导航:首页 > 数字科学 > 阵谜数学家第一阵是什么

阵谜数学家第一阵是什么

发布时间:2022-11-26 21:23:18

Ⅰ 百变大侦探阵谜11个数字解析

百变大侦探阵谜11个数字解析:

1、诗人:云庵烹浊茶敌睡思路,根据声律启蒙对照。

(1)毛泽东思路:从右往左,从上往下读是雄关漫道真如铁,而今迈步从头越。

5、技巧:

(1)连续最多两个相同颜色,所以有两个颜色相同,前后必然是不同颜色。

(2)每一行每一列黑白相同,如果行或列已经有五个黑子或白子,剩下必然都是另外的颜色。



Ⅱ 世界上第一位数学家是谁

数学史上第一位数学家是古希腊的泰勒斯。因为他是第一个引进证明的数学家,同时他也是测量学的鼻祖。他发现的一个定理叫做泰勒斯定理:就是在圆中直径所对的圆周角是90度。
在科学方面,泰勒斯曾利用日影来测量金字塔的高度,并准确地预测了公元前585年发生的日蚀。数学上的泰勒斯定理以他命名。他对天文学亦有研究,确认了小熊座,被指出其有助于航海事业。同时,他是首个希腊人将一年的长度修定为365日。他亦曾估量太阳及月球的大小。

Ⅲ 世界上第一个数学家是谁

数学史上的第一位数学家是古希腊的泰勒斯,他是第一个引进证明的数学家,同时也是测量学的鼻祖。他发现的一个定理叫泰勒斯定理

Ⅳ 数学家的谜语

按照迷格的规定,或者把谜底中字的'位置移动一下,或者把谜底中的字读成谐音(就是字音相同或相近),或者对谜底中文字的偏旁部首进行一番加工整理,然后再去扣合谜面。以下是我带来数学家的谜语的相关内容,希望对你有帮助。

关于数学家的谜语

(一)春雨一犁且驻鞭(牛顿)村童(庄子)

(二)村子(庄子)不久就要出太阳(徐光启)

(三)天明登前程(徐光启)旭日东升(徐光启)

(四)东方欲晓(徐光启)东方鱼肚白(徐光启)

(五)中流击楫(祖冲之)宗法要破除(祖冲之)

(六)洪水卷家谱(祖冲之)爷爷打冲锋(祖冲之)

(七)爷爷淋浴(祖冲之)太平(张衡)

(八)看秤(张衡)眺望南岳(张衡)

(九)古城春色(陈景润)多少楼台烟雨中(陈景润)

(十)沾衣欲湿杏花雨(陈景润)故园风光雨中新(陈景润)

(十一)修饰名胜古迹(陈景润)旧日风光添色泽(陈景润)

(十二)旧貌变新颜(陈景润)化(华罗庚)

(十三)二十尚不足十五颇有余(华罗庚)我走我的阳光道(爱因斯坦)

(十四)最喜此地无坎坷(爱因斯坦)热恋只缘她直爽(爱因斯坦)

(十五)钟情只因她爽直(爱因斯坦)一骑红尘妃子笑(杨乐)

(十六)回头一笑百媚生(杨乐)树木高兴(杨乐)

(十七)和尚代表团(僧一行)东坡春游芳草地(苏步青)

其他数学谜语

(1)停战(和)储蓄(积)

(2)我先走(不等)孕妇临产(分子)

(3)汾水长流,好女长游(分子)再见了,妈妈(分母)

(4)两边清点(分数)点硬币(分数)

(5)北(反比)对抗赛(反比)

(6)附则(加法)从重惩处(加法)

(7)从严判刑(加法)途中(半径)

(8)五十分(半圆)五角钱(半圆)

(9)苹果两切半(半圆)一列横队齐步走(平行)

(10)步入坦途(平行)走坦途(平行)

(11)并肩走路(平行)并肩前进(平行)

(12)并驾齐驱(平行)齐头并进(平行)

(13)十分安定(平角)其貌不扬(平面)

(14)貌不惊人(平面)铁骑绕龙城(周角)

(15)历朝传世谁最长(周长)十里羊肠不打弯(直径)

(16)不转弯的路(直径)没弯的路(直径)

(17)马路没弯(直径)马路没弯儿(直径)

(18)康庄大道(直径)捷径(直线)

(19)大同小异(近似)你盼我来我盼你(相等)

(20)两边重量一样(相等)势均力敌(相等)

(21)不见不散(约等)别走!我马上来(约等)

(22)呆会儿(约等)麦粉堆(面积)

(23)脸皮太厚(面积)脸谱汇编(面积)

(24)先上后下(乘法)坐船规则(乘法)

(25)车上须知(乘法)客运原则(乘法)

(26)客运章程(乘法)旅客须知(乘法)

(27)马术(乘法)驭手传经(乘法)

(28)驾驶原理(乘法)骑兵操典(乘法)

(29)骑车术(乘法)骑马术(乘法)

(30)骑术(乘法)九至一(倒数)

(31)五四三二一(倒数)四三二一(倒数)

(32)从后面算起(倒数)减四害方案(除法)

(33)减害要领(除法)不足为奇(偶数)

(34)讨价还价(商数)庞士元巧设连环计(统计)

(35)下汽车,上火车,下火车(连乘)下马入车中(连乘)

(36)弹指一挥间(速算)周而复始(循环)

(37)从轻判刑(减法)垂钓(等于)

(38)待令冲锋(等号)、待命出发(等号)

(39)候令(等号)时刻准备打冲锋(等号)

(40)十分不快(钝角)考核营业员(试商)

(41)学做生意(试商)行车计数(运算)

Ⅳ 数阵图的规律公式是什么

数阵图的规律公式是:三角形数=1+2+3+……+n,令a=1+2+3+……+n,则a=n+(n-1)+(n-2)+……+1,所以2a=(1+n)+[2+(n-1)]+[3+(n-2)]+……+(n+1),=(1+n)+(1+n)+(1+n)+……+(1+n),一共n个括号,所以2a=n(n+1),所以第n个三角形数=n(n+1)/2。

数阵图的意义

数阵图的意义在神奇的数学王国中,有一类非常有趣的数学问题,它变化多端,引人入胜,奇妙无穷。它就是数阵,一座真正的数字迷宫,它对喜欢探究数字规律的人有着极大的吸引力,以至有些人留连其中,用毕生的精力来研究它的变化,就连大数学家欧拉对它都有着浓厚的兴趣。数阵图的魅力就在于它蕴藏着不易觉察的规律和美丽的迷你阵容。

Ⅵ 最难剧本杀有什么

强推《阵谜》!这是我在百变大侦探上逛到的一个线上本,是个纯解谜本,五人本,每个人需要解开各自的谜题,也需要合作解谜,故事背景是玄幻背景,有数学家、旅行家、风水家、外国人和诗人五个身份,每个身份对应的谜题不一样,大家可以根据简介选择自己擅长的谜题类型。这个本里的谜题真的很有水平,楼主感兴趣的话真的可以试试(//∇//)!

Ⅶ 百变大侦探App《阵迷》攻略是什么

阵迷攻略:

序幕人名诗人:

谢道锦。

数学家:

刘徽。

风水师:

许负。

西方人:

马可波罗

旅行家:

徐霊客。

个人第一关。

诗人:

云庵烹浊茶敌睡思路:

根据声律启蒙对照。

风水师:

1,子根据相法,对应就是无子可怜,缺“子"。

2,692135874根据九宫飞星规则,星移动,宫不动,洛书轨迹为中一乾一兑一艮一离一坎一坤一震一巽一中排列。

今年图中,中宫数字是1 ,所以明年乾宫数字为1 ,以此类推。

游戏简介:

“百变大侦探”是一款线上真人角色扮演剧本杀软件,精美场景搜证,拥有众多精品的剧本,丰富的玩法,每次你都将扮演不同的角色, 都拥有独立的人物设定。


比狼人杀更易上手,更有趣。不用像狼人杀那样‘尴尬地掰逻辑’,也不会因不懂语言套路而‘被出局’。


你需要通过阅读剧本,代入所扮演的角色,在不同场景搜索出破案线索,通过与其他玩家飙演技、实时语音聊天,互相指认来锁定嫌疑人,最终投票找到真兇,还原故事真相。


每一次体验犹如看一本小说,看一场电影,出演一幕话剧。

Ⅷ 数学名人的谜语

导语:数学是自然科学的一门重要学科,数学对于人的逻辑建设有很大的影响。下面是我收集整理的关于数学家的谜语,欢迎大家阅读参考!

关于数学家的谜语

1、东窗附耳听,旭日出上京,闰年风水生。(打一数学家)谜底:陈景润

2、老爷爷泡茶。(打一古代数学家)谜底:祖冲之

3、故园风光雨中新。(打一数学家)谜底:陈景润

有关数学的趣味谜语

1、 “0”是中国最早创造的

我们知道阿拉伯数字1、2、3、4、5、6、7、8、9原是印度人发明的,13世纪后期传入中国,人们误认为0也是印度人发明的。其实印度起先发明时没有“0”,他们把“204”,写成“24”,中间空着,把2004,写成“24”,怎么区别中间有几个零呢?为了避免看不清,就用点“•”来表示,204写成“2•4”,那不和小数混淆了?直到公元876年才把“0”确定下来。

我国却在1240年前就已创造了“0”,我国的零,当时是“○”,它是根据写字时缺字用“□”来表示缺字,“0”表示这个数没有,或这个数位上没有,用“○”表示,随着人们长期不断地记数,慢慢发展演变,最后确定为今天的“0”。因此以“0”作为零是我国古代数学家的一项杰出贡献。

2、世界上最早采用"十进位值制记数法"的是哪个国家?(中国)

3、中国最有名的数学着作

现在所知道的最早的数学着作有《周髀算经》和《九章算术》。

4、世界最迷人的数学难题

“几何尺规作图问题” “蜂窝猜想” “孪生素数猜想”

“费马最后定理” “四色猜想” “哥德巴赫猜想”

5、数学符号的起源数学符号的发明和使用比数字晚,但是数量多得多。现在常用的有200多个,初中数学书里就不下20多种。它们都有一段有趣的经历。

"+"号是由拉丁文"et"("和"的意思)演变而来的。十六世纪,意大利科学家塔塔里亚用意大利文"più"(加的意思)的第一个字母表示加,草为"μ"最后都变成了"+"号。

"-"号是从拉丁文"minus"("减"的意思)演变来的,简写m,再省略掉字母,就成了"-"了。

到了十五世纪,德国数学家魏德美正式确定:"+"用作加号,"-"用作减号。

"×"号是"+"斜起来写,是另一种表示增加的符号。

"÷"最初作为减号,直到1631年英国数学家奥屈特用":"表示除或比,另外有人用"-"(除线)表示除。后来瑞士数学家拉哈在他所着的《代数学》里,才根据群众创造,正式将"÷"作为除号。

"="十六世纪法国数学家维叶特用"="表示两个量的差别。可是英国牛津大学数学、修辞学教授列考尔德觉得:用两条平行而又相等的直线来表示两数相等是最合适不过的了,于是等于符号"="就从1540年开始使用起来。

大于号"〉"和小于号"〈",是1631年英国着名代数学家赫锐奥特创创使用。

6、九 九 歌

九九歌就是我们现在使用的乘法口诀。它在我国两千多年前就已经有了,那时是从从“九九八十一”开始的,所以叫做“九九歌”,大约在公元十三、十四世纪,九九歌的顺序才变成和现在所用的.一样,从“一一如一”起到“九九八十一”止。现在我国使用的乘法口诀有两种,一种是45句的,通常称为“小九九”;还有一种是81句的,通常称为“大九九”。

7、动物中的数学“天才”

a、蜜蜂蜂房-----六角柱状体

b、丹顶鹤成群结飞行----排成“人”字形。“人”字形的角度是110度。

c、蜘蛛结的“八卦阵”网,是既复杂又美丽的八角形几何图案,人们即使用直尺的圆规也很难画出像蜘蛛网那样匀称的图案。

d、冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。

e、真正的数学“天才”是珊瑚虫。珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然是一天“画”一条。奇怪的是,古生物学家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”。天文学家告诉我们,当时地球一天仅21.9小时,一年不是365天,而是400天。

8、近代数学家 :华罗庚、陈景润、苏步青、 陈省身、丘成桐

9、温州的着名数学家—谷超豪

谷超豪先生是中国着名数学家,中国科学院院士。出生在浙江温州。

10、最早的记数法------刻痕记数、结绳记数。

上古时期的初民们为了记事表数,即在木头、石头或者龟甲刻痕记数,或者在绳子上打结,用绳结代表数字.

11、盲人数学家——欧拉

12、“几何之父”――欧几里德

我们现在学习的几何学,是由古希腊数学家欧几里德创立的。他在公元前300年编写的《几何原本》,2000多年来都被看作学习几何的标准课本,所以称欧几里德为几何之父。

13、“西方的勾股定理之父 ” ――毕达哥拉斯

毕达哥拉斯发现了着名毕达哥拉斯定理(即勾股定理),被人们称为西方的勾股定理之父.

14、“数学王子”——高斯

15、“数学之父”—— 泰勒斯

16、“代数之父” ——韦达

Ⅸ 世界10大数学家是那十个,各是哪国的。和是哪一位

世界十大数学家是:1.欧几里得、2.刘微、3.秦九韶、4.笛卡尔、5.费马、6.莱布尼茨、7.欧拉、8.拉格朗日、9.高斯、10.希尔伯特
1. 欧几里德(Euclid of Alexandria),希腊数学家。约生于公元前330年,约殁于公元前260年。欧几里德是古代希腊最负盛名、最有影响的数学家之一,他是亚历山大里亚学派的成员。欧几里德写过一本书,书名为《几何原本》(Elements) 共有13卷。这一着作对于几何学、数学和科学的未来发展,对于西方人的整个思维方法都有很大的影响。《几何原本》的主要对象是几何学,但它还处理了数论、无理数理论等其他课题。欧几里德使用了公理化的方法。公理(axioms)就是确定的、不需证明的基本命题,一切定理都由此演绎而出。在这种演绎推理中,每个证明必须以公理为前提,或者以被证明了的定理为前提。这一方法后来成了建立任何知识体系的典范,在差不多2000年间,被奉为必须遵守的严密思维的范例。《几何原本》是古希腊数学发展的顶峰。欧几里得 (活动于约前300-?)古希腊数学家。以其所着的《几何原本》(简称《原本》)闻名于世。关于他的生平,现在知道的很少。早年大概就学于雅典,深知柏拉图的学说。公元前300年左右,在托勒密王(公元前364~前283)的邀请下,来到亚历山大,长期在那里工作。他是一位温良敦厚的教育家,对有志数学之士,总是循循善诱。但反对不肯刻苦钻研、投机取巧的作风,也反对狭隘实用观点。据普罗克洛斯(约410~485)记载,托勒密王曾经问欧几里得,除了他的《几何原本》之外,还有没有其他学习几何的捷径。欧几里得回答说: “ 在几何里,没有专为国王铺设的大道。 ” 这句话后来成为传诵千古的学习箴言。斯托贝乌斯(约 500)记述了另一则故事,说一个学生才开始学第一个命题,就问欧几里得学了几何学之后将得到些什么。欧几里得说:给他三个钱币,因为他想在学习中获取实利。欧几里得将公元前 7世纪以来希腊几何积累起来的丰富成果整理在严密的逻辑系统之中,使几何学成为一门独立的、演绎的科学。除了《几何原本》之外,他还有不少着作,可惜大都失传。《已知数》是除《原本》之外惟一保存下来的他的希腊文纯粹几何着作,体例和《原本》前6卷相近,包括94个命题,指出若图形中某些元素已知,则另外一些元素也可以确定。《图形的分割》现存拉丁文本与阿拉伯文本,论述用直线将已知图形分为相等的部分或成比例的部分。《光学》是早期几何光学着作之一,研究透视问题,叙述光的入射角等于反射角,认为视觉是眼睛发出光线到达物体的结果。还有一些着作未能确定是否属于欧几里得,而且已经散失。欧几里德的《几何原本》中收录了23个定义,5个公理,5个公设,并以此推导出48个命题(第一卷)。2.刘徽 生平(生于公元250年左右),三国后期魏国人,是中国古代杰出的数学家,也是中国古典数学理论的奠基者之一.其生卒年月、生平事迹,史书上很少记载。据有限史料推测,他是魏晋时代山东临淄或淄川一带人。终生未做官。着作刘徽的数学着作留传后世的很少,所留之作均为久经辗转传抄。他的主要着作有:《九章算术注》10卷;《重差》1卷,至唐代易名为《海岛算经》;《九章重差图》l卷,可惜后两种都在宋代失传。数学成就刘徽的数学成就大致为两方面:一是清理中国古代数学体系并奠定了它的理论基础。这方面集中体现在《九章算术注》中。它实已形成为一个比较完整的理论体系:①在数系理论方面用数的同类与异类阐述了通分、约分、四则运算,以及繁分数化简等的运算法则;在开方术的注释中,他从开方不尽的意义出发,论述了无理方根的存在,并引进了新数,创造了用十进分数无限逼近无理根的方法。②在筹式演算理论方面先给率以比较明确的定义,又以遍乘、通约、齐同等三种基本运算为基础,建立了数与式运算的统一的理论基础,他还用“率”来定义中国古代数学中的“方程”,即现代数学中线性方程组的增广矩阵。③在勾股理论方面逐一论证了有关勾股定理与解勾股形的计算原理,建立了相似勾股形理论,发展了勾股测量术,通过对“勾中容横”与“股中容直”之类的典型图形的论析,形成了中国特色的相似理论。④在面积与体积理论方面用出入相补、以盈补虚的原理及“割圆术”的极限方法提出了刘徽原理,并解决了多种几何形、几何体的面积、体积计算问题。这些方面的理论价值至今仍闪烁着余辉。二是在继承的基础上提出了自己的创见。这方面主要体现为以下几项有代表性的创见:①割圆术与圆周率他在《九章算术?圆田术》注中,用割圆术证明了圆面积的精确公式,并给出了计算圆周率的科学方法。他首先从圆内接六边形开始割圆,每次边数倍增,算到192边形的面积,得到π=157/50=3.14,又算到3072边形的面积,得到π=3927/1250=3.1416,称为“徽率”。②刘徽原理在《九章算术?阳马术》注中,他在用无限分割的方法解决锥体体积时,提出了关于多面体体积计算的刘徽原理。③“牟合方盖”说在《九章算术?开立圆术》注中,他指出了球体积公式V=9D3/16(D为球直径)的不精确性,并引入了“牟合方盖”这一着名的几何模型。“牟合方盖”是指正方体的两个轴互相垂直的内切圆柱体的贯交部分。④方程新术在《九章算术?方程术》注中,他提出了解线性方程组的新方法,运用了比率算法的思想。⑤重差术在白撰《海岛算经》中,他提出了重差术,采用了重表、连索和累矩等测高测远方法。他还运用“类推衍化”的方法,使重差术由两次测望,发展为“三望”、“四望”。而印度在7世纪,欧洲在15~16世纪才开始研究两次测望的问题。贡献和地位刘徽的工作,不仅对中国古代数学发展产生了深远影响,而且在世界数学吏上也确立了崇高的历史地位。鉴于刘徽的巨大贡献,所以不少书上把他称作“中国数学史上的牛顿”。费马费马(1601~1665)Fermat,Pierre de费马是法国数学家,1601年8月17日出生于法国南部图卢兹附近的博蒙·德·洛马涅。他的父亲多米尼加国·费马在当地开了一家大皮革商店,拥有相当丰厚的产业,使得费马从小生活在富裕舒适的环境中。费马的父亲由于富有和经营有道,颇受人们尊敬,并因此获得了地方事务顾问的头衔,但费马小的时候并没有因为家境的富裕而产生多少优越感。费马的母亲名叫克拉莱·德·罗格,出身穿袍贵族。多米尼加国的大富与罗格的大贵族构筑了费马极富贵的身价。费马小时候受教于他的叔叔皮埃尔,受到了良好的启蒙教育,培养了他广泛的兴趣和爱好,对他的性格也产生了重要的影响。直到14岁时,费马才进入博蒙·德·洛马涅公学,毕业后先后在奥尔良大学和图卢兹大学学习法律。17世纪的法国,男子最讲究的职业是当律师,因此,男子学习法律成为时髦,也使人敬羡。有趣的是,法国为那些有产的而缺少资历的“准律师”尽快成为律师创造了很好的条件。1523年,佛朗期瓦一世组织成立了一个专门鬻卖官爵的机关,公开出售官职。这种官职鬻卖的社会现象一经产生,便应时代的需要而一发不可收拾,且弥留今日。鬻卖官职,一方面迎合了那些富有者,使其获得官位从而提高社会地位,另一方面也使政府的财政状况得以好转。因此到了17世纪,除宫廷官和军官以外的任何官职都可以买卖了。直到今日,法院的书记官、公证人、传达人等职务,仍没有完全摆脱买卖性质。法国的买官特产,使许多中产阶级从中受惠,费马也不例外。费马尚没有大学毕业,便在博蒙·德·洛马涅买好了“律师”和“参议员”的职位。等到费马毕业返回家乡以后,他便很容易地当上了图卢兹议会的议员,时值 1631年。尽管费马从步入社会直到去世都没有失去官职,而且逐年得到提升,但是据记载,费马并没有什么政绩,应付官场的能力也极普通,更谈不上什么领导才能。不过,费马并未因此而中断升迁。在费马任了七年地方议会议员之后,升任了调查参议员,这个官职有权对行政当局进行调查和提出质疑。1642年,有一位权威人士叫勃里斯亚斯,他是最高法院顾问。勃里斯亚斯推荐费马进入了最高刑事法庭和法国大理院主要法庭,这使得费马以后得到了更好的升迁机会。1646年,费马升任议会首席发言人,以后还当过天主教联盟的主席等职。费马的官场生涯没有什么突出政绩值得称道,不过费马从不利用职权向人们勒索、从不受贿、为人敦厚、公开廉明,赢得了人们的信任和称赞。费马的婚姻使费马跻身于穿袍贵族的行列,费马娶了他的舅表妹露伊丝·德·罗格。原本就为母亲的贵族血统而感骄傲的费马,如今干脆在自己的姓名上加上了贵族姓氏的标志“de”。费马生有三女二男,除了大女儿克拉莱出嫁之外,四个子女都使费马感到体面。两个女儿当上了牧师,次子当上了菲玛雷斯的副主教。尤其是长子克莱曼特 ·萨摩尔,他不仅继承了费马的公职,在1665年当上了律师,而且还整理了费马的数学论着。如果不是费马长子积极出版费马的数学论着,很难说费马能对数学产生如此重大的影响,因为大部分论文都是在费马死后,由其长子负责发表的。从这个意义上说,萨摩尔也称得上是费马事业上的继承人。对费马来说,真正的事业是学术,尤其是数学。费马通晓法语、意大利语、西班牙语、拉丁语和希腊语,而且还颇有研究。语言方面的博学给费马的数学研究提供了语言工具和便利,使他有能力学习和了解阿拉伯和意大利的代数以及古希腊的数学。正是这些,可能为费马在数学上的造诣莫定了良好基础。在数学上,费马不仅可以在数学王国里自由驰骋,而且还可以站在数学天地之外鸟瞰数学。这也不能绝对归于他的数学天赋,与他的博学多才多少也是有关系的。费马生性内向,谦抑好静,不善推销自己,不善展示自我。因此他生前极少发表自己的论着,连一部完整的着作也没有出版。他发表的一些文章,也总是隐姓埋名。《数学论集》还是费马去世后由其长子将其笔记、批注及书信整理成书而出版的。我们现在早就认识到时间性对于科学的重要,即使在l7世纪,这个问题也是突出的。费马的数学研究成果不及时发表,得不到传播和发展,并不完全是个人的名誉损失,而是影响了那个时代数学前进的步伐。费马一生身体健康,只是在1652年的瘟疫中险些丧命。1665年元旦一过,费马开始感到身体有变,因此于1月l0日停职。第三天,费马去世。费马被安葬在卡斯特雷斯公墓,后来改葬在图卢兹的家族墓地中。费马一生从未受过专门的数学教育,数学研究也不过是业余之爱好。然而,在17世纪的法国还找不到哪位数学家可以与之匹敌:他是解析几何的发明者之一;对于微积分诞生的贡献仅次于牛顿、莱布尼茨,概率论的主要创始人,以及独承17世纪数论天地的人。此外,费马对物理学也有重要贡献。一代数学大才费马堪称是17世纪法国最伟大的数学家。17世纪伊始,就预示了一个颇为壮观的数学前景。而事实上,这个世纪也正是数学史上一个辉煌的时代。几何学首先成了这一时代最引入注目的引玉之明珠,由于几何学的新方法—代数方法在几何学上的应用,直接导致了解析几何的诞生;射影几何作为一种崭新的方法开辟了新的领域;由古代的求积问题导致的极微分割方法引入几何学,使几何学产生了新的研究方向,并最终促进了微积分的发明。几何学的重新崛起是与一代勤于思考、富于创造的数学家是分不开的,费马就是其中的一位。对解析几何的贡献费马独立于笛卡儿发现了解析几何的基本原理。1629年以前,费马便着手重写公元前三世纪古希腊几何学家阿波罗尼奥斯失传的《平面轨迹》一书。他用代数方法对阿波罗尼奥斯关于轨迹的一些失传的证明作了补充,对古希腊几何学,尤其是阿波罗尼奥斯圆锥曲线论进行了总结和整理,对曲线作了一般研究。并于1630年用拉丁文撰写了仅有八页的论文《平面与立体轨迹引论》。费马于1636年与当时的大数学家梅森、罗贝瓦尔开始通信,对自己的数学工作略有言及。但是《平面与立体轨迹引论》的出版是在费马去世14年以后的事,因而1679年以前,很少有人了解到费马的工作,而现在看来,费马的工作却是开创性的。《平面与立体轨迹引论》》中道出了费马的发现。他指出:“两个未知量决定的—个方程式,对应着一条轨迹,可以描绘出一条直线或曲线。”费马的发现比笛卡尔发现解析几何的基本原理还早七年。费马在书中还对一般直线和圆的方程、以及关于双曲线、椭圆、抛物线进行了讨论。笛卡儿是从一个轨迹来寻找它的方程的,而费马则是从方程出发来研究轨迹的,这正是解析几何基本原则的两个相反的方面。在1643年的一封信里,费马也谈到了他的解析几何思想。他谈到了柱面、椭圆抛物面、双叶双曲面和椭球面,指出:含有三个未知量的方程表示一个曲面,并对此做了进一步地研究。对微积分的贡献16、17世纪,微积分是继解析几何之后的最璀璨的明珠。人所共知,牛顿和莱布尼茨是微积分的缔造者,并且在其之前,至少有数十位科学家为微积分的发明做了奠基性的工作。但在诸多先驱者当中,费马仍然值得一提,主要原因是他为微积分概念的引出提供了与现代形式最接近的启示,以致于在微积分领域,在牛顿和莱布尼茨之后再加上费马作为创立者,也会得到数学界的认可。曲线的切线问题和函数的极大、极小值问题是微积分的起源之一。这项工作较为古老,最早可追溯到古希腊时期。阿基米德为求出一条曲线所包任意图形的面积,曾借助于穷竭法。由于穷竭法繁琐笨拙,后来渐渐被人遗忘、直到16世纪才又被重视。由于开普勒在探索行星运动规律时,遇到了如何确定椭圆形面积和椭圆弧长的问题,无穷大和无穷小的概念被引入并代替了繁琐的穷竭法。尽管这种方法并不完善,但却为自卡瓦列里到费马以来的数学家开辟厂一个十分广阔的思考空间。费马建立了求切线、求极大值和极小值以及定积分方法,对微积分做出了重大贡献。对概率论的贡献早在古希腊时期,偶然性与必然性及其关系问题便引起了众多哲学家的兴趣与争论,但是对其有数学的描述和处理却是15世纪以后的事。l6世纪早期,意大利出现了卡尔达诺等数学家研究骰子中的博弈机会,在博弈的点中探求赌金的划分问题。到了17世纪,法国的帕斯卡和费马研究了意大利的帕乔里的着作《摘要》,建立了通信联系,从而建立了概率学的基础。费马考虑到四次赌博可能的结局有2×2×2×2=16种,除了一种结局即四次赌博都让对手赢以外,其余情况都是第一个赌徒获胜。费马此时还没有使用概率一词,但他却得出了使第一个赌徒赢得概率是15/16,即有利情形数与所有可能情形数的比。这个条件在组合问题中一般均能满足,例如纸牌游戏,掷银子和从罐子里模球。其实,这项研究为概率的数学模型一概率空间的抽象奠定了博弈基础,尽管这种总结是到了1933年才由柯尔莫戈罗夫作出的。费马和帕斯卡在相互通信以及着作中建立了概率论的基本原则——数学期望的概念。这是从点的数学问题开始的:在一个被假定有同等技巧的博弈者之间,在一个中断的博弈中,如何确定赌金的划分,已知两个博弈者在中断时的得分及在博弈中获胜所需要的分数。费马这样做出了讨论:一个博弈者A需要4分获胜,博弈者B需要3分获胜的情况,这是费马对此种特殊情况的解。因为显然最多四次就能决定胜负。一般概率空间的概念,是人们对于概念的直观想法的彻底公理化。从纯数学观点看,有限概率空间似乎显得平淡无奇。但一旦引入了随机变量和数学期望时,它们就成为神奇的世界了。费马的贡献便在于此。对数论的贡献17世纪初,欧洲流传着公元三世纪古希腊数学家丢番图所写的《算术》一书。l621年费马在巴黎买到此书,他利用业余时间对书中的不定方程进行了深入研究。费马将不定方程的研究限制在整数范围内,从而开始了数论这门数学分支。费马在数论领域中的成果是巨大的,其中主要有:(1)全部素数可分为4n+1和4n+3两种形式。(2)形如4n+1的素数能够,而且只能够以一种方式表为两个平方数之和。(3)没有一个形如4n+3的素数,能表示为两个平方数之和。(4)形如4n+1的素数能够且只能够作为一个直角边为整数的直角三角形的斜边;4n+1的平方是且只能是两个这种直角三角形的斜边;类似地,4n+1的m次方是且只能是m个这种直角三角形的斜边。(5)边长为有理数的直角三角形的面积不可能是一个平方数。(6)4n+1形的素数与它的平方都只能以一种方式表达为两个平方数之和;它的3次和4次方都只能以两种表达为两个平方数之和;5次和6次方都只能以3种方式表达为两个平方数之和,以此类推,直至无穷。对光学的贡献费马在光学中突出的贡献是提出最小作用原理,也叫最短时间作用原理。这个原理的提出源远流长。早在古希腊时期,欧几里得就提出了光的直线传播定律相反射定律。后由海伦揭示了这两个定律的理论实质——光线取最短路径。经过若干年后,这个定律逐渐被扩展成自然法则,并进而成为一种哲学观念。—个更为一般的“大自然以最短捷的可能途径行动”的结论最终得出来,并影响了费马。费马的高明之处则在于变这种的哲学的观念为科学理论。费马同时讨论了光在逐点变化的介质中行径时,其路径取极小的曲线的情形。并用最小作用原理解释了一些问题。这给许多数学家以很大的鼓舞。尤其是欧拉,竞用变分法技巧把这个原理用于求函数的极值。这直接导致了拉格朗日的成就,给出了最小作用原理的具体形式:对一个质点而言,其质量、速度和两个固定点之间的距离的乘积之积分是一个极大值和极小值;即对该质点所取的实际路径来说,必须是极大或极小。

Ⅹ 矩阵是什么

矩阵是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。

矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。矩阵的运算是数值分析领域的重要问题。

矩阵介绍

矩阵由19世纪英国数学家凯利首先提出。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。无限矩阵发生在行星理论和原子理论中。

无限矩阵的一个简单例子是代表一个函数的泰勒级数的导数算子的矩阵。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。数值分析的主要分支致力于开发矩阵计算的有效算法,这是一个几个世纪以来的课题,是一个不断扩大的研究领域。

元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵。而行数与列数都等于n的矩阵称为n阶矩阵或n阶方阵。矩阵运算在科学计算中非常重要,而矩阵的基本运算包括矩阵的加法,减法,数乘,转置,共轭和共轭转置。

阅读全文

与阵谜数学家第一阵是什么相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:739
乙酸乙酯化学式怎么算 浏览:1404
沈阳初中的数学是什么版本的 浏览:1350
华为手机家人共享如何查看地理位置 浏览:1042
一氧化碳还原氧化铝化学方程式怎么配平 浏览:884
数学c什么意思是什么意思是什么 浏览:1408
中考初中地理如何补 浏览:1299
360浏览器历史在哪里下载迅雷下载 浏览:701
数学奥数卡怎么办 浏览:1387
如何回答地理是什么 浏览:1023
win7如何删除电脑文件浏览历史 浏览:1055
大学物理实验干什么用的到 浏览:1484
二年级上册数学框框怎么填 浏览:1699
西安瑞禧生物科技有限公司怎么样 浏览:973
武大的分析化学怎么样 浏览:1248
ige电化学发光偏高怎么办 浏览:1337
学而思初中英语和语文怎么样 浏览:1650
下列哪个水飞蓟素化学结构 浏览:1423
化学理学哪些专业好 浏览:1486
数学中的棱的意思是什么 浏览:1057