‘壹’ 如何写数学论文
我从结构上来和你一步步说:
1、标题:起名字这事情要简单扼要地说明你论文的核心目的
2、摘要:将你的数学理论体系做个简单的说明,以及写这篇论文的目的和价值。
3、关键词:论文里出现的频率最多的专业名词
4、核心概念或区分:如果在你的论文里即将用到属于你自己创造的概念性名词,或者应用之前理论中曾用过的名词但内涵不同的时候,在这里进行解释和区分以便可以方便阅读
5、正文
正文中需要包含几个部分
a、假设的提出:什么环境下,或者在什么样的数学应用中出现了障碍,需要创建新的理论体系,或者在什么情况下应用数学的空间有机会拓展。换句话说,论文不会凭空飞出来,一定是什么东西刺激到了你研究和发现的激情。这部分非常重要,是在论文主体开始之前决定于你的读者是否能够产生兴趣并有足够耐心读完的关键。
b、理论论证:这部分不说了,你知道的,科学的发展都是先假设后论证的顺序。
c、应用价值:你提出的并加以论证假设具体在支持理论数学体系的发展,或者在应用数学领域里可以创造和解决实际问题的价值在哪里。这部分是落地的部分,一定要写漂亮了。
6、参考资料~~~不说了。
‘贰’ 数学论文写什么
论文格式
1、论文题目:要求准确、简练、醒目、新颖.
2、目录:目录是论文中主要段落的简表.(短篇论文不必列目录)
3、提要:是文章主要内容的摘录,要求短、精、完整.字数少可几十字,多不超过三百字为宜.
4、关键词或主题词:关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇.关键词是用作机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索.每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方.
主题词是经过规范化的词,在确定主题词时,要对论文进行主题,依照标引和组配规则转换成主题词表中的规范词语.
5、论文正文:
(1)引言:引言又称前言、序言和导言,用在论文的开头.引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围.引言要短小精悍、紧扣主题.
〈2)论文正文:正文是论文的主体,正文应包括论点、论据、论证过程和结论.主体部分包括以下内容:
a.提出-论点;
b.分析问题-论据和论证;
c.解决问题-论证与步骤;
d.结论.
6、一篇论文的参考文献是将论文在和写作中可参考或引证的主要文献资料,列于论文的末尾.参考文献应另起一页,标注方式按《GB7714-87文后参考文献着录规则》进行.
中文:标题--作者--出版物信息(版地、版者、版期):作者--标题--出版物信息所列参考文献的要求是:
(1)所列参考文献应是正式出版物,以便读者考证.
(2)所列举的参考文献要标明序号、着作或文章的标题、作者、出版物信息.
‘叁’ 数学论文如何写
科学选择题目
写作小论文的第一步,就是要确定研究的对象,考虑研究什么问题,这就是选题。有人说,选择好题目就等于完成小论文的一半,可见小论文选题的重要性。
选择题目要注意“实用性”、“可行性”、“创造性”和“趣味性”。
“实用性”就是选择的课题要在生产、生活或科学上有一定的实用价值,即研究成果有可能进行移植应用,为人类服务,对人们的生产生活等有一定的实际意义。
“可行性”就是要从实际出发,也就是要根据自己平时对某种问题或现象的观察、研究,选择研究范围和研究深度适合自己水平、条件的题目,是经过努力可以达到的目标。选题宜“小”,切忌“大”而“全”。避免面面俱到,泛泛而谈,这样有利于深入到问题的实质。
“创造性”就是选择的课题要新颖,有新的设想,主要观点要有自己新的发现、独特的见解。在研究的方法上有所创新,不要简单地重复别人已经做过的实验。这样有利于写出自己的新发现、新认识、新成果。
“趣味性”是指结合自己的特长,选择感兴趣的题目,这样有利于最大限度地发挥主观能动性,干自己想干、愿意干的事,往往会取得事半功倍的效果。
总之,在学习、生活中,要时刻注意观察身边的各种现象,及时发现新的有价值的问题,努力寻求解决问题的方法,进行创造性的思考和研究。选好选准题目,是做好研究和写出高质量小论文的保证。
‘肆’ 如何写数学论文
(1) 写什么
写小论文的关键,首先就是选题,大家的选题要从自己最熟悉的、最想写的内容入手。
下面我结合我校同学部分获奖论文的选题,进行一点简单的选题分析。
论文按内容分类,大概有以下几种:
①勤于实践,学以致用,对实际问题建立数学模型,再利用模型对问题进行分析、预测;
如:探究大桥的热胀冷缩度
②对生活中普遍存在而又扰人心烦的小事,提出了巧妙的数学方法来解决它;
如: 一台饮水机创造的意想不到的实惠
③对数学问题本身进行研究,探索规律,得出了解决问题的一般方法
如: 分式“家族”中的亲缘探究
如: 纸飞机里的数学
④对自己数学学习的某个章节、或某个内容的体会与反思
如: “没有条件”的推理
如: 小议“黄金分割”
如: 奇妙的正五角星
(2) 怎样写
① 课题要小而集中,要有针对性;
② 见解要真实、独特,有感而发,富有新意;
③ 要用自己的语言表述自己要表达的内容
想要写好数学小论文就按上面的做
‘伍’ 数学论文怎么写
数学知识有高度抽象性的特点,这种抽象性体现在高中数学课本的所有数学知识领域中。比如高中数学课本中讨论的立体几何知识,它的抽象性体现在以下几个方面:对象的抽象性,对象的抽象性是指它讨论的对象不是一件具体的事物,而是一个抽象的概念,如它讨论的正方体,不是指哪一件正方体的事物,而是指一切正方体的事物。问题的抽象性,如它讨论直线与立体的关系,通常不是将具体的现象放到人们面前的,它需要人们自己去想象,在解决几何问题的时候,人们还需要通过自己的想象力去添加辅助线、延长线等。方法的抽象性,方法的抽象性体现在人们要研究一个事物时,有时不会使用具象化的方法讨论,而用抽象性的方式去讨论,如人们讨论角的问题时,有时不再用几何的方法去讨论,而是用函数的方法去讨论。数学知识的抽象性在高中数学中体现得尤其明显,高中数学教师要让学生学好数学知识,就要培养学生用抽象性的思维去思考数学问题。比如,在教师引导学生学习《圆与方程》的知识时,可以引导学生思考习题1:如果圆O1与圆O2的半径为1,且O1O2=4,过动点P分别作两圆的切线PM、PN,点M与N均为切线的切点,使PM=槡2 PN,请建立适当的坐标系,并用该坐标系说明动点P的轨迹方程。教师可以通过这一题的图像、坐标、方程说明三者之间的关系,让学生学会用抽象的数学思想讨论数学问题。
‘陆’ 如何写数学论文
数学论文是从事数学研究的数学工作者,为发表自己的数学科研成果而写出的一种论文,它是科学论文的一种。
数学论文与其他科学论文最根本的共同点之一,就是科学内容和科学语言文字形式的统一。它的特殊性体现在结构的格式化、逻辑的严格性、语言的简洁性和符号的广泛性。
1结构的格式化
数学论文的结构形式,与一般的科学论文常用格式没有多少区别,只是在某些具体环节上具有不尽相同的布局,这是根据所取得的科研成果的内容来安排的。在数学前言部分一般应包括提出课题的背景、动机,这是属于那一方面的课题,对已有成果的评价,课题在所属领域中所占的地位、课题的范围和所达到的目标等。
正文部分是数学论文的核心,在写作布局上,由于研究工作所涉及的数学学科、选题、研究方法,结果的表达方式就有一定的差别,因此,就不能作统一的规定。对于纯数学理论方面,该部分内容应包括定理和定理的证明,’用来证明定理的引理和由定理得出的推论,为了证明或验证某一间题所举的例子。对于应用数学方面的问题,该部分内容一般应包括实际问题的描述、数学模型的建立、解决问题的方法及其理论根据和具体实例。
2逻辑的严格性
作为宣布成果的数学论文,应按照逻辑的严格性的要求去写,不然就不成其为数学论文。一篇数学论文要无懈可击,要经得起推敲。在叙述定理的证明时,要追究每一步是否有根据,它的根据是什么,是定义,还是公理和定理,决不能含糊,更不能想当然。当你使用“显然”二字时,要仔细考虑一下,是否真“显然”。用直观自然语言推导的环节,要特别注意,是否还存在没有考虑的情况,是否可换成严格的推理。在这里一定要细心推敲,一些不可弥补的错误往往出现在这里。
按照演绎的逻辑系统写数学论文,这是宣布成果的一个传统写法。这种形式写出的数学论文一环扣一环,结构紧凑,使整篇论文形成一:个严密的逻辑结构,能以较小的篇幅容纳较多的信息量。但这种传统的写法,把数学家的思维过程隐蔽起来。我们写论文宣布成果,这当然很重要,但仅作到这点还不够,还应该给人更多的启迪思维的作用。应该告诉读者,该定理是怎样提出来的,又是怎样想到这个证明的,这就是要把数学家的思维过程写进去。’当然这会增加论文的篇幅。不过我们没有必要每篇论文都写思维过程,只要选择那些典型的具有启发意义的数学成果写出其思维过程。阅读这样的论文,使人能够得到数学发现发明的启示,从而更好地培养人们的数学创造能力。欧拉着作之所以能成为启迪人们智慧的源泉,就在于他把自己的一些不严格的猜想过程也写到着作中去了,这样使读者很容易窥察到欧拉是怎样进行思维的。因此我们写论文要求定理的证明过程一定是严格的,对于定理的提出和证明的某些思路就没有必要一定要求它是按严格逻辑推理得出来的',实际上,这也是不可能的。因此严格和不严格是相对的。
3语言的简洁性名
数学论文要求语言简洁,以恰到好处的语言,准确地表达数学概念、逻辑推理,使之字里行间,增一字则太多,减一字则术少。能以最少的语言表达出最精湛的数学结果,反映出最丰富的数学内容。
在数学推论的过程中,并不是每步都要写出理论根据。数学论文不是教科书,它的对象是给专业工作者看的。因此,推证过程以同行专家能看懂为原则,所以证明步骤不需要写那么详细、允许有较大的跳跃性。特别是那些常见的推理步骤,明显的推理过程,显然的理论根据,可以一笔而过,不需要费笔墨.论文要求以最少的篇幅,容纳最多的信息。对于常用的数学概念和定理在论文中出现不需要作解释,对于数学申新出现的概念租定理要注明出处,以便读者查对,如果出处的论文不宜查对,为了方便读者,可以给出其释义。有些新出现的概念和定理虽然名称一样,但其含义在不同的论文里不尽相同,这样注明出处,使读者不会产生歧义.
数学术语就是在数学科学领域里使用的专门词语,髓着数学科学的发展,人们对数学的认识日益深化,反映数学本质和表达数学内容的新概念不断地涌现出来,用专口的诃语把这些新概念固定下来,就形成了数学术语。这些新概念是否需要以定义的形式给出来,以及用什
么样的词语把它固定下来,这是需要认真考虑的。以定义给出的溉念需要考虑它的作用的重要性以及应用的广泛性。给新概念以合适的词语名称,这需要考虑概念的含义和已有的一些概念的名称之间的关系。在数学发展的历史长河中,每个数学术语二经舜生,就以其精确的固定的含义长久地为人们所使用。有些名称,尽管与其含义不相符,也没有必要去改动。例如,无理数与虚数.
在公理、定义、定理中恰当使用一些文言词语,可以使数学论文更加精炼、简洁、准确。例如在定理中运用“当且仅当”4个字,就把定理中条件和结论的关系表达得一清二楚。在给数学概念下定义和叙述定理时,句型结构严谨规范,比较固定单一。我们在写作时,要很好效法这些已有的规范句型,把常见固定的格式用在自己的写作中,论文就显得干净利落,简洁有力,准确可靠,给人赏心悦目之感。
4符号的广泛性.
一‘在数学论文中广泛地使用数学符号和由符号组成的公式,形成了一套数学语言符号系统,它与自然语言一样承担着贮存和传递数学信息的职能。利用数学符号和公式可简明扼要地反映出准确而深刻的数学知识,能够较集中地表达数学内容,使人看了一目了然,便于记忆,容易演算和进行推理,也便于国际交流·刘如n个数相加简单符号代替,这样可以压缩论文篇幅,行文也显得明了清秀,例如记等式右边的式子在论文中多次出现,这样把它简记成等式右边的符号IR皿就简洁多了。符号用;来表示所要阐述的数学概念和定理,恰当连贯地使用数学符号,可以使一篇论文明自易读,使人得到一种美的享受。每篇论文都要用到大量符号,因此着手写数学论文时,首先要考虑一下符号系统,哪些符号应该用英文大写,哪些用小写,哪些用黑体,哪些用法文花体,又哪些该用希腊字母等等,都要有周全的考虑。这样才能使整个文章协调一致,整齐美观。
使用符号要注意协调性,例如三元线性函数一般表示为ax+b夕+。z或a:二:十a:二:+。:劣:,如果表示为“‘劣:+by:+。x:就显得不协调了。又如果给定的两个集合表示为A,b,那就不好,习惯地表示为A,B。方程就不如把z换成y好,即如下表示
因为是考虑两个变元,通常用二,y表示,这是一种习惯表示法。·数学中一些习惯法在写论文时,最好应予保留。自然语言和数学符号语言联合使用时,要按汉语语言规范,有时虽然有些变态,但并不影响意义的表达,例如二必须大于零,可以表达为必须劣>0。
虽然不合汉语的语序,但这种变态是允许的,这种变态是一种合理的变态。自然语言与数学符号重复也是允许的,例如自然数。,这种重复使得表达清晰、连贯,而不是一种赘余。
‘柒’ 怎么写数学论文
我可以帮你写数学论文。
按研究问题的大小不同可以把毕业论文分为宏观论文和微观论文。凡届国家全局性、带有普遍性并对局部工作有一定指导意义的论文,称为宏观论文。它研究的面比较宽广,具有较大范围的影响。反之,研究局部性、具体问题的论文,是微观论文。它对具体工作有指导意义,影响的面窄一些。
另外还有一种综合型的分类方法,即把毕业论文分为专题型、论辩型、综述型和综合型四大类:
1.专题型论文。这是分析前人研究成果的基础上,以直接论述的形式发表见解,从正面提出某学科中某一学术问题的一种论文。如本书第十二章例文中的《浅析领导者突出工作重点的方法与艺术》一文,从正面论述了突出重点的工作方法的意义、方法和原则,它表明了作者对突出工作重点方法的肯定和理解。
2.论辩型论文。这是针对他人在某学科中某一学术问题的见解,凭借充分的论据,着重揭露其不足或错误之处,通过论辩形式来发表见解的一种论文。如《家庭联产承包责任制改变了农村集体所有制性质吗?》一文,是针对“家庭联产承包责任制改变了农村集体所有制性质”的观点,进行了有理有据的驳斥和分析,以论辩的形式阐发了“家庭联产承包责任制并没有改变农村集体所有制”的观点。另外,针对几种不同意见或社会普遍流行的错误看法,以正面理由加以辩驳的论文,也属于论辩型论文。
3.综述型论文。这是在归纳、总结前人或今人对某学科中某一学术问题已有研究成果的基础上,加以介绍或评论,从而发表自己见解的一种论文。
4.综合型论文。这是一种将综述型和论辩型两种形式有机结合起来写成的一种论文。如《关于中国民族关系史上的几个问题》一文既介绍了研究民族关系史的现状,又提出了几个值得研究的问题。因此,它是一篇综合型的论文。
‘捌’ 数学论文论文选题与论文写作方法
数学论文论文选题与论文写作方法
数学论文选题是怎样的呢?数学论文写作方法又是什么呢?欢迎阅读我整理的数学论文论文选题与论文写作方法,希望能够帮到大家。
0引言
在审阅数学论文过程中发现很多论文内容简单,或是一两个习题证明或是将教材内容,他人论文组合改编,简单重复,更有甚者直接抄袭。很多从事数学教育工作人士认为数学教育论文难写,事实上他们还没有掌握撰写数学论文的规律。
数学论文分两种,一种称为纯数学论文,另一种为数学教学论文。很多从事数学教育工作者很难拥有大量时间从事纯数学研究,而职称聘任制又需要公开发表论文,这样一来很多人将自己工作经验加以总结转而写一些数学教研论文。 数学教研论文是对课程论,教学法,教育思想,教材及教育对象心理加以研究。但无论哪一种数学论文都要遵从论文格式及写作规律。
1撰写数学论文应具有原则
1.1创新性
作为发表研究结果的一种文体,应反映作者本人所提供的新的事实,新的方法,新的见解。论文选题不新颖,实验没有值的报道的成果,即使有高超写作技巧,也不可能妙笔生花,硬写出新东西来。基础性研究最忌低水平重复,如受试对象,处理因素,观测指标,结果与前人雷同,毫无新意,这样论文不值得发表。
1.2科学性
科技论文的生命在于它的科学性。没有科学性论文毫无价值,而且可能把别人引入歧途,造成有害结果。撰写论文应具备:(1)反映事实的真实性;(2)选题材料的客观性;(3)分析判定的合理性;(4)语言表达的准确性。
1.3规范性
规范性是论文在表现形式上的重要特点。科技论文已形成一种相对固定的论文格式,大体上由文题,一般不超过20字;摘要(应用的方法,得到的结果,具有意义等);索引关键词;引言;研究方法,讨论,结果等部分组成。这种规范化的程序是无数科学家经验总结。它的优越性在于:(1)符合认识规律;(2)简洁明快,较少篇幅容纳较多信息;(3)方便读者阅读。
2撰写数学论文忌讳
2.1大题小作
论文不是书,如论文题目选的过大,那么泛论,浅论就在所难免。数学教育论文基本特征:有数学内容,讲数学教育问题,具有论文形态,不贪大,不求空,具有新见解。这样作者应将课题选的小一些,写出特色。
2.2关门写稿
一本学术杂志中的论文,单独拿出来看自然是独立完整的。就杂志的整个体系来看就会有一些联系,它们或是构成一个小专题或是使讨论不断深入。这样作者就要对你准备投稿刊物有所了解,以免无的放矢。不能缺乏事实凭空捏造,夸大结论。首先应该知道别人做了些什么,写了些什么,避免在自己的 论文中重复。同时可以借鉴别人成果,在他人研究成果基础上进一步研究,避免做无用功。
2.3形式思维混乱
科学发展到今天,科技论文的基本格式在世界范围内已趋向统一。论文要求规范化,标准化。有的论文东拼西抄,前后矛盾,这样的论文很难教人读懂。所以撰写论文应遵守形式逻辑基本规律,正确使用逻辑推理方法尤为重要。
3关于数学论文选题
数学论文选题是找“热门”还是“冷门”?“热门”课题从事研究的人员众多,发展迅速。如果作者所在单位基础雄厚,在这个领域占有相当地位,当然要从这一领域深入研究或向相关领域扩展。如果自己在这方面基础差,起步晚又没有找到新的突破,就不宜跟在别人后面搞低水平重复。选择“冷门”,知识的空白处及学科交叉点为研究目标为较好的选择。无论选“冷门”还是“热门”,选题应遵循以下原则:
(1)需要性 选题应从社会需要和科学发展的需要出发。
(2)创新性 选题应是国内外还没有人研究过或是没有充分研究过的问题。
(3)科学性 选题应有最基本的科学事实作依据。
(4)可行性 选题应充分考虑从事研究的主客观条件,研究方案切实可行。
4关于数学论文文风
4.1语言表达确切
从选词,造句,段落,篇章,标点符号都应正确无误。
4.2语言表达清晰简洁
语句通顺,脉络清楚,行文流畅,语言简洁。
4.3语言朴实
语言朴实无华是科技论文本色。对于科学问题阐述无须华丽词藻也不必夸张修饰。总之撰写论文应有感而写,有为而写,有目的而写。借鉴他人成果,博采众长,涉足实践,提炼新意,在你的论文中拿出你的真实感受,不简单重复别人的观点,这样的论文才可能发表,并为广大读者接受。参考文献(略)
知识扩展:数学论文范文
题目:高职数学教学发展研究
摘要:数学作为高等职业院校的基础课程,是高等职业教育课程体系中不可缺少的重要组成部分,但在教学实际中存在不少问题,致使教学效果不佳。本文对高职数学教学中的问题进行了分析,并提出了解决对策。
关键词:高职数学;教学体会
高职数学作为高职院校的基础课程,是高等职业教育课程体系中不可缺少的重要组成部分,但由于高职生源和数学课程本身的特点,使得高职数学的改革始终没有突破性的进展。本文笔者对高职院校学生来源的差异性、专业设置需求、对学生评价方式等问题进行了阐述,并围绕提高教学质量,改善当前教学现状,促进学生发展提出解决对策。
1高职数学教学中的主要问题
1.1学生来源存在差异性,基础水平参差不齐。高职学生来源基本上可以分为两类,一类是来自各县职教中心对口升学班的学生,这类学生走对口升学的路子,学专业技能,考理论知识和实际操作两项,但对理论知识的分数要求很低;另一类是普通高中的学生,但是高考的分数也不高。这两类学生的知识基础不同,以数学为例,职教生源中很多人高中数学没学完,而普高班中的学生已接触了高等数学中的极限和导数等内容,这样不同基础的学生在一起上课,接受能力是不一样的,必然会有很大的差异。
1.2教学方式和内容设置不能满足学生需求。随着高职办学方式的变化,原来一成不变的高等数学的教学方式和内容已不适应当前学生的学习需求了;为了适应市场经济的发展,教师要根据专业的需求来改变高等数学的教学方法,对于本专业能够应用的内容该多讲的要多讲,对于本专业不需要的内容该删的就删掉。在高职教学中校本教研已成为一种需求,学生的基础课知识够用也已成了一个教学的原则,这是提高教学质量的一个措施。
1.3评价体系落后。一般情况下,我们总是习惯以分数来评价学生,对于当前教学上的变化这样的评价方式也有点落后,实际上,高职学生的学习能力体现在两大块,一是理论学习,一是技能操作,因此,在评价体系上要跟上时代的变化,要由过去单一的评价方式变为多样化的评价方式。在高职学生中有很多理论虽然差点、但技能操作过硬的学生。如汽修专业的学生,他们的动手操作是一流的,但理论知识稍差,这并不影响他们毕业后成为一个好技工。
2提高高职数学教学的策略
2.1教学中要突出以“学生为本”、“能力为本”的指导思想。高职院校的教育目标中有一点是以培养技能型的人才为主,基于这种教育理念,在教学中教师要贯彻以学生为中心的指导思想,将教学重点放在学生的技能培养上。因此,学生的管理制度、教师的教学计划等内容要与培养目标相融合,并能突出学生的主体地位,使教学能更好地为学生服务,这也符合当前素质教育的原则,倡导学生在学中做,做中学,体现高职的教学特点。
2.2重视教学内容的设置。在教学内容方面,学校提出了理论够用的`原则,鼓励教师将专业基础知识和专业技能相结合,定期不定期召开教学研讨会,根据专业课需求来讲解知识。以高等数学的教学为例,像在行政管理专业中用到的税收、最大收益、最佳方案等知识,对应高等数学中的与极值有关的问题就要多讲、讲透,而像变力做功、曲率及曲率半径这些是物理专业所必需的,那么在行政管理专业中就不用讲了,这样的内容具有很强的针对性,学生学起来不但轻松,兴趣也更浓。
2.3评价体系多元化。在教学中,教师只有采取多种评价措施才能调动学生学习的积极性。高职院校中专业不同要求也不一样,因此,教师要根据学生的实际情况进行相应的评价,突出专业特色。以计算机专业为例,很多学生上机操作都很熟练,可是理论考试时却有一半不及格,针对这种情况,笔者及时调整了考核方案,在评价学生时以上机操作为主,不再考核学生的理论知识,计算机就是侧重应用,学生的上机操作通过了,就达到教学的目的了。
总的说来,高职数学的教学难度较大,而且很多学生的数学基础差,如果教师单纯地为了教课而教课,不顾学生的实际情况,不采取合适的教学方法,不仅教学质量提不上去,培养出来的学生也不能满足社会的需求。因此,教师要以学生为本,合理开发教材,利用多元化的评价手段来评价学生,以达到激发学生学习兴趣的目的,最终使教学的质量得到提高。
参考文献
[1]刘玉凤.谈高职高等数学教学的体会[J].辽宁教育研究,2000(S1):170.
[2]杨晓春.关于高职高等数学教学的几点思考[J].
;‘玖’ 如何写好数学论文
第一部分:题头
题头含标题、作者,各单独占一至二行。
标题要求直接、具体、醒目、简明扼要,小2号宋体加粗,居中编排;
作者,小4号仿宋体,居中编排;
作者单位,单位名称(学校),省市,邮政编码,5号楷体,居中编排。
第二部分:提要
提要部分含摘要、关键词等。分别以【摘要】、【关键词】(小4号楷体加粗)开头,内文用5号楷体,各空2字格编排。
摘要是论文内容的高度概要,是不加注释和评论的简短陈述,具有独立性和自含性。其内容应说明论文的主要研究内容、研究方法、研究结论等。论文中文摘要一般以3—5行为宜。
关键词3-5个,应能反映全文的主题、主要内容、主要思想、主要观点等,关键词之间以分号隔开,关键词结束不用标点符号。
第三部分:正文
正文是论文的核心内容,含引言与本论。
引言,或称小引,要简要说明论文话题的缘起、价值与意义、研究方法等,直接“引入”本论。本论是主体部分,内容须观点明确、论据充分、论证严密、逻辑清晰、层次分明、语言流畅、结构严谨。
正文应按照内容层次分节,编号,要层次分明,用5号宋体。各种标题要求如下:
1. 一级标题:以阿拉伯数字排序标号,数字后用英文句号“.”,如:1. …。一级标题标号与标题采用3号黑体,单独一行,居左顶格编排。
2. 二级标题:用阿拉伯数字在一级标号后增第二层标号顺序标注,两层标号之间用英文句号“.”分割,第二层标号后不使用任何符号,如:2.3 …。二级标题标号与标题采用小3号黑体,单独一行,居左顶格编排。
3. 三级标题:用阿拉伯数字在二级标号后增第三层标号顺序标注,各层标号之间用英文句号“.”分割,第三层标号后不使用任何符号,如:1.2.4…。三级标题标号与标题采用4号黑体,单独一行,居左顶格编排。
各级标题字数均以不超过1行为限,标题结束处不使用任何标点符号。
4.定义:定义在各一级标题下顺序标号,比如,第1节第二个定义为定义1.2。
5.结论与说明:定理、引理、推论、注记等结论与说明在各一级标题下按顺序统一标号,比如,第2节第3个上述定理、引理、推论或注记,如果是引理则标注为引理2.3,如果是推论则标注为推论2.3。
6.教学案例示例:各种举例在各一级标题下按顺序统一标号,比如,第2节第3个例子应标注为例2.3。定义、定理、引理、推论、注记、示例等均空2格编排,各字头(推论2.3、引理2.3等)为小4号黑体,其后空一字格。其内容采用5号楷体。
7.公式:独立的数学公式要居中排列,在各一级标题下在最右边按顺序标号,并用括号括住,比如,第2节第5个公式标注为(2.5)。多行公式的各行应当按照第一行的第一个等号对齐,各行的开头应该是等号或其它运算符号。