Ⅰ 数学是什么
数学是什么?
“数学不仅是一种方法、一门艺术或一种语言,数学更主要的是一门有着丰富内容的知识体系,其内容对自然科学家、社会科学家、哲学家、逻辑学家和艺术家十分有用,同时影响着政治家和神学家的学说;满足了人类探索宇宙的好奇心和对美妙音乐的冥想;有时甚至可能以难以察觉到的方式但无可置疑地影响着现代历史的进程。”“实际上,在现代经验科学中,能否接受数学方法已越来越成为该学科成功与否的主要判别标准。”
在《中国大网络全书·数学卷》中对数学的定义是:“数学是研究现实世界中数量关系和空间形式的,简单地说,是研究数和形的科学。”(吴文俊)这一权威的论断,脱胎于马克思和恩格斯关于数学的概括。恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实世界的空间形式和数量关系”。根据恩格斯的观点,较确切的说法就是:数学——研究现实世界的数量关系和空间形式的科学。
数学,是一个多元化综合的产物。如果要用几句话给“数学是什么”作一个恰当的回答,决非是一件易事,关键是看问题的角度。对“数学”的认识,我们应当从一元论走向多元论。美国数学家柯朗在他的《数学是什么》的书中说道:“…对于学者,对于普通人来说,更多的是依靠自身的数学经验,而不是哲学,才能回答这个问题:数学是什么?”
希望对您有帮助。
Ⅱ 数学的本质是什么
网上资料:
1.“数学是研究现实世界的空间形式和数量关系的科学”
众所周知,关于数学的这个定义是恩格斯提出来的。事实上,恩格斯的这个定义,很多年以来,就是国内和国际数学界与哲学界公认的最权威的定义,最新版(2005年版)的《现代汉语词典》仍然是这样来定义数学的——“研究现实世界的空间形式和数量关系的学科”。20世纪以来,新的数学分支不断产生,纯数学越来越抽象,它与现实世界之间的距离似乎越来越远;同时,应用数学在现实世界中的涉及面空前广泛且越来越广泛,数学的研究对象似乎不仅仅是空间形式与数量关系;而且,有不少研究者从自己的认识出发,提出了关于数学的多种定义。于是乎,近些年有人就认为恩格斯给数学所下的定义过时了或“远远不够了”。这样的认识是片面的,因为事实并非如此。匡继昌先生深刻分析了“数学是什么”,认为“数学的定义应该反映数学研究的对象及其本质属性”,“只有从唯物辩证法的哲学高度,才能认清现实世界的数量关系和空间形式不是固定不变的,而是其内涵不断加深,外延不断拓广的”,所以,“恩格斯关于‘数学是什么’的论断并未过时”。
2.数学是系统化了的常识
这是国际着名数学家和数学教育家弗赖登塔尔的观点。他认为数学的根源是普通常识,作为常识的数学,随着语言从说话到阅读和写作的不断进步与发展,也不断地进步与发展着。如数概念的获得,主要是由口头语言中相应的数词来支持的(如从一个人、一支笔、……,得到“1”),在这个过程中,首先是数学思想的语言表达。
普通常识是有等级的,普通常识由经验上升成规律后,这些规律再次成为普通常识,即较高层次的常识。弗赖登塔尔曾经说过:“为了真正的数学及其进步,普通的常识必须要系统化和组织化。如同以前一样,普通常识的经验被结合成为规律(比如加法的交换律),并且这些规律再次成为普通的常识,即较高层次的常识。作为更高层次数学的基础——一个巨大的等级体系,是由于非凡的相互影响的力量来建立的。”
3.数学是人为规定的一套语言、符号系统
这是部分数学史家们的看法。持这种观点的人虽然不多,但很有代表性,它给了我们认识“数学是什么”的一个新角度。翻开一部数学史,除了早期的数学与生活有着非常高的关联度,还需借助现实的生活事实去解释外,后来的数学就越来越关注自己的“语言、符号”了。这种现象最早可追溯到欧几里得的《几何原本》,到了现代,数学的这种特性表现得更加充分。
当然,数学作为人为规定的一套语言、符号系统,必须要有一定的条件。通俗点讲,就是这套语言、符号系统必须能自圆其说,高雅点讲,这套系统必须是完备的。举例来说,如果你规定1+1=3,在此基础上去构造一套语言、符号系统,并且能自圆其说,也许一个新的数学分支就诞生了。数学史上不乏这样的先例。如伽罗瓦的群论,康托尔的集合论等等,当初他们出现在数学家们的眼前时,并不为大家所认可。但事实证明,这些是数学,而且是非常重要的数学。由于康托尔的集合论在自圆其说方面有一点小小的问题,从而导致了历史上的一次严重的数学危机。随着这一危机的解决,集合论变得更加完备,数学的基础变得更加稳固。集合论的创立是数学史上的一个巨大成就,以至于今天的小学数学教学中,都必须渗透集合论的思想,从而提高学生的数学认知能力。
4.数学是确定无疑的绝对真理
这是一些数学家和数学哲学家们的观点。对于他们而言,任何知识都可能出错,唯独只有数学是不会出错的,是可*知识的唯一代表。在他们看来,演绎法为数学知识是绝对真理提供了保证。首先,数学证明中的基本陈述视其为真,数学公理假定为真,数学定义令其为真,逻辑公理认其为真。其次,逻辑推理规则保持真理性即只承认由真理推导出来真理。以上述两个事实为基础,可知演绎证明中的每个陈述包括它的结论都为真。于是,“由于数学定理都是由演绎证明所确定,因此它们都是可*真理。这就形成了许多哲学家所断言的数学真理就是可*真理的基础”。(欧内斯特语)
在这种观点之下,如果数学出现了矛盾或问题,那不是数学本身的错,而是人们的认识还未到达相应的境界,数学家和哲学家们会想办法去解决这些矛盾和问题,解决矛盾和问题的过程本身又促进了数学的发展。如π的出现,对于古希腊的数学家们来说,犹如晴天劈雳,难以接受,故而将其称为“无理数”。然而,正是为了使“无理”变得“有理”,数概念的范围从有理数扩展到了实数,促进了数学的发展。后来为了解决函数论和集合论中的一些矛盾,数学哲学也得到了较大发展,形成了逻辑主义、形式主义和构造主义(包括直觉主义)三大学派。
5.数学是可误的且可纠正的
这是部分数学哲学家们的观点,他们反对数学是绝对真理的主要理由是绝对观可归结为“假设——演绎”方法,数学真理和证明依据演绎和逻辑,但逻辑本身缺乏可*基础,它还要依据不可简约的假设。“但任何没有坚实基础的假设,不管它是从直觉、约定、意义或以其他任何方式所导出的,都是可误的。”(林夏水语)因此,他们认为数学是可纠正的且永远要接受更正。
Ⅲ 什么叫数学
数学(mathematics或maths,来自希腊语,“máthēma”;经常被缩写为“math”),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。数学家和哲学家对数学的确切范围和定义有一系列的看法。
而在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。
(3)什么是真正数学扩展阅读:
一、数学空间
空间的研究源自于欧式几何.三角学则结合了空间及数,且包含有非常着名的勾股定理、三角函数等。现今对空间的研究更推广到了更高维的几何、非欧几何及拓扑学。
数和空间在解析几何、微分几何和代数几何中都有着很重要的角色。在微分几何中有着纤维丛及流形上的计算等概念。
在代数几何中有着如多项式方程的解集等几何对象的描述,结合了数和空间的概念;亦有着拓扑群的研究,结合了结构与空间。李群被用来研究空间、结构及变化。
二、数学标点
数学是一门国际性的学科,对各个方面都要求严谨。
我国规定初等及以上的数学已可以算作是科技类文献。
我国规定文献类文章句号必须用“.”,数学采用的目的一是为此,二是为了避免和下脚标混淆,三是因为我国曾在国际上投稿数学类研究报告,人家却不采用,因为外国的句号大多不是“。”.
在证明题中,∵(因为)后面要用“,”,∴(所以)后面要用“.”,在一道大题中若有若干小问,则每小问结束接“;”,最后一问结束用“.”,在①②③④这样的序号后都应用“;”表连接,最后一个序号后用“.”表结束.
Ⅳ 数学的本质是什么 4个数学的本质
1、对基本数学概念的理解。所谓“对基本数学概念的理解”是指了解为什么要学习这一概念,这一概念的现实原型是什么,这一概念特有的数学内涵、数学符号是什么,以这一概念为基础是否能构建“概念网络图”。
2、对数学思想方法的把握。基本数学概念的背后往往蕴含重要的数学思想方法。
3、对数学美的鉴赏。能否领悟和欣赏数学美是一个人数学素养的基本成分,能够领悟和欣赏数学美也是进行数学研究和数学学习的重要动力和方法。能够把握数学美的本质有助于培养学生对代数学以及数学学习的态度,进而影响数学学习的进程和学习成绩。
4、对数学精神的追求。可以说,数学的理性精神与数学的探究精神是支撑数学家研究数学进而研究世界的动力,也是学生学习数学研究世界最原始、最永恒最有效的动力。
Ⅳ 数学真正的含义是什么
到了16世纪,算术、初等代数、以及三角学等初等数学已大体完备。17世纪变量概念的产生使所有的人们开始研究变化中的量与量的互相关系和图形间的互相变换。在研究经典力学的过程中,微积分的方法被发明。随着奇普,印加帝国时所使用的计数工具。数学,起源于人类早期的生产活动,为中国古代六艺之一,亦被古希腊学者视为哲学之起点。数学的希腊语μαθηματικ�0�2�0�9(mathematikós)意思是“学问的基础”,源于μ�0�4θημα(máthema)(“科学,知识,学问”)。
数学的演进大约可以看成是抽象化的持续发展,或是题材的延展。第一个被抽象化的概念大概是数字,其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破。 除了认知到如何去数实际物质的数量,史前的人类亦了解了如何去数抽象物质的数量,如时间-日、季节和年。算术(加减乘除)也自然而然地产生了。古代的石碑亦证实了当时已有几何的知识。
更进一步则需要写作或其他可记录数字的系统,如符木或于印加帝国内用来储存数据的奇普。历史上曾有过许多且分歧的记数系统。
从历史时代的一开始,数学内的主要原理是为了做税务和贸易等相关计算,为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的。这些需要可以简单地被概括为数学对数量、结构、空间及时间自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等也开始慢慢发展。
数学从古至今便一直不断地延展,且与科学有丰富的相互作用,并使两者都得到好处。数学在历史上有着许多的发现,并且直至今日都还不断地发现中。依据Mikhail B. Sevryuk于美国数学会通报2006年1月的期刊中所说,“存在于数学评论数据库中论文和书籍的数量自1940年(数学评论的创刊年份)现已超过了一百九十万份,而且每年还增加超过七万五千份的细目。此一学海的绝大部份为新的数学定理及其证明。”
Ⅵ 数学是什么什么是数学
数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。数学家和哲学家对数学的确切范围和定义有一系列的看法。
数学定义的三个主要类型被称为逻辑学家,直觉主义者和形式主义者,每个都反映了不同的哲学思想学派。都有严重的问题,没有人普遍接受。
西方数学简史
数学的演进大约可以看成是抽象化的持续发展,或是题材的延展。而东西方文化也采用了不同的角度,欧洲文明发展出来几何学,而中国则发展出算术。
第一个被抽象化的概念大概是数字(中国的算筹),其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破。除了认知到如何去数实际物件的数量,史前的人类亦了解如何去数抽象概念的数量,如时间—日、季节和年。
算术(加减乘除)也自然而然地产生了。更进一步则需要写作或其他可记录数字的系统,如符木或于印加人使用的奇普。历史上曾有过许多各异的记数系统。
古时,数学内的主要原理是为了研究天文,土地粮食作物的合理分配,税务和贸易等相关的计算。数学也就是为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的。这些需要可以简单地被概括为数学对数量、结构、空间及时间方面的研究。
西欧从古希腊到16世纪经过文艺复兴时代,初等代数、以及三角学等初等数学已大体完备。但尚未出现极限的概念。
17世纪在欧洲变量概念的产生,使人们开始研究变化中的量与量的互相关系和图形间的互相变换。在经典力学的建立过程中,结合了几何精密思想的微积分的方法被发明。随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等领域也开始慢慢发。
Ⅶ 数学到底是什么
学了那么多年数学,但是问你什么是数学,你能回答得出来吗?
我估计绝大多数人都回答不了这个问题,这其实也印证了一个哲学观点——越简单的问题越难回答。
数学本身是一个历史的概念,数学的内涵是随着时代的变化而变化的,所以要想给数学下定义就得从历史的角度来谈谈“什么是数学”这个问题。
现在我按照从古到今的顺序罗列出人们对数学的定义:
1. 数学是量的科学
2. 数学是研究现实世界的空间形式与数量关系的科学
3. 现代数学就是各种量之间的可能的,一般说是各种变化着的量的关系和相互联系的数学
4. 【数学】这个领域已被称作模式的科学,其目的是要揭示人们从自然界和数学本身的抽象世界中所观察到的结构和对称性
这里罗列出的是最具影响力的一些定义,大多数人都将数学的定义在第2点上面,但是当今数学界大多数数学家们更认同与接受最后一个定义,因为它具有高度的概括性。
“任何学科都有其基本结构,任何与该学科有联系的事实、论据、观念、概念等都可以不断地纳入一个处于不断统一的结构之内。”这是教育学家布鲁纳的“学科基本结构理论”。打个比方:假如学科是一股泉水,那么它的基本结构就是泉源,泉水都是来源于泉源的,只有找到源头,我们才能真正了解这股泉水。那么对于数学来说,它的“泉源”是什么呢?
要找数学的“源头”那就得知道欧几里得的《原本》,这是被人们称作“数学的圣经”的书,是当时整个希腊数学成果、方法、思想和精神的结晶,其内容和形式对几何学本身和数学逻辑的发展有着巨大的影响。
欧几里得在这本原着中用公理法对当时的数学知识作了系统化、理论化的总结。全书共分13卷,包括5条公理、5条公设、119个定义和465条命题,构成了历史上第一个数学公理体系。
《原本》中的最基本的定义有:
1. 点是没有部分的
2. 线是没有宽度的长
3. 面是只有长度和宽度的
4. 圆是由一条曲线包围的平面图形,从其内一点出发落在曲线上,所有线段彼此相等
……
《原本》中的5条公设:
1. 假定从任意一点到任意一点可作一条直线
2. 一条有限直线可不断延长
3. 以任意中心和直径可以画圆
4. 凡直角都彼此相等
5. 若一直线落在两直线上所构成的同旁内角和小于两直角,那么把两直线无限延长,它们将在同旁内角和小于两直角的一侧相交
《原本》中的5条公理:
1. 等于同量的量彼此相等
2. 等量加等量,和相等
3. 等量减等量,差相等
4. 彼此重合的图形是全等的
5. 整体大于部分
这里解释一下公理和公设的区别:公理是在任何数学学科里都适用的不需要证明的基本原理。公设则是几何学里的不需要证明的基本原理,就是现代几何学里的公理。
欧几里得以这些基本定义、公设和公理作为全书推理的出发点,这成为了数学最基本的出发点,也就是我们说的数学的“源头”,这也正是数学的魅力所在!
Ⅷ 什么是数学,数学的概念
数学是研究空间形式和数量关系的科学,是刻画自然规律和社会规律的科学语言和有效工具。数学科学是自然科学、技术科学等科学的基础,并在经济科学、社会科学、人文科学的发展中发挥越来越大的作用。数学的应用越来越广泛,正在不断地渗透到社会生活的方方面面,它与计算机技术的结合在许多方面直接为社会创造价值,推动着社会生产力的发展。数学在形成人类理性思维和促进个人智力发展的过程中发挥着独特的、不可替代的作用。数学是人类文化的重要组成部分,数学素质是公民所必须具备的一种基本素质。
-------选自<普通高中数学新课程标准>