❶ 小学数学简便运算技巧
只要正握一些简便的运算技巧和方法,数学算起来一点都不难。来看看我给你分享的小学数学简便算法方法吧。
小学数学简便算法方法
提取公因式
这个方法实际上是运用了乘法分配律,将相同因数提取出来,考试中往往剩下的项相加减,会出现一个整数。
注意相同因数的提取。
例如:
0.92×1.41+0.92×8.59
=0.92×(1.41+8.59)
借来借去法
看到名字,就知道这个方法的含义。
用此方法时,需要注意观察,发现规律。
还要注意还哦 ,有借有还,再借不难。
考试中,看到有类似998、999或者1.98等接近一个非常好计算的整数的时候,往往使用借来借去法。
例如:
9999+999+99+9
=9999+1+999+1+99+1+9+1—4
拆 分 法
顾名思义,拆分法就是为了方便计算把一个数拆成几个数。
这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。
分拆还要注意不要改变数的大小哦。
例如:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
加法结合律
注意对加法结合律
(a+b)+c=a+(b+c)
的运用,通过改变加数的位置来获得更简便的运算。
例如:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
拆分法和乘法分配律结
这种方法要灵活掌握拆分法和乘法分配律,在考卷上看到99、101、9.8等接近一个整数的时候,要首先考虑拆分。
例如:
34×9.9 = 34×(10-0.1)
案例再现: 57×101=?
利用基准数
在一系列数种找出一个比较折中的数字来代表这一系列的数字,当然要记得这个数字的选取不能偏离这一系列数字太远。
例如:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
利用公式法
(1) 加法:
交换律,a+b=b+a,
结合律,(a+b)+c=a+(b+c).
(2) 减法运算性质:
a-(b+c)=a-b-c,
a-(b-c)=a-b+c,
a-b-c=a-c-b,
(a+b)-c=a-c+b=b-c+a.
(3):乘法(与加法类似):
交换律,a*b=b*a,
结合律,(a*b)*c=a*(b*c),
分配率,(a+b)xc=ac+bc,
(a-b)*c=ac-bc.
(4) 除法运算性质(与减法类似):
a÷(b*c)=a÷b÷c,
a÷(b÷c)=a÷bxc,
a÷b÷c=a÷c÷b,
(a+b)÷c=a÷c+b÷c,
(a-b)÷c=a÷c-b÷c.
前边的运算定律、性质公式很多是由于去掉或加上括号而发生变化的。
其规律是同级运算中,加号或乘号后面加上或去掉括号,后面数值的运算符号不变。
例 题
例1:
283+52+117+148
=(283+117)+(52+48)
(运用加法交换律和结合律)。
减号或除号后面加上或去掉括号,后面数值的运算符号要改变。
例2:
657-263-257
=657-257-263
=400-263
(运用减法性质,相当加法交换律。)
例3:
195-(95+24)
=195-95-24
=100-24
(运用减法性质)
例4:
150-(100-42)
=150-100+42
(同上)
例5:
(0.75+125)*8
=0.75*8+125*8=6+1000
. (运用乘法分配律))
例6:
( 125-0.25)*8
=125*8-0.25*8
=1000-2
(同上)
例7:
(1.125-0.75)÷0.25
=1.125÷0.25-0.75÷0.25
=4.5-3=1.5。
( 运用除法性质)
例8:
(450+81)÷9
=450÷9+81÷9
=50+9=59.
(同上,相当乘法分配律)
例9:
375÷(125÷0.5)
=375÷125*0.5=3*0.5=1.5.
(运用除法性质)
例10:
4.2÷(0。
6*0.35)
=4.2÷0.6÷0.35
=7÷0.35=20.
(同上)
例11:
12*125*0.25*8
=(125*8)*(12*0.25)
=1000*3=3000.
(运用乘法交换律和结合律)
例12:
(175+45+55+27)-75
=175-75+(45+55)+27
=100+100+27=227.
(运用加法性质和结合律)
例13:
(48*25*3)÷8
=48÷8*25*3
=6*25*3=450.
(运用除法性质, 相当加法性质)
裂 项 法
分数裂项是指将分数算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.
常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的`关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。
分数裂项的三大关键特征:
(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x为任意自然数)的,但是只要将x提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”
(3)分母上几个因数间的差是一个定值。
公式:
❷ 小学数学快速计算方法是什么
一、加法交换律与加法结合律
加法交换律:
两个数相加,交换加数的位置,它们的和不变。即a+b=b+a
一般地,多个数相加,任意改变相加的次序,其和不变。
a+b+c+d=d+b+a+c
加法结合律:
几个数相加,先把前两个数相加,再加上第三个数;或者,先把后两个数相加,再与第一个数相加,它们的和不变。即:a+b+c=(a+b)+c=a+(b+c),
二、速算与巧算中常用的三大基本思想
1、凑整(目标:整十整百整千...)
2、分拆(分拆后能够凑成整十整百整千...)
3、组合(合理分组再组合)
三、常见方法
凑整法
两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的"补数",利用"补数"巧算加法,通常称为"凑整法"
如:1+9=10,3+7=10,2+8=10,4+6=10,5+5=10。
又如:11+89=100,33+67=100,22+78=100,44+56=100,55+45=100,
在上面算式中,1叫9的"补数";89叫11的"补数",11也叫89的"补数"。也就是说两个数互为"补数"。
对于一个较大的数,如何能很快地算出它的"补数"来呢?一般来说,可以这样"凑"数:从最高位凑起,使各位数字相加得9,到最后个位数字相加得10。
如:87655→12345,46802→53198,87362→12638。
利用"补数"巧算加法,通常称为"凑整法"。
巧算下面各题:
①36+87+64
②99+136+101
③1361+972+639+28
解:
①式=(36+64)+87=100+87=187
②式=(99+101)+136=200+136=336
③式=(1361+639)+(972+28)=2000+1000=3000
魏德武速算
魏氏速算它可以不借助任何计算工具在很短时间内就能使学习者,用一种思维,一种方法快速准确地掌握任意数加、减、乘、除的速算方法。从而达到快速提高学习者口算和心算的速算能力。
1、加法速算:计算任意位数的加法速算,方法很简单学习者只要熟记一种加法速算通用口诀——“本位相加(针对进位数)减加补,前位相加多加一”就可以彻底解决任意位数从高位数到低位数的加法速算方法,比如:
(1),67+48=(6+5)×10+(7-2)=115;
(2)758+496=(7+5)×100+(5-0)×10+8-4=1254即可。
2、减法速算:计算任意位数的减法速算方法也同样是用一种减法速算通用口诀——“本位相减(针对借位数)加减补,前位相减多减一”就可以彻底解决任意位数从高位数到低位数的减法速算方法,比如:
(1),67-48=(6-5)×10+(7+2)=19;
(2),758-496=(7-5)×100+(5+1)×10+8-6=262即可。
以上内容参考网络-数学速算法
❸ 小学数学巧算教学方法
运算定律是速算和巧算的基础,掌握数学运算定律的规律、公式、法则和特点,就能灵活运用速算和巧算技巧。下面给大家带来一些关于小学数学巧算 教学 方法 ,希望对大家有所帮助。
小学数学巧算教学方法1
(一)凑整先算法
加法、减法的简便计算中,基本思路是“凑整”,根据加法(乘法)的交换律、结合律以及减法的性质,其中若有能够凑整的,可以变更算式,使能凑整的数结成一对好朋友,进行凑整计算,能使计算简便。例:298+304+196+502,本题可以运用加法交换律和结合律,把能够凑成整十、整百、整千……的数先加起来,可以使计算简便,因此原式=(298+502)+(304+196)=800+500=1300。
小学数学巧算教学方法2
(二)符号搬家法
在加减混合,乘除混合同级运算中,可以根据运算的需要以及题目的特点,交换数字的位置,可以使计算变得简便。特别提醒的是:交换数字的位置,要注意运算符号也随之换位置。例:464-545+836-455,观察例题我们会发现,如果按照惯例应该从左往右计算,464减545根本就不够减,在小学阶段,学生没办法做,所以要想做这道题,学生必须先观察数字特点,进行简便计算,按照符号搬家法,原式=464+836-545-455=1300-(545+455)=300。
小学数学巧算教学方法3
(三)拆数凑整法
根据运算定律和数字特点,常常灵活地把算式中的数拆分,重新组合,分别凑成整十、整百、整千。例:998+1413+9989,给998添上2能凑成1000,给9989添上11凑成10000,所以就把1413分成1400、2与11三个数的和,按照拆数凑整法,原式=(998+2)+1400+(11+9989)=1000+1400+10000=12400。
小学数学巧算教学方法4
(四)找基准数法
许多数相加,如果这些数都接近某一个数,可以把这个数确定为一个基准数,将其他的数与这个数比较,在基准数的倍数上加上多余的部分,减去不足的,这样可以使计算显得十分简便。例: 8.1+8.2+8.3+7.9+7.8+7.7,例题中6个加数都在8的附近,可用8作为基准数,先求出6个8的和,再加上比8大的数中少加的那部分,减去比8小的数中多加的那部分,如果按照该方法,那么原式=8×6+0.1+0.2+0.3-0.1-0.2-0.3=48+0=48。
小学数学巧算教学方法5
1.明确算理
教给学生解决问题的钥匙,速算要求学生切实掌握常用简便运算的方法,既包括直接运用定律和性质使运算简便的方法,又包括需要经过分解和组合后才能间接应用运算定律和性质,是运算简便的方法。前者较为通俗,易接受。后者难度较大,而要着力培养学生先看后想的思维习惯。当学生一旦能够有看到想自己发现数据间的关系,并会通过分解或组合、联系定律、性质、进行间接地速算,就意味着学生已掌握了速算的“钥匙”,具有较高的速算水平。为培养学生先看后想的思维习惯和分解或组合的能力。例如:70-70×3/5可以变形为70×(1-3/5),125×32×25可以变形为125×8×4×25等,经常进行这样的练习,不但能加深学生对算理的理解,而且能有效地培养学生良好的思维品质和思维习惯。
小学数学巧算教学方法6
抓好比较教学,引导学生选择最佳速算方法
就一道计算题来说,其计算方法不止一种,其中必有一种简便的,为了使计算快速,就要尽量学会选择最简便又符合算理的那一种,因此,在课堂上要注重对计算方法的讨论,让学生明白那种方法简便,在此基础上进行区别练习,可以对一题写出几种方法,让学生发现其中最简便的一种,也可以出示类型相似的,方法不尽相同的题目,让学生自己去发现每道题的最佳速算方法,如:240÷6/15÷2 6/13÷6/11 4/45÷22/45这些题目中都有分数,且都是除法,但速算方法各不相同。最后,教师要帮助学生对一些常见的类型,常见的方法速算的窍门和捷径,给以引导 总结 ,这样学生便会渐渐地形成技巧掌握方法。
小学数学巧算教学方法7
鼓励学生积极提问,激活课堂气氛
在课堂上学生常会提出一些不完全正确的猜想,或者是一种应急性回答,或者设想解决问题的多种方法、构思以前出现的一些新奇观象等。由于长期受传统“应试 教育 ”的束缚,一些教师不愿活跃课堂气氛,不敢活跃课堂气氛,也不知怎样活跃课堂气氛,唯恐一发而不可收。课堂教学中,教师照例题讲例题,照本宣科,没有一点新意,对学生的提问只是请所谓的优等生来回答问题,回答得稍有不合教师的“标准”答案,就全盘否定,也不探究错误的根源,生怕影响教学的节奏,弄得学生不敢举手、不敢回答问题,好端端的一个直觉思维就这样被一棒子打死,长此以往,这种“千篇一律,万生一面”的“同化”教育模式,不知扼杀了多少思维天才。
小学数学巧算教学方法8
语言幽默风趣活络课堂气氛
幽默风趣的语言,能让人想听、耐听,听得仔细、听得有趣。数学知识是很抽象的,如果教师能够把这些数学知识通过幽默风趣的语言进行传授,一定能够吸引学生的注意力。例如,在教学《百分数和小数互化》一课时,我这样对学生说:“一个星期天的早上,百分数想到小数家去玩,一道小河拦住了它的去路,对岸的小数一看不是自家人,不让它过河,请你们来帮个忙把百分数化成小数再过河去小数家去玩怎么样。”学生入神地听着这个 故事 ,在童话般的意境中认真地思考起这个问题。
小学数学巧算教学方法相关 文章 :
★ 小学数学教学中几种常用的教学方法
★ 小学数学常用的教学方法是什么
★ 小学数学教学中常用的教学方法
★ 小学数学最新教学方法有哪些?
★ 小学数学教法方法有哪些
★ 实用的小学数学教学方法
★ 小学数学的教学方法
★ 小学数学教学方法有哪些
★ 关于小学数学的教学方法
❹ 小学数学计算方法有哪些
小学学的计算方法不外乎加减乘除
还有分数的运算,小数的运算和单位之间的互相运算等等
❺ 小学数学有哪些简便算法,你知道吗
对于那些成绩较差的小学生来说,学习小学数学都有很大的难度,其实小学数学属于基础类的知识比较多,只要掌握一定的技巧还是比较容易掌握的.在小学,是一个需要养成良好习惯的时期,注重培养孩子的习惯和学习能力是重要的一方面,那小学数学有哪些技巧?
一、重视课内听讲,课后及时进行复习.
新知识的接受和数学能力的培养主要是在课堂上进行的,所以我们必须特别注意课堂学习的效率,寻找正确的学习方法.在课堂上,我们必须遵循教师的思想,积极制定以下步骤,思考和预测解决问题的思想与教师之间的差异.特别是,我们必须了解基本知识和基本学习技能,并及时审查它们以避免疑虑.首先,在进行各种练习之前,我们必须记住教师的知识点,正确理解各种公式的推理过程,并试着记住而不是采用"不确定的书籍阅读".勤于思考,对于一些问题试着用大脑去思考,认真分析问题,尝试自己解决问题.
二、多做习题,养成解决问题的好习惯.
如果你想学好数学,你需要提出更多问题,熟悉各种问题的解决问题的想法.首先,我们先从课本的题目为标准,反复练习基本知识,然后找一些课外活动,帮助开拓思路练习,提高自己的分析和掌握解决的规律.对于一些易于查找的问题,您可以准备一个用于收集的错题本,编写自己的想法来解决问题,在日常养成解决问题的好习惯.学会让自己高度集中精力,使大脑兴奋,快速思考,进入最佳状态并在考试中自由使用.
三、调整心态并正确对待考试.
首先,主要的重点应放在基础、基本技能、基本方法,因为大多数测试出于基本问题,较难的题目也是出自于基本.所以只有调整学习的心态,尽量让自己用一个清楚的头脑去解决问题,就没有太难的题目.考试前要多对习题进行演练,开阔思路,在保证真确的前提下提高做题的速度.对于简单的基础题目要拿出二十分的把握去做;难得题目要尽量去做对,使自己的水平能正常或者超常发挥.
由此可见小学数学的技巧就是多做练习题,掌握基本知识.另外就是心态,不能见考试就胆怯,调整心态很重要.所以大家可以遵循这些技巧,来提高自己的能力,使自己进入到数学的海洋中去.
❻ 小学数学的计算中,算法有哪些例如:凑十法,想加算减
加减、乘一位的乘法口算,两位以上竖式计算
❼ 小学数学的计算中,算法有哪些例如:凑十法,想加算减
算法也就只有整数、小数、分数、百分数的加、减、乘、除,四则混合运算,乘方(只限于平方、立方),小数、分数、百分数的互化,形体周长、面积、体积计算,计量单位的换算,简单的有理数加减法。
至于运算的技巧就有很多,一般都是运算定律、性质进行简便计算,如加法交换律、加法结合律、连减性质、乘法交换律、乘法结合率、除法商不变性质,……很多,教师会在不同的阶段教学生灵活运用这些知识,提高学生的计算能力。
你说的凑十法只是计算技巧的一种。
❽ 小学数学算术是用指心算吗
不是的。现在小学教材中的《数学》,在以前就叫《算术》。
算术是数学中最古老、最基础和最初等的部分,它研究数的性质及其运算。把数和数的性质、数和数之间的四则运算在应用过程中的经验累积起来,并加以整理,就形成了最古老的一门数学——算术。
现在的小学数学中的内容包括算术(四则运算等)、几何初步、统计……等内容。
❾ 数学中都有什么算法啊
定义法、配方法、待定系数法、换元法、反证法、数学归纳法、导数法、赋值法、消去法、定比分离法、比较法、分析法、综合法 ,还有很多桑
介里有几个比较详细的哈.
一、换元法
“换元”的思想和方法,在数学中有着广泛的应用,灵活运用换元法解题,有助于数量关系明朗化,变繁为简,化难为易,给出简便、巧妙的解答.
在解题过程中,把题中某一式子如f(x),作为新的变量y或者把题中某一变量如x,用新变量t的式子如g(t)替换,即通过令f(x)=y或x=g(t)进行变量代换,得到结构简单便于求解的新解题方法,通常称为换元法或变量代换法.
用换元法解题,关键在于根据问题的结构特征,选择能以简驭繁,化难为易的代换f(x)=y或x=g(t).就换元的具体形式而论,是多种多样的,常用的有有理式代换,根式代换,指数式代换,对数式代换,三角式代换,反三角式代换,复变量代换等,宜在解题实践中不断总结经验,掌握有关的技巧.
例如,用于求解代数问题的三角代换,在具体设计时,宜遵循以下原则:(1)全面考虑三角函数的定义域、值域和有关的公式、性质;(2)力求减少变量的个数,使问题结构简单化;(3)便于借助已知三角公式,建立变量间的内在联系.只有全面考虑以上原则,才能谋取恰当的三角代换.
换元法是一种重要的数学方法,在多项式的因式分解,代数式的化简计算,恒等式、条件等式或不等式的证明,方程、方程组、不等式、不等式组或混合组的求解,函数表达式、定义域、值域或最值的推求,以及解析几何中的坐标替换,普通方程与参数方程、极坐标方程的互化等问题中,都有着广泛的应用.
二、消元法
对于含有多个变数的问题,有时可以利用题设条件和某些已知恒等式(代数恒等式或三角恒等式),通过适当的变形,消去一部分变数,使问题得以解决,这种解题方法,通常称为消元法,又称消去法.
消元法是解方程组的基本方法,在推证条件等式和把参数方程化成普通方程等问题中,也有着重要的应用.
用消元法解题,具有较强的技巧性,常常需要根据题目的特点,灵活选择合适的消元方法
三、待定系数法
按照一定规律,先写出问题的解的形式(一般是指一个算式、表达式或方程),其中含有若干尚待确定的未知系数的值,从而得到问题的解.这种解题方法,通常称为待定系数法;其中尚待确定的未知系数,称为待定系数.
确定待定系数的值,有两种常用方法:比较系数法和特殊值法.
四、判别式法
实系数一元二次方程
ax2+bx+c=0 (a≠0) ①
的判别式△=b2-4ac具有以下性质:
>0,当且仅当方程①有两个不相等的实数根
△ =0,当且仅当方程①有两个相等的实数根;
<0,当且仅当方程②没有实数根.
对于二次函数
y=ax2+bx+c (a≠0)②
它的判别式△=b2-4ac具有以下性质:
>0,当且仅当抛物线②与x轴有两个公共点;
△ =0,当且仅当抛物线②与x轴有一个公共点;
<0,当且仅当抛物线②与x轴没有公共点.
五、 分析法与综合法
分析法和综合法源于分析和综合,是思维方向相反的两种思考方法,在解题过程中具有十分重要的作用.
在数学中,又把分析看作从结果追溯到产生这一结果的原因的一种思维方法,而综合被看成是从原因推导到由原因产生的结果的另一种思维方法.通常把前者称为分析法,后者称为综合法.
六、 数学模型法
例(哥尼斯堡七桥问题)18世纪东普鲁士哥尼斯堡有条普莱格河,这条河有两个支流,在城中心汇合后流入波罗的海.市内办有七座各具特色的大桥,连接岛区和两岸.每到傍晚或节假日,许多居民来这里散步,观赏美丽的风光.年长日久,有人提出这样的问题:能否从某地出发,经过每一座桥一次且仅一次,然后返回出发地?
数学模型法,是指把所考察的实际问题,进行数学抽象,构造相应的数学模型,通过对数学模型的研究,使实际问题得以解决的一种数学方法.
七、配方法
所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式.通过配方解决数学问题的方法叫配方法.其中,用的最多的是配成完全平方式.配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它.
八、因式分解法
因式分解,就是把一个多项式化成几个整式乘积的形式.因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用.因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等.
九、换元法
换元法是数学中一个非常重要而且应用十分广泛的解题方法.我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决.
介里LL没有说很详细桑,内啥简便算法我也一起说了桑丶
乘法交换律,乘法分配律,加法交换律,加法结合律,乘法分配律,
❿ 为什么中国的小学数学课本,还用竖式计算多位数乘法阿拉伯人的“铺地锦”算法,我觉得更好,不容易出错
这是一种教育习惯,任何一个国家都有自己的教育模式,我们不能说任何一种计算方法是最好的。比如现在到处都有速算班,就不可能让学校也都用这种方法教,算理呢?比如你说的“铺地锦”,它就牵涉到了算理和算法,整个教材都要动,老师也要重新学,没必要让大家放弃没有错也并不十分复杂的方法,而重新去学习一种并不熟悉的解决同一问题的方法。当然,个体愿意去学习尝试是可以的,但如果全员都动起来的话LZ可以想象其难度。