导航:首页 > 数字科学 > 数学多多少用什么算法

数学多多少用什么算法

发布时间:2022-11-26 08:58:20

㈠ 一年级下册数学什么比什么多几什么比什么少几,用加法还是用减法的,应该怎么讲小孩才容易听懂

可以用实物进行说明,比如说3个苹果比2个苹果多一个,2个苹果比3个苹果少一个

㈡ 数学除了加减乘除外还有什么算法

还有取模运算,取模运算一般都是使用在编程语言的,%就是取模运算符,它属于二级运算;在数学的领域上%在大部分情况下是百分号的意思

一级运算有:+(加法),-(减法),二级运算有:*(乘法,可以写成×),/(分数线(=)除法,可以写成÷),%(取模,求余,但是在数学的领域%大多部分情况下是百分号的意思),三级运算有:^(乘方,可以写成**),√(开方,也可以写成//)

取模运算:

a%b=a - c*b

若a=7,b=6

∴a%b =7%6=1;

算法很简单,

亲手绘画,写字写的丑不要在意

求模运算和求余运算在第一步不同: 取余运算在取b的值时,向0 方向舍入(fix()函数);而取模运算在计算b的值时,向负无穷方向舍入(floor()函数)。

给定一个正整数p,任意一个整数n,一定存在等式 :

n = kp + r ;

其中 k、r 是整数,且 0 ≤ r < p,则称 k 为 n 除以 p 的商,r 为 n 除以 p 的余数。

对于正整数 p 和整数 a,b,定义如下运算:

取模运算:a % p(或a mod p),表示a除以p的余数。

模p加法: ,其结果是a+b算术和除以p的余数。

模p减法: ,其结果是a-b算术差除以p的余数。

模p乘法: ,其结果是 a * b算术乘法除以p的余数。

1. 同余式:正整数a,b对p取模,它们的余数相同,记做 或者a ≡ b (mod p)。

2. n % p 得到结果的正负由被除数n决定,与p无关。例如:7%4 = 3, -7%4 = -3, 7%-4 = 3, -7%-4 = -3。

基本性质

若p|(a-b),则a≡b (% p)。例如 11 ≡ 4 (% 7), 18 ≡ 4(% 7)

(a % p)=(b % p)意味a≡b (% p)

对称性:a≡b (% p)等价于b≡a (% p)

传递性:若a≡b (% p)且b≡c (% p) ,则a≡c (% p)

乘方运算

3^3=27 (3^3=3*3*3=27)

开方运算

27√3=3 (27 / 3 / 3 = 3)

乘方和开方可能很多人都知道了,这么不多说了

㈢ 小学数学的计算中,算法有哪些例如:凑十法,想加算减

算法也就只有整数、小数、分数、百分数的加、减、乘、除,四则混合运算,乘方(只限于平方、立方),小数、分数、百分数的互化,形体周长、面积、体积计算,计量单位的换算,简单的有理数加减法。

至于运算的技巧就有很多,一般都是运算定律、性质进行简便计算,如加法交换律、加法结合律、连减性质、乘法交换律、乘法结合率、除法商不变性质,……很多,教师会在不同的阶段教学生灵活运用这些知识,提高学生的计算能力。

你说的凑十法只是计算技巧的一种。

㈣ 小学数学有哪些简便算法,你知道吗

对于那些成绩较差的小学生来说,学习小学数学都有很大的难度,其实小学数学属于基础类的知识比较多,只要掌握一定的技巧还是比较容易掌握的.在小学,是一个需要养成良好习惯的时期,注重培养孩子的习惯和学习能力是重要的一方面,那小学数学有哪些技巧?

一、重视课内听讲,课后及时进行复习.
新知识的接受和数学能力的培养主要是在课堂上进行的,所以我们必须特别注意课堂学习的效率,寻找正确的学习方法.在课堂上,我们必须遵循教师的思想,积极制定以下步骤,思考和预测解决问题的思想与教师之间的差异.特别是,我们必须了解基本知识和基本学习技能,并及时审查它们以避免疑虑.首先,在进行各种练习之前,我们必须记住教师的知识点,正确理解各种公式的推理过程,并试着记住而不是采用"不确定的书籍阅读".勤于思考,对于一些问题试着用大脑去思考,认真分析问题,尝试自己解决问题.
二、多做习题,养成解决问题的好习惯.
如果你想学好数学,你需要提出更多问题,熟悉各种问题的解决问题的想法.首先,我们先从课本的题目为标准,反复练习基本知识,然后找一些课外活动,帮助开拓思路练习,提高自己的分析和掌握解决的规律.对于一些易于查找的问题,您可以准备一个用于收集的错题本,编写自己的想法来解决问题,在日常养成解决问题的好习惯.学会让自己高度集中精力,使大脑兴奋,快速思考,进入最佳状态并在考试中自由使用.
三、调整心态并正确对待考试.
首先,主要的重点应放在基础、基本技能、基本方法,因为大多数测试出于基本问题,较难的题目也是出自于基本.所以只有调整学习的心态,尽量让自己用一个清楚的头脑去解决问题,就没有太难的题目.考试前要多对习题进行演练,开阔思路,在保证真确的前提下提高做题的速度.对于简单的基础题目要拿出二十分的把握去做;难得题目要尽量去做对,使自己的水平能正常或者超常发挥.

由此可见小学数学的技巧就是多做练习题,掌握基本知识.另外就是心态,不能见考试就胆怯,调整心态很重要.所以大家可以遵循这些技巧,来提高自己的能力,使自己进入到数学的海洋中去.

㈤ 数学建模中,给出非常多的节点,求这些节点的最短路径(类似一条线的路径),应该用什么算法好

下面是我自己编写的一段代码,用来求过包含两千多个点的最短路,速度很快,比遗传、蚁群快而且最短路更短。你可以试试看,有问题再问我。
function [S,len]=short(P)
% 此程序用来求相同类型点间的最短路
% P表示某一类型的点的坐标矩阵
% p是最短路径
% d是路径权值和
%建立权值矩阵
n=length(P);%求该类型点的数量
W=zeros(n,n);
for i=1:n %计算权值并填充权值矩阵,由于各点联通,此权值矩阵就是该图的最短路矩阵
for j=(i+1):n
W(i,j)=sqrt((P(i,1)-P(j,1))^2+(P(i,2)-P(j,2))^2);
end
end
for i=2:n
for j=1:(i-1)
W(i,j)=W(j,i);
end
end
%求通过所有点的最短路
%先求从i点至j点,必须通过指定其他n-2个点的最短路,选出其中的的最短路
S=zeros(1,n);
S(1)=1; %先插入1,2点,以此为基准,每次插进一个新点
S(2)=2;
d1=2*W(1,2);
for i=3:n %新加入的点的标号
d1i=zeros(1,i); %插入第i个点,有i中可能的距离,其中最小值将为该轮的d1
for j=1:i %新加入点的位置,插入第i个点是有i个空位可供选择
if j==1 %在第一个空位插入
d1i(j)=d1+W(i,S(1))+W(i,S(i-1))-W(S(1),S(i-1)); %插入点在首端时,距离为原距离与第i点与上一次插入后的第1位置的点之间距离之和
end
if j>1 & j<i %在中间的空位插入
d1i(j)=d1+W(S(j-1),i)+W(i,S(j))-W(S(j-1),S(j));
end
if j==i
d1i(j)=d1+W(S(i-1),i)+W(S(1),i)-W(S(1),S(i-1));
end
end
[d1,I]=min(d1i);
S((I+1):i)=S(I:(i-1)); %将第I位后面的点后移一位
S(I)=i;%将第i点插入在I位置
end
len=d1;

下面这段代码是我用来把上面的结果保存到txt文件中的代码,如果你需要,可以用用。代码是我上次用过的没有改,你自己按照需要自己改吧。
clear
close all
clc
loaddata
X=[C;E;I;J];
[S,len]=short(X);
DrawPath(S,X);
print(1,'-dpng','cmeiju3.png');
% 将结果保存至txt文件
fid=fopen('cmeijulujin.txt','wt'); %创建alunjin.txt文件
fprintf(fid,'c号刀具\n');
fprintf(fid,'%d %d\n',X(S));
save('cmeijus','S');
save('cmeijulen','len');

㈥ 数学建模网络流算法重要吗你们都用什么算法呢

1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,
同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)
2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,
而处理数据的关键就在于这些算法,通常使用matlab作为工具)
3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,
很多时候这些问题可以用数学规划算法来描述,通常使用lindo、lingo软件实现)
4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,
涉及到图论的问题可以用这些方法解决,需要认真准备)
5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)
6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法
(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,
但是算法的实现比较困难,需慎重使用)
7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,
当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)
8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)
9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比
如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)
10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,
这些图形如何展示以及如何处理就是需要解决的问题,通常使用matlab进行处理)

㈦ 关于数学建模中用到的数学理论和编程算法

关于程序,我建议你用matlab或者mathmaticas,用这类专用数学软件比较好,因为我知道绝大多数人对C及C++的掌握还不至于到能够熟练写出你上述的各种算法(当然一些的简单的可以参考ACM的相关书籍),况且在实际工作中很多科学工作者或是工程师都是用Matlab之类的数学软件,所以我也建议你用。
至于你是工科的(我也是),所以我也能够理解你想学习上述各种算法等的想法,但是我觉得这个真的不太现实,我自己也很爱好数学,在平时我也经常学习各种非自己专业的数学知识,但是实际上你学习了之后也要理解,更何况你要运用它到非常熟练的程度(绝非一般考试可比),所以我认为你就必须要非常有选择的看,而且强烈建议你先做好规划(一定要符合自己实际情况,不要贪心),然后抓紧学。
我看你上面列的,其中组合数学非常难,但是你一定要非常踏实地学好(这个会应用在许多连你自己都想不到的地方),另外图论也是必须的,但这里我建议你先学习《离散数学》中的“图论”,当你以后在运用中如果遇到更高深的理论再去参考专门的图论书籍也不迟。另外微分方程我建议你先学习一些基础的知识即可,因为在建模中大多数情况下我觉得你只要会建立就行了,这块内容不用涉入太深,不然太费时间。至于你后面列的一些算法,这个没办法回避的,但也不是说你要一个个看过来,当然你可以考虑先走马观花地扫一遍,然后在仔细深入地学习集中重要的,相对出现几率大的算法。建议你多多拿题目来练习,在练题的过程中顺带学习相应知识,这样效率比较高。

其他的我也帮不了什么,关键你自己要抓紧,效率要大大提高。最后祝你好运!

㈧ 数学中的累加算法是什么啊

所谓累加算法,是高中数学的数列中求an的一种常用算法!
也没有题目,所以不便说明,LZ要想真正理解,可以找个题目,我帮你做,然后给你讲!

㈨ 数学建模算法有哪些

1. 蒙特卡罗算法。 该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。
2. 数据拟合、参数估计、插值等数据处理算法。 比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MATLAB 作为工具。
3. 线性规划、整数规划、多元规划、二次规划等规划类算法。 建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。
4. 图论算法。 这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。
5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。 这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。
6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。 这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。
7. 网格算法和穷举法。 两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。
8. 一些连续数据离散化方法。 很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。
9. 数值分析算法。 如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。
10. 图象处理算法。 赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MATLAB 进行处理。
以下将结合历年的竞赛题,对这十类算法进行详细地说明。
以下将结合历年的竞赛题,对这十类算法进行详细地说明。
2 十类算法的详细说明
2.1 蒙特卡罗算法
大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。
举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。
2.2 数据拟合、参数估计、插值等算法
数据拟合在很多赛题中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是98 年美国赛A 题,生物组织切片的三维插值处理,94 年A 题逢山开路,山体海拔高度的插值计算,还有吵的沸沸扬扬可能会考的“非典”问题也要用到数据拟合算法,观察数据的走向进行处理。此类问题在MATLAB中有很多现成的函数可以调用,熟悉MATLAB,这些方法都能游刃有余的用好。
2.3 规划类问题算法
竞赛中很多问题都和数学规划有关,可以说不少的模型都可以归结为一组不等式作为约束条件、几个函数表达式作为目标函数的问题,遇到这类问题,求解就是关键了,比如98年B 题,用很多不等式完全可以把问题刻画清楚,因此列举出规划后用Lindo、Lingo 等软件来进行解决比较方便,所以还需要熟悉这两个软件。
2.4 图论问题
98 年B 题、00 年B 题、95 年锁具装箱等问题体现了图论问题的重要性,这类问题算法有很多,包括:Dijkstra、Floyd、Prim、Bellman-Ford,最大流,二分匹配等问题。每一个算法都应该实现一遍,否则到比赛时再写就晚了。
2.5 计算机算法设计中的问题
计算机算法设计包括很多内容:动态规划、回溯搜索、分治算法、分支定界。比如92 年B 题用分枝定界法,97 年B 题是典型的动态规划问题,此外98 年B 题体现了分治算法。这方面问题和ACM 程序设计竞赛中的问题类似,推荐看一下《计算机算法设计与分析》(电子工业出版社)等与计算机算法有关的书。
2.6 最优化理论的三大非经典算法
这十几年来最优化理论有了飞速发展,模拟退火法、神经网络、遗传算法这三类算法发展很快。近几年的赛题越来越复杂,很多问题没有什么很好的模型可以借鉴,于是这三类算法很多时候可以派上用场,比如:97 年A 题的模拟退火算法,00 年B 题的神经网络分类算法,象01 年B 题这种难题也可以使用神经网络,还有美国竞赛89 年A 题也和BP 算法有关系,当时是86 年刚提出BP 算法,89 年就考了,说明赛题可能是当今前沿科技的抽象体现。03 年B 题伽马刀问题也是目前研究的课题,目前算法最佳的是遗传算法。
2.7 网格算法和穷举算法
网格算法和穷举法一样,只是网格法是连续问题的穷举。比如要求在N 个变量情况下的最优化问题,那么对这些变量可取的空间进行采点,比如在[a; b] 区间内取M +1 个点,就是a; a+(b-a)/M; a+2 (b-a)/M; …… ; b 那么这样循环就需要进行(M + 1)N 次运算,所以计算量很大。比如97 年A 题、99 年B 题都可以用网格法搜索,这种方法最好在运算速度较快
的计算机中进行,还有要用高级语言来做,最好不要用MATLAB 做网格,否则会算很久的。穷举法大家都熟悉,就不说了。
2.8 一些连续数据离散化的方法
大部分物理问题的编程解决,都和这种方法有一定的联系。物理问题是反映我们生活在一个连续的世界中,计算机只能处理离散的量,所以需要对连续量进行离散处理。这种方法应用很广,而且和上面的很多算法有关。事实上,网格算法、蒙特卡罗算法、模拟退火都用了这个思想。
2.9 数值分析算法
这类算法是针对高级语言而专门设的,如果你用的是MATLAB、Mathematica,大可不必准备,因为象数值分析中有很多函数一般的数学软件是具备的。
2.10 图象处理算法
01 年A 题中需要你会读BMP 图象、美国赛98 年A 题需要你知道三维插值计算,03 年B 题要求更高,不但需要编程计算还要进行处理,而数模论文中也有很多图片需要展示,因此图象处理就是关键。做好这类问题,重要的是把MATLAB 学好,特别是图象处理的部分。

㈩ 数学建模全国获奖的论文大多都采用的是什么算法是不是某些算法获奖的概率比较高

算法的设计的好坏将直接影响运算速度的快慢,建议多用数学软件(
Mathematice,Matlab,Maple, Mathcad,Lindo,Lingo,SAS 等),这里提供十种数学
建模常用算法,仅供参考:
1、 蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决
问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必
用的方法)
2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数
据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab 作为工具)
3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多
数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通
常使用Lindo、Lingo 软件实现)
4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算
法,涉及到图论的问题可以用这些方法解决,需要认真准备)
5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算
法设计中比较常用的方法,很多场合可以用到竞赛中)
6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些
问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,
但是算法的实现比较困难,需慎重使用)
7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很
多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种
暴力方案,最好使用一些高级语言作为编程工具)
8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计
算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替
积分等思想是非常重要的)
9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分
析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编
写库函数进行调用)
10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文
中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问
题,通常使用Matlab 进行处理)

阅读全文

与数学多多少用什么算法相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:739
乙酸乙酯化学式怎么算 浏览:1404
沈阳初中的数学是什么版本的 浏览:1350
华为手机家人共享如何查看地理位置 浏览:1042
一氧化碳还原氧化铝化学方程式怎么配平 浏览:884
数学c什么意思是什么意思是什么 浏览:1408
中考初中地理如何补 浏览:1299
360浏览器历史在哪里下载迅雷下载 浏览:701
数学奥数卡怎么办 浏览:1387
如何回答地理是什么 浏览:1023
win7如何删除电脑文件浏览历史 浏览:1055
大学物理实验干什么用的到 浏览:1484
二年级上册数学框框怎么填 浏览:1699
西安瑞禧生物科技有限公司怎么样 浏览:973
武大的分析化学怎么样 浏览:1248
ige电化学发光偏高怎么办 浏览:1337
学而思初中英语和语文怎么样 浏览:1650
下列哪个水飞蓟素化学结构 浏览:1423
化学理学哪些专业好 浏览:1486
数学中的棱的意思是什么 浏览:1057