会感悟数学的智慧与美。x0dx0a三、新课程下我们要重新认识数学、感悟数学x0dx0a新课标强调数学教学应重视从学生的生活经验和已有知识中学习和理解数学,使他们体会到数学就在身边,数学和现实生活是密切联系的。数学课上不是教给学生多少知识,而是要教给他们思维的方法,开发他们脑中未被开发的脑细胞,要想做到这一点,就要求我们教师要不断的充实自己。x0dx0a体验是青少年在实践活动中亲身经历的一种心理活动,更多的是指情感的一种体会和感受。而这种体会和感受外在表现出来便是学生的感悟。学习数学知识悟性是重要的决定因素,它与数学教学有密切的关系,它是一种具有生命驱动力的思维形态,介于感性认识和理性认识之间,是联结感性与理性的带有生命体验的心灵之桥。可以说,没有以悟性点醒的材料是僵化的凝固的材料,没有以悟性化解的理论是空洞的理论。x0dx0a新课标下的数学教学只靠传统的粉笔加黑板是无法完成达到要求的。有许多图片、图象需要多媒体展示,许多知识的发生发展过程需要电脑演示。在教学中我会经常遇到用较多的语言说明一些概念、算理、公式等现象,而且它往往又是教学的重点和难点,借助多媒体辅助教学,可以活化这些现象,而且特别直观、形象,从中不需要我多言语学生就可以自己感悟到数学知识。我必须掌握现代化教学手段,才能为学生提供丰富的知识和素材。
㈥ 数学有什么用处
1.数学是研究数量、结构、变化以及空间模型等概念的一门学科。通过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。数学家们拓展这些概念,为了公式化新的猜想以及从合适选定的公理及定义中建立起严谨推导出的真理。
2.数学属性是任何事物的可量度属性,即数学属性是事物最基本的属性。可量度属性的存在与参数无关,但其结果却取决于参数的选择。例如:时间,不管用年、月、日还是用时、分、秒来量度;空间,不管用米、微米还是用英寸、光年来量度,它们的可量度属性永远存在,但结果的准确性与这些参照系数有关。
3.数学是研究现实世界中数量关系和空间形式的科学。简单地说,是研究数和形的科学。由于生活和劳动上的需求,即使是最原始的民族,也知道简单的计数,并由用手指或实物计数发展到用数字计数。
数学(mathematics或maths,来自希腊语,“máthēma”;经常被缩写为“math”),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。数学家和哲学家对数学的确切范围和定义有一系列的看法。
而在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。
㈦ 数学在我们的生活中有哪些巨大的用处
首先在日常购物及生活中,数学是无处不在的,数学在我们的生活中随处可见,例如在买菜或者是买衣服,还有交电费的时候我们都可以用到数学。再高档一点的数学,在电脑中其实也是有数学原理的,因为数学得出的数据才出现了现在的大数据时代。
㈧ 数学的作用 数学的作用有哪些
1、科学探索、技术创新非常有用:科学探索、技术创新是人类社会共同的梦。有了数学知识的铺垫,才能让二者有实现的可能。同学可能会说,老师这离我们太遥远。我们不能为了一个遥远的的梦想消磨时间。人生短暂,我们能不能现实地生活在属于自己的空间。就拿现在的人工智能、机器学习、深度学习。没有数学基础,这些内容就是天方夜谭。
2、日常生活也非常有用:大到储蓄存款,小到买菜花钱,生活中的数学随处可见。重要性可见一斑。为了我们的生活质量提升,也得对数学刮目相看。我们每位同学都经历从阿拉伯数字开始,一直到高考数学的考卷。没有数学的合格分数,升学梦也无法兑现。
3、高、精、尖领域都非常有用:当下的人工智能、大数据、云计算、生物医药、航空航天、海洋工程、先进制造、油气开采、新型能源,还有一些作者不熟悉的领域。这些领域的尖端科技都和数学有着千丝万缕的联系。所以,同学,当我们还是懵懂少年,还在数学符号和数学计算推理中“缠绵”,遇到难题恨不得把它打碎,可是情绪平复后还得接受挑战。为什么?答案就在老师列举的应用领域中。因为每个领域都可以让我们去把梦想实现。为了自己的未来,要和数学好好面对面,迎接挑战,攻坚克难,才能有希望站在科学技术的尖端,做一名有位有为的科技青年,为国家做贡献。到那时,才能感谢数学的陪伴。
㈨ 数学的作用是什么啊
数学一种工具,它逻辑性强,能训练人们的思维能力;它注重方式方法,能让你的思维更敏锐;再者就是能帮助你解决一些实际问题。掌握数字规律,训练逻辑思维,数学是一门基础学科,除了语言学科以外,其他学科基本上都会运用到数学。
(9)数学的用处是什么扩展阅读:
一、数学结构
许多如数、函数、几何等的数学对象反应出了定义在其中连续运算或关系的内部结构。数学就研究这些结构的性质,例如:数论研究整数在算数运算下如何表示。
此外,不同结构却有着相似的性质的事情时常发生,这使得通过进一步的抽象,然后通过对一类结构用公理描述他们的状态变得可能,需要研究的就是在所有的结构里找出满足这些公理的结构。因此,我们可以学习群、环、域和其他的抽象系统。
把这些研究(通过由代数运算定义的结构)可以组成抽象代数的领域。由于抽象代数具有极大的通用性,它时常可以被应用于一些似乎不相关的问题,例如一些古老的尺规作图的问题终于使用了伽罗瓦理论解决了,它涉及到域论和群论。
代数理论的另外一个例子是线性代数,它对其元素具有数量和方向性的向量空间做出了一般性的研究。这些现象表明了原来被认为不相关的几何和代数实际上具有强力的相关性。组合数学研究列举满足给定结构的数对象的方法。
二、严谨性
数学语言亦对初学者而言感到困难.如何使这些字有着比日常用语更精确的意思,亦困恼着初学者,如开放和域等字在数学里有着特别的意思。
数学术语亦包括如同胚及可积性等专有名词,但使用这些特别符号和专有术语是有其原因的:数学需要比日常用语更多的精确性.数学家将此对语言及逻辑精确性的要求称为“严谨”.
严谨是数学证明中很重要且基本的一部分.数学家希望他们的定理以系统化的推理依着公理被推论下去.这是为了避免依着不可靠的直观,从而得出错误的“定理”或“证明”,而这情形在历史上曾出现过许多的例子。
在数学中被期许的严谨程度因着时间而不同:希腊人期许着仔细的论点,但在牛顿的时代,所使用的方法则较不严谨.牛顿为了解决问题所作的定义,到了十九世纪才让数学家用严谨的分析及正式的证明妥善处理。
数学家们则持续地在争论电脑辅助证明的严谨度.当大量的计算难以被验证时,其证明亦很难说是有效地严谨。
㈩ 数学的作用有哪些
数学构成了所有学科的工具,是其他无数学科的必备基础。
数学是各门科学和技术的语言和工具,数学的概念、公式和理论都已渗透在其他学科的教科书和研究文献中;许许多多数学方法都已被写成软件,有的数学软件作为商品在出售,有的则被制成芯片装置在几亿台电脑以及各种先进设备之中,成为产品高科技含量的核心。
数学实力往往影响着国家实力,世界强国必然是数学强国。数学对于一个国家的发展至关重要,发达国家常常把保持数学领先地位作为他们的战略需求。
数学是一个“有机的”整体,它像一个庞大的、多层次的、不断生长的、无限延伸的网络。高层次的网络是由低层次网络和结点组成的,后者是各种概念、命题和定理。各层次的网络和结点之间是用严密的逻辑连接起来的。这种连接是客观事物内在逻辑的反映。
(10)数学的用处是什么扩展阅读:
大学数学类各主要学科的作用:
微积分:微积分是高等数学的基础,应用范围非常广泛,基本上涉及到函数的领域都需要微积分的知识。最典型的应用是求各类曲线的长度,求曲线的切线,求各种不规则图形的面积。它在计算机科学、天文学、力学、数学、物理学、化学、工程学以及社会科学等各个领域都发挥重要作用。
线形代数:线形代数可以说是目前应用很广泛的数学分支,核心内容是线性变换,数据结构、程序算法、电子电路、电子信号、自动控制、经济分析、医学、会计等都需要用到线形代数的知识,是目前经管、理工、计算机专业学生的必修课程。
概率论:是研究随机现象数量规律的数学分支,主要应用于在自然科学、社会科学、工程技术、军事科学、计算机科学、统计学。现在最火的机器学习就是应用了概率论及相关知识,奠定了人工智能的基础。
复变函数:是应用很广的一门学科,在固体力学、通信工程、电气工程等领域都有广泛的应用,所以工科学生都要学这门课的。