导航:首页 > 数字科学 > 高中数学必修四是什么

高中数学必修四是什么

发布时间:2022-12-06 09:38:53

⑴ 有高中数学必修四吗

必修一侧重于函数,几乎高中所有的函数在必修一中都提到了,必修四学的是简单三角函数,三角函数那公式多,大多数的题都是套公式,非常简单,比必修一好学,那些公式背下来及格都不成问题的

⑵ 怎么学好高中数学必修四

高中数学必修四,主要介绍了三角函数及其相关内容,而三角函数在高考中的地位是举足轻重的。

例如在三角函数图像性质方面,每年必考题占5分,在利用正余弦定理解三角形方面,占大题12分,高考一分落下千人,三角函数方面更是不容忽视!

⑶ 高中数学必修四知识点总结

有很多的高中同学是非常的想知道,数学必修四有哪些知识点的,,我整理了相关信息,希望会对大家有所帮助!

1 高中数学必修四知识点

1 怎样让数学成绩提高

一、课内重视听讲,课后及时复习

接受一种新的数学知识,主要实在课堂上进行的,所以要重视课堂上的数学学习效率,找到适合自己的数学学习方法,上课时要跟住老师的思路,积极思考。下课之后要及时复习,遇到不懂的地方要及时去问,在做作业的时候,先把老师课堂上讲解的内容回想一遍,还要牢牢的掌握公式及推理过程,尽量不要去翻书。尽量自己思考,不要急于翻看答案。还要经常性的总结和复习,把知识点结合起来,变成自己的知识体系。

二、多做题,养成良好的解题习惯

要想学好数学,大量做题是必可避免的,熟练地掌握各种题型,这样才能有效的提高数学成绩。刚开始做题的时候先以书上习题为主,答好基础,然后逐渐增加数学难度,开拓数学思路,练习各种类型的解题思路,对于容易出现错误的题型,应该记录下来,反复加以联系。在做题的时候应该养成良好的解题习惯,集中注意力,这样才能进入最佳的状态,形成习惯,这样在考试的时候才能运用自如。

1 快速提高高中数学成绩的方法

先看笔记后做作业。有的高中学生感到。老师讲过的,自己已经听得明明白白了。但是,为什么自己一做题就困难重重了呢?其原因在于,学生对教师所讲的内容的理解,还没能达到教师所要求的层次。

因此,每天在做作业之前,一定要把课本的有关内容和当天的课堂笔记先看一看。能否坚持如此,常常是好学生与差学生的最大区别。尤其练习题不太配套时,作业中往往没有老师刚刚讲过的题目类型,因此不能对比消化。如果自己又不注意对此落实,天长日久,就会造成极大损失。

必要买适合自己能力做的练习题做一遍(但注意,做题却不要只求速度,做题尽量有条理些,这有助于提高我们的思维,逻辑能力,)而且平时要注意积累,注意归纳,然后,必要的公式,公理要能熟记,还要能运用,如果不能运用,不如不要记.

所以多做题,一定程度能提高我们对公式,公理的理解,记忆.最后,要认真对待每一次考试,因为在考试中,我们可以看出自己的不足,有利于我们提高.学好数学是个漫长的历程,或许没有捷径,唯一的是努力.只要努力,相信你能很快提高你的数学成绩的。

⑷ 高中数学必修4是什么内容

1.1.1 任意角

1.角的有关概念:

①角的定义:

角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.

②角的名称:

③角的分类:

④注意:

⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”;

⑵零角的终边与始边重合,如果α是零角α =0°;

⑶角的概念经过推广后,已包括正角、负角和零角.

2.象限角的概念:

①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角.

1.1.2弧度制(一)

1.定 义

我们规定,长度等于半径的弧所对的圆心角叫做1弧度的角;用弧度来度量角的单位制叫做弧度制.在弧度制下, 1弧度记做1rad.在实际运算中,常常将rad单位省略.

弧度制的性质:

5.常规写法:

① 用弧度数表示角时,常常把弧度数写成多少π 的形式, 不必写成小数.

② 弧度与角度不能混用.

6.特殊角的弧度

弧长等于弧所对应的圆心角(的弧度数)的绝对值与半径的积.

4-1.2.1任意角的三角函数(三)

1. 三角函数的定义

2. 诱导公式

当角的终边上一点的坐标满足时,有三角函数正弦、余弦、正切值的几何表示——三角函数线。

1.有向线段:

坐标轴是规定了方向的直线,那么与之平行的线段亦可规定方向。

规定:与坐标轴方向一致时为正,与坐标方向相反时为负。

有向线段:带有方向的线段。

2.三角函数线的定义:

我们就分别称有向线段为正弦线、余弦线、正切线。

说明:

(1)三条有向线段的位置:正弦线为a的终边与单位圆的交点到x轴的垂直线段;余弦线在x轴上;正切线在过单位圆与轴正方向的交点的切线上,三条有向线段中两条在单位圆内,一条在单位圆外。

(2)三条有向线段的方向:正弦线由垂足指向a的终边与单位圆的交点;余弦线由原点指向垂足;正切线由切点指向与a的终边的交点。

(3)三条有向线段的正负:三条有向线段凡与x轴或y轴同向的为正值,与x轴或y轴反向的为负值。

(4)三条有向线段的书写:有向线段的起点字母在前,终点字母在后面。

4-1.2.1任意角的三角函数(1)

1.三角函数定义

函 数

定 义 域

值 域

2.三角函数的定义域、值域

注意:

(1)在平面直角坐标系内研究角的问题,其顶点都在原点,始边都与x轴的非负半轴重合.

(2) α是任意角,射线OP是角α的终边,α的各三角函数值(或是否有意义)与ox转了几圈,按什么方向旋转到OP的位置无关.

(3)sin是个整体符号,不能认为是“sin”与“α”的积.其余五个符号也是这样.

(4)任意角的三角函数的定义与锐角三角函数的定义的联系与区别:

锐角三角函数是任意角三角函数的一种特例,它们的基础共建立于相似(直角)三角形的性质,“r”同为正值. 所不同的是,锐角三角函数是以边的比来定义的,任意角的三角函数是以坐标与距离、坐标与坐标、距离与坐标的比来定义的,它也适合锐角三角函数的定义.实质上,由锐角三角函数的定义到任意角的三角函数的定义是由特殊到一般的认识和研究过程.

(5)为了便于记忆,我们可以利用两种三角函数定义的一致性,将直角三角形置于平面直角坐标系的第一象限,使一锐角顶点与原点重合,一直角边与x轴的非负半轴重合,利用我们熟悉的锐角三角函数类比记忆

⑸ 高中数学人教版必修四的知识点归纳!!!!

必修四主要介绍三角函数问题,主要要求掌握广义角,角度制,弧度制,三角基本关系,诱导公式,三角函数(图象和性质),和角、差角公式,倍角公式以及相公的积化和差,和差化积等公式;y=Asin(wx+a)的图象问题,正余弦定理等。主要是会运用知识解决实际问题,知识点都很容易理解。后面好象是向量问题。

⑹ 高一数学必修四知识点

高中阶段学科知识交叉多、综合性强,以理解和应用为主,要求学生要有更强的分析、概括、综合、实践的能力。在高中阶段,不能只局限于知识的学习,而要重视观察、思维、分析、阅读、动手等能力的培养。下面是我给大家带来的 高一数学 知识点,希望大家能够喜欢!

高一数学知识点汇总

空间几何体表面积体积公式:

1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)

2、圆锥体:表面积:πR2+πR[(h2+R2)的]体积:πR2h/3(r为圆锥体低圆半径,h为其高,

3、a-边长,S=6a2,V=a3

4、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc

5、棱柱S-h-高V=Sh

6、棱锥S-h-高V=Sh/3

7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3

8、S1-上底面积,S2-下底面积,S0-中h-高,V=h(S1+S2+4S0)/6

9、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h

10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)

11、r-底半径h-高V=πr^2h/3

12、r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/313、球r-半径d-直径V=4/3πr^3=πd^3/6

14、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3

15、球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/6

16、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/4

17、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)

练习题:

1.正四棱锥P—ABCD的侧棱长和底面边长都等于,有两个正四面体的棱长也都等于.当这两个正四面体各有一个面与正四棱锥的侧面PAD,侧面PBC完全重合时,得到一个新的多面体,该多面体是()

(A)五面体

(B)七面体

(C)九面体

(D)十一面体

2.正四面体的四个顶点都在一个球面上,且正四面体的高为4,则球的表面积为()

(A)9

(B)18

(C)36

(D)64

3.下列说法正确的是()

A.棱柱的侧面可以是三角形

B.正方体和长方体都是特殊的四棱柱

C.所有的几何体的表面都能展成平面图形

D.棱柱的各条棱都相等

高一数学知识点 总结

一)两角和差公式 (写的都要记)

sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sinAcosB-sinBcosA ?

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

二)用以上公式可推出下列二倍角公式

tan2A=2tanA/[1-(tanA)^2]

cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2

(上面这个余弦的很重要)

sin2A=2sinA_cosA

三)半角的只需记住这个:

tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA)

四)用二倍角中的余弦可推出降幂公式

(sinA)^2=(1-cos2A)/2

(cosA)^2=(1+cos2A)/2

五)用以上降幂公式可推出以下常用的化简公式

1-cosA=sin^(A/2)_2

1-sinA=cos^(A/2)_2

高一数学知识点梳理

重点难点讲解:

1.回归分析:

就是对具有相关关系的两个变量之间的关系形式进行测定,确定一个相关的数学表达式,以便进行估计预测的统计分析 方法 。根据回归分析方法得出的数学表达式称为回归方程,它可能是直线,也可能是曲线。

2.线性回归方程

设x与y是具有相关关系的两个变量,且相应于n组观测值的n个点(xi,yi)(i=1,......,n)大致分布在一条直线的附近,则回归直线的方程为。

其中。

3.线性相关性检验

线性相关性检验是一种假设检验,它给出了一个具体检验y与x之间线性相关与否的办法。

①在课本附表3中查出与显着性水平0.05与自由度n-2(n为观测值组数)相应的相关系数临界值r0.05。

②由公式,计算r的值。

③检验所得结果

如果|r|≤r0.05,可以认为y与x之间的线性相关关系不显着,接受统计假设。

如果|r|>r0.05,可以认为y与x之间不具有线性相关关系的假设是不成立的,即y与x之间具有线性相关关系。

典型例题讲解:

例1.从某班50名学生中随机抽取10名,测得其数学考试成绩与物理考试成绩资料如表:序号12345678910数学成绩54666876788285879094,物理成绩61806286847685828896试建立该10名学生的物理成绩对数学成绩的线性回归模型。

解:设数学成绩为x,物理成绩为,则可设所求线性回归模型为,

计算,代入公式得∴所求线性回归模型为=0.74x+22.28。

说明:将自变量x的值分别代入上述回归模型中,即可得到相应的因变量的估计值,由回归模型知:数学成绩每增加1分,物理成绩平均增加0.74分。大家可以在老师的帮助下对自己班的数学、化学成绩进行分析。

例2.假设关于某设备的使用年限x和所支出的维修费用y(万元),有如下的统计资料:x23456y2.23.85.56.57.0

若由资料可知y对x成线性相关关系。试求:

(1)线性回归方程;(2)估计使用年限为10年时,维修费用是多少?

分析:本题为了降低难度,告诉了y与x间成线性相关关系,目的是训练公式的使用。

解:(1)列表如下:i12345xi23456yi2.23.85.56.57.0xiyi4.411.422.032.542.049162536于是b=,。∴线性回归方程为:=bx+a=1.23x+0.08。

(2)当x=10时,=1.23×10+0.08=12.38(万元)即估计使用10年时维修费用是12.38万元。

说明:本题若没有告诉我们y与x间是线性相关的,应首先进行相关性检验。如果本身两个变量不具备线性相关关系,或者说它们之间相关关系不显着时,即使求出回归方程也是没有意义的,而且其估计与预测也是不可信的。

例3.某省七年的国民生产总值及社会商品零售总额如下表所示:已知国民生产总值与社会商品的零售总额之间存在线性关系,请建立回归模型。年份国民生产总值(亿元)

社会商品零售总额(亿元)1985396.26205.821986442.04227.951987517.77268.661988625.10337.521989700.83366.001990792.54375.111991858.47413.18合计4333.012194.24

解:设国民生产总值为x,社会商品零售总额为y,设线性回归模型为。

依上表计算有关数据后代入的表达式得:∴所求线性回归模型为y=0.445957x+37.4148,表明国民生产总值每增加1亿元,社会商品零售总额将平均增加4459.57万元。

例4.已知某地每单位面积菜地年平均使用氮肥量xkg与每单位面积蔬菜每年平均产量yt之间的关系有如下数据:年份(kg)7074807885929095y(t)5.16.06.87.89.010.210.012.0年份(kg)92108115123130138145y(t)11.511.011.812.212.512.813.0(1)求x与y之间的相关系数,并检验是否线性相关;

(2)若线性相关,求蔬菜产量y与使用氮肥量之间的回归直线方程,并估计每单位面积施肥150kg时,每单位面积蔬菜的年平均产量。

分析:(1)使用样本相关系数计算公式来完成;(2)查表得出显着水平0.05与自由度15-2相应的相关系数临界值r0.05比较,若r>r0.05,则线性相关,否则不线性相关。

解:(1)列出下表,并用科学计算器进行有关计算:.16.06.87.89.010.210.012.011.511.011.812.212.512.813.0xiyi357444544608.4765938.490011401058118813571500.616251766.41885,.故蔬菜产量与施用氮肥量的相关系数:r=由于n=15,故自由度15-2=13。由相关系数检验的临界值表查出与显着水平0.05及自由度13相关系数临界值r0.05=0.514,则r>r0.05,从而说明蔬菜产量与氮肥量之间存在着线性相关关系。

(2)设所求的回归直线方程为=bx+a,则∴回归直线方程为=0.0931x+0.7102。

当x=150时,y的估值=0.0931×150+0.7102=14.675(t)。

说明:求解两个变量的相关系数及它们的回归直线方程的计算量较大,需要细心谨慎计算,如果会使用含统计的科学计算器,能简单得到,这些量,也就无需有制表这一步,直接算出结果就行了。另外,利用计算机中有关应用程序也可以对这些数据进行处理。

高一数学知识点相关 文章 :

★ 高一数学必修4知识点

★ 高一数学必修4知识点总结(人教版)

★ 高一数学必修四知识点总结

★ 高一数学必修4知识点总结

★ 高中数学必修四第一章知识点总结

★ 高一数学必修4三角函数知识点总结

★ 高一数学必修4三角函数知识点总结

★ 高一数学必修四三角恒等变换知识点

★ 高一数学必修4教案

★ 高中数学必修4平面向量知识点

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

⑺ 高一数学必修四知识点梳理

要尽快适应高中学习,同学们必须在了解高中学习特点的基础上,掌握科学的 学习 方法 。掌握科学的学习方法,应做到主动预习、正确听课、有效复习。以下是我给大家整理的 高一数学 必修四知识点梳理,希望能帮助到你!

高一数学必修四知识点梳理1

【公式一】

设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα(k∈Z)

cos(2kπ+α)=cosα(k∈Z)

tan(2kπ+α)=tanα(k∈Z)

cot(2kπ+α)=cotα(k∈Z)

【公式二】

设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

【公式三】

任意角α与-α的三角函数值之间的关系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

【公式四】

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

【公式五】

利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

【公式六】

π/2±α及3π/2±α与α的三角函数值之间的关系:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

(以上k∈Z)

高一数学必修四知识点梳理2

问题提出

1.函数是研究两个变量之间的依存关系的一种数量形式.对于两个变量,如果当一个变量的取值一定时,另一个变量的取值被惟一确定,则这两个变量之间的关系就是一个函数关系.

2.在中学校园里,有这样一种说法:“如果你的数学成绩好,那么你的物理学习就不会有什么大问题.”按照这种说法,似乎学生的物理成绩与数学成绩之间存在着某种关系,我们把数学成绩和物理成绩看成是两个变量,那么这两个变量之间的关系是函数关系吗?

3.我们不能通过一个人的数学成绩是多少就准确地断定其物理成绩能达到多少,学习兴趣、学习时间、教学水平等,也是影响物理成绩的一些因素,但这两个变量是有一定关系的,它们之间是一种不确定性的关系.类似于这样的两个变量之间的关系,有必要从理论上作些探讨,如果能通过数学成绩对物理成绩进行合理估计,将有着非常重要的现实意义.

知识探究(一):变量之间的相关关系

思考1:考察下列问题中两个变量之间的关系:

(1)商品销售收入与 广告 支出经费;

(2)粮食产量与施肥量;

(3)人体内的脂肪含量与年龄.

这些问题中两个变量之间的关系是函数关系吗?

思考2:“名师出高徒”可以解释为教师的水平越高,学生的水平就越高,那么学生的学业成绩与教师的教学水平之间的关系是函数关系吗?你能举出类似的描述生活中两个变量之间的这种关系的 成语 吗?

思考3:上述两个变量之间的关系是一种非确定性关系,称之为相关关系,那么相关关系的含义如何?

自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系,叫做相关关系.

1、球的体积和球的半径具有()

A函数关系B相关关系

C不确定关系D无任何关系

2、下列两个变量之间的关系不是

函数关系的是()

A角的度数和正弦值

B速度一定时,距离和时间的关系

C正方体的棱长和体积

D日照时间和水稻的亩产量AD练:知识探究(二):散点图

【问题】在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据:

其中各年龄对应的脂肪数据是这个年龄人群脂肪含量的样本平均数.

思考1:对某一个人来说,他的体内脂肪含量不一定随年龄增长而增加或减少,但是如果把很多个体放在一起,就可能表现出一定的规律性.观察上表中的数据,大体上看,随着年龄的增加,人体脂肪含量怎样变化?

思考2:为了确定年龄和人体脂肪含量之间的更明确的关系,我们需要对数据进行分析,通过作图可以对两个变量之间的关系有一个直观的印象.以x轴表示年龄,y轴表示脂肪含量,你能在直角坐标系中描出样本数据对应的图形吗?

思考3:上图叫做散点图,你能描述一下散点图的含义吗?

在平面直角坐标系中,表示具有相关关系的两个变量的一组数据图形,称为散点图.

思考4:观察散点图的大致趋势,人的年龄的与人体脂肪含量具有什么相关关系?

思考5:在上面的散点图中,这些点散布在从左下角到右上角的区域,对于两个变量的这种相关关系,我们将它称为正相关.一般地,如果两个变量成正相关,那么这两个变量的变化趋势如何?

思考6:如果两个变量成负相关,从整体上看这两个变量的变化趋势如何?其散点图有什么特点?

一个变量随另一个变量的变大而变小,散点图中的点散布在从左上角到右下角的区域.

一般情况下两个变量之间的相关关系成正相关或负相关,类似于函数的单调性.

知识探究(一):回归直线

思考1:一组样本数据的平均数是样本数据的中心,那么散点图中样本点的中心如何确定?它一定是散点图中的点吗?

思考2:在各种各样的散点图中,有些散点图中的点是杂乱分布的,有些散点图中的点的分布有一定的规律性,年龄和人体脂肪含量的样本数据的散点图中的点的分布有什么特点?

这些点大致分布在一条直线附近.

思考3:如果散点图中的点的分布,从整体上看大致在一条直线附近,则称这两个变量之间具有线性相关关系,这条直线叫做回归直线.对具有线性相关关系的两个变量,其回归直线一定通过样本点的中心吗?

思考4:对一组具有线性相关关系的样本数据,你认为其回归直线是一条还是几条?

思考5:在样本数据的散点图中,能否用直尺准确画出回归直线?借助计算机怎样画出回归直线?

知识探究(二):回归方程

在直角坐标系中,任何一条直线都有相应的方程,回归直线的方程称为回归方程.对一组具有线性相关关系的样本数据,如果能够求出它的回归方程,那么我们就可以比较具体、清楚地了解两个相关变量的内在联系,并根据回归方程对总体进行估计.

思考1:回归直线与散点图中各点的位置应具有怎样的关系?

整体上最接近

思考2:对于求回归直线方程,你有哪些想法?

思考4:为了从整体上反映n个样本数据与回归直线的接近程度,你认为选用哪个数量关系来刻画比较合适?20.9%某小卖部为了了解热茶销售量与气温

之间的关系,随机统计并制作了某6天

卖出热茶的杯数与当天气温的对照表:

如果某天的气温是-50C,你能根据这些

数据预测这天小卖部卖出热茶的杯数吗?

实例探究

为了了解热茶销量与

气温的大致关系,我们

以横坐标x表示气温,

纵坐标y表示热茶销量,

建立直角坐标系.将表

中数据构成的6个数对

表示的点在坐标系内

标出,得到下图。

你发现这些点有什么规律?

今后我们称这样的图为散点图(scatterplot).

建构数学

所以,我们用类似于估计平均数时的

思想,考虑离差的平方和

当x=-5时,热茶销量约为66杯

线性回归方程:

一般地,设有n个观察数据如下:当a,b使2.三点(3,10),(7,20),(11,24)的

线性回归方程是()D11.69

二、求线性回归方程

例2:观察两相关变量得如下表:

求两变量间的回归方程解1:列表:

阅读课本P73例1

EXCEL作散点图

利用线性回归方程解题步骤:

1、先画出所给数据对应的散点图;

2、观察散点,如果在一条直线附近,则说明所给量具有线性相关关系

3、根据公式求出线性回归方程,并解决其他问题。

(1)如果x=3,e=1,分别求两个模型中y的值;(2)分别说明以上两个模型是确定性

模型还是随机模型.

模型1:y=6+4x;模型2:y=6+4x+e.

解(1)模型1:y=6+4x=6+4×3=18;

模型2:y=6+4x+e=6+4×3+1=19.C线性相关与线性回归方程小结1、变量间相关关系的散点图

2、如何利用“最小二乘法”思想求直线的回归方程

3、学会用回归思想考察现实生活中变量之间的相关关系

高一数学必修四知识点梳理3

定义:

形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。

定义域和值域:

当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域

性质:

对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:

首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:

排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;

排除了为0这种可能,即对于x<0和x>0的所有实数,q不能是偶数;

排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。

总结 起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:

如果a为任意实数,则函数的定义域为大于0的所有实数;

如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。

在x大于0时,函数的值域总是大于0的实数。

在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。

而只有a为正数,0才进入函数的值域。

由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况.

可以看到:

(1)所有的图形都通过(1,1)这点。

(2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。

(3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。

(4)当a小于0时,a越小,图形倾斜程度越大。

(5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。

(6)显然幂函数_。


高一数学必修四知识点梳理相关 文章 :

★ 高一数学必修4知识点总结(人教版)

★ 高一数学必修4知识点

★ 高中数学必修四第一章知识点总结

★ 高中数学必修四三角函数万能公式归纳

★ 高中数学必修四公式总结

★ 高中必修4数学三角函数知识点归纳

★ 高中数学必修4目录

★ 高一数学必修一知识点汇总

★ 高一数学知识点汇总大全

★ 高一数学知识点总结归纳

⑻ 高一的数学有几本数学书分别是必修几到必修几

高一数学一共有四本数学书,分别是《高中数学必修一》、《高中数学必修二》、《高中数学必修三》、《高中数学必修四》。

1、《高中数学必修一》:是2007年人民教育出版社出版的图书,作者是人民教育出版社课题材料研究所、中学数学课程教材研究开发中心。该书是高中数学学习阶段顺序必修的第一本教学辅助资料。

2、《高中数学必修二》:是2007年9月由人民教育出版社出版的图书,作者是王申怀。该书主要内容是认识空间图形,通过对空间几何体的整体把握,培养和发展空间想象能力。

3、《高中数学必修三》:是新课标高中数学必修系列的第3本书籍,分为A、B两版,由人民教育出版社出版发行。本书主要内容是对算法,统计,概率知识的讲解与总结。

4、《高中数学必修四》:数学4(必修)的内容包括三角函数、平面向量、三角恒等变换。三角函数是描述周期现象的重要数学模型,在数学和其他领域中具有重要的作用。这是学生在高中阶段学习的最后一个基本初等函数。

(8)高中数学必修四是什么扩展阅读

高中数学必修教材之间的联系:

数学教材中有许多概念都有着密切的联系,如平行线段与平行向量、平面角与空间角、方程与不等式、映射与函数、对立事件与互斥事件等等,在教学中应善于寻找、分析其联系与区别,有利于学生掌握概念的本质。

函数概念有两种定义,一种是初中给出的定义,是从运动变化的观点出发,其中的对应关系是将自变量的每一个取值,与唯一确定的函数值对应起来:另一种是高中给出的定义,是从集合、对应的观点出发,其中的对应关系是将原象集合中的每一个元素与象集合中唯一确定的元素对应起来。

⑼ 高一数学必修4知识点总结

高一数学必修4知识点总结 1

第一章 三角函数

正角:按逆时针方向旋转形成的角

1、任意角负角:按顺时针方向旋转形成的角

零角:不作任何旋转形成的角

2、角的顶点与原点重合,角的始边与x轴的非负半轴重合,终边落在第几象限,则称为第几象限角.

第二象限角的集合为k36090k360180,k

第三象限角的集合为k360180k360270,k第四象限角的集合为k360270k360360,k终边在x轴上的角的集合为k180,k

终边在y轴上的角的集合为k18090,k终边在坐标轴上的角的集合为k90,k

第一象限角的集合为k360k36090,k

3、与角终边相同的角的集合为k360,k

4、长度等于半径长的弧所对的圆心角叫做1弧度.

5、半径为r的圆的圆心角所对弧的长为l,则角的弧度数的绝对值是

l. r

180

6、弧度制与角度制的换算公式:2360,1,157.3. 180

7、若扇形的圆心角为

为弧度制,半径为r,弧长为l,周长为C,面积为S,则lr,C2rl,

1

11

Slrr2.

22

8

、设是一个任意大小的角,它与原点的距离是rr的终边上任意一点的坐标是x,y,则sin

0,

yxy

,cos,tanx0. rrx

9、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,

第三象限正切为正,第四象限余弦为正.

10、三角函数线:sin,cos,tan.

2222

11、角三角函数的基本关系:1sin2cos21sin1cos,cos1sin

2

sin

tancos

sin

sintancos,cos.

tan

12、函数的诱导公式:

1sin2ksin,cos2kcos,tan2ktank. 2sinsin,coscos,tantan. 3sinsin,coscos,tantan. 4sinsin,coscos,tantan.

口诀:函数名称不变,符号看象限.

5sin

cos,cossin.6sincos,cossin. 2222

口诀:正弦与余弦互换,符号看象限.

13、①的图象上所有点向左(右)平移个单位长度,得到函数ysinx的图象;再将函数ysinx的图象上所有点的横坐标伸长(缩短)到原来的

1

倍(纵坐标不变),得到函数ysinx的图象;再将

函数ysinx的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数

ysinx的图象.

②数ysinx的图象上所有点的横坐标伸长(缩短)到原来的

1

倍(纵坐标不变),得到函数

ysinx的图象;再将函数ysinx的图象上所有点向左(右)平移

个单位长度,得到函数

ysinx的图象;再将函数ysinx的图象上所有点的纵坐标伸长(缩短)到原来的倍(横

2

坐标不变),得到函数ysinx的图象. 14、函数ysinx0,0的性质: ①振幅:;②周期:

2

;③频率:f

1

;④相位:x;⑤初相:. 2

函数ysinx,当xx1时,取得最小值为ymin ;当xx2时,取得最大值为ymax,则

11

x2x1x1x2ymaxyminymaxymin

22,,2.

yASinx , A0 , 0 , T

2

15 周期问题

2

yACosx , A0 , 0 , T

yASinx, A0 , 0 , T

yACosx, A0 , 0 , T

yASinxb , A0 , 0 , b 0, T

2

2

yACosxb , A0 , 0 , b0 ,T

TyAcotx , A0 , 0 ,

yAtanx , A0 , 0 , T

yAcotx, A0 , 0 , T

yAtanx , A0 , 0 , T

3

第二章 平面向量

16、向量:既有大小,又有方向的量.数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行.

相等向量:长度相等且方向相同的向量.

17、向量加法运算:

⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点.

C

⑶三角形不等式:ababab.

⑷运算性质:①交换律:abba;

abcabc②结合律:;③a00aa.

a

b

abCC

4

⑸坐标运算:设ax1,y1,bx2,y2,则abx1x2,y1y2.

18、向量减法运算:

⑴三角形法则的特点:共起点,连终点,方向指向被减向量.

⑵坐标运算:设ax1,y1,bx2,y2,则abx1x2,y1y2.

设、两点的坐标分别为x1,y1,x2,y2,则x1x2,y1y2.

19、向量数乘运算:

⑴实数与向量a的积是一个向量的运算叫做向量的数乘,记作a. ①

aa;

②当0时,a的方向与a的方向相同;当0时,a的方向与a的方向相反;当0时,a0.

⑵运算律:①aa;②aaa;③abab.

⑶坐标运算:设ax,y,则ax,yx,y.

20、向量共线定理:向量aa0与b共线,当且仅当有唯一一个实数,使ba.

设ax1,y1,bx2,y2,其中b0,则当且仅当x1y2x2y10时,向量a、bb0共线.

21、平面向量基本定理:如果e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有

且只有一对实数1、2,使a1e12e2.(不共线的向量e1、e2作为这一平面内所有向量的一组基底) 22、分点坐标公式:设点是线段12上的一点,1、2的坐标分别是x1,y1,x2,y2,当12时,

点的坐标是

x1x2y1y2

时,就为中点公式。)(当1 ,.

11

23、平面向量的数量积:

⑴ababcosa0,b0,0180.零向量与任一向量的数量积为0.

⑵性质:设a和b都是非零向量,则①abab0.②当a与b同向时,abab;当a与b反向

2

时,abab;aaaa或a.③abab.

2

⑶运算律:①abba;②ababab;③abcacbc.

⑷坐标运算:设两个非零向量ax1,y1,bx2,y2,则abx1x2y1y2.

222

若ax,y,则axy,

或a设ax1,y1,则abxx12yy12bx2,y2,

0.

5

高一数学必修4知识点总结 2

第一章 三角函数

1.

正角:按逆时针方向旋转形成的角叫做正角。

按边旋转的方向分 零角:如果一条射线没有作任何旋转,我们称它形成了一个零角。 角负角:按顺时针方向旋转形成的角叫做负角。

的 第一象限角{α|k2360°<α<90°+k2360°,k∈Z}

分 第二象限角{α|90°+k2360°<α<180°+k2360°,k∈Z} 类 第三象限角{α|180°+k2360°<α<270°+k2360°,k∈Z} 第四象限角{α|270°+k2360°<α<360°+k2360°,k∈Z} 或{α|-90°+k2360°<α<k2360°,k∈Z} (象间角):当角的终边与坐标轴重合时叫轴上角,它不属于任何一个象限. 2.终边相同角的表示:所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+ k2360°,k∈Z}即任一与角α终边相同的角,都可以表示成角α与整个周角的和。 3.几种特殊位置的角:

⑴终边在x轴上的非负半轴上的角:α= k2360°,k∈Z

⑵终边在x轴上的非正半轴上的角:α=180°+ k2360°,k∈Z ⑶终边在x轴上的角:α= k2180°,k∈Z

⑷终边在y轴上的角:α=90°+ k2180°,k∈Z ⑸终边在坐标轴上的角:α= k290°,k∈Z

⑹终边在y=x上的角:α=45°+ k2180°,k∈Z

⑺终边在y=-x上的角:α= -45°+ k2180°,k∈Z 或α=135°+ k2180°,k∈Z ⑻终边在坐标轴或四象限角平分线上的角:α= k245°,k∈Z

4.弧度:在圆中,把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad表示。 5.6.如果半径为r的圆的圆心角α所对弧的长为l,那么,角α 相关公式7.角度制与弧度制的换算 8.单位圆:在直角坐标系中,我们称以原点O为圆心,以单位长度为半径的圆为单位圆。

9.利用单位圆定义任意角的三角函数:设α是一个任意角,它的终边与单位圆交于点P(x,y)那么: ⑴y叫做α的正弦,记作sinα即⑵x叫做α的余弦,记作cosα⑶

y叫做α的正切,记作tanαx22

10.sincos1 sin;cos

同角三角函数的基本关系 α≠kπ+

11.三角函数的诱导公式:

πnis(k∈Z)】:ant2cos

公sink2sin式cosk2cos一tank2tan【注】其中kZ

公sinsin公sinsin式cos

cos

式coscos

公sinsin式coscos四tantan

公sincos

2

公sinsco

2

式cossin式cosn si

22

五tancot

2

六tantco

2

注意:ysinx周期为2π;y|sinx|周期为π;y|sinxk|周期为2π;ysin|x|不是周期函数。

13.得到函数yAsin(x)图像的方法:

y=sin(x+)ysin(x)y①y=sinx

周期变换

向左或向右平移||个单位

平移变换周期变换振幅变换

Asin(x)

②y=sinxysinxysin(x)yAsin(x) 14.简谐运动

①解析式:yAsin(x),x[0,+) ②振幅:A就是这个简谐运动的振幅。 ③周期:T④频率:f=

振幅变换

1

T2π

⑤相位和初相:x称为相位,x=0时的`相位称为初相。

第二章 平面向量

1.向量:数学中,我们把既有大小,又有方向的量叫做向量。数量:我们把只有大小没有方向的量称为数量。 2.有向线段:带有方向的线段叫做有向线段。有向线段三要素:起点、方向、长度。

3.向量的长度(模):向量AB的大小,也就是向量AB的长度(或称模),记作|AB|。

4.零向量:长度为0的向量叫做零向量,记作0,零向量的方向是任意的。

单位向量:长度等于1个单位的向量,叫做单位向量。

5.平行向量:方向相同或相反的非零向量叫做平行向量。若向量a、b是两个平行向量,那么通常记作a∥b。

平行向量也叫做共线向量。我们规定:零向量与任一向量平行,即对于任一向量a,都有0∥a。

6.相等向量:长度相等且方向相同的向量叫做相等向量。若向量a、b是两个相等向量,那么通常记作a=b。

BC=b,b,7.如图,已知非零向量a、在平面内任取一点A,作AB=a,则向量AC叫做a与b的和,记作ab,

即abABBCAC。

向量的加法:求两个向量和的运算叫做向量的加法。这种求向量的方法称为向量加法的三角形法则。

8.对于零向量与任一向量a,我们规定:a+0=0+a=a

9.公式及运算定律:①A1A2+A2A3+...+AnA1=0②|a+b|≤|a|+|b|

(a+b)+ca(b+c)③a+bba ④

10.相反向量:①我们规定,与a长度相等,方向相反的向量,叫做a的相反向量,记作-a。a和-a互为相反向

量。

②我们规定,零向量的相反向量仍是零向量。

③任一向量与其相反向量的和是零向量,即a+(-a)(=-a)+a=0。

④如果a、b是互为相反的向量,那么a= -b,b= -a,ab=0。

⑤我们定义a-b=a+,即减去一个向量等于加上这个向量的相反向量。 (-b)

11.向量的数乘:一般地,我们规定实数λ与向量a的积是一个向量,这种运算叫做向量的数乘。记作a,它的

长度与方向规定如下:①|a||||a| ②当λ>0时,a的方向与a的方向相同;当λ<0时,的方向与a的

方向相反;λ=0时,a=0

(a)()a 12.运算定律:①

②()aaa

③(ab)=ab

()a(a)(a)(ab)=ab ④⑤

13.定理:对于向量a(a≠0)、b,如果有一个实数λ,使b=a,那么a与b共线。相反,已知向量a与b

共线,a≠0,且向量b的长度是向量a的长度的μ倍,即|b|=μ|a|,那么当a与b同方向时,有b=a;当a

与b反方向时,有b= a。则得如下定理:向量向量a(a≠0)与b共线,当且仅当有唯一一个实数λ,使b=a。

14.平面向量基本定理:如果e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且

只有一对实数1、2,使a1e12e2。我们把不共线的向量e1、e2叫做表示这一平面内所有向量的一组基

底。

15.向量a与b的夹角:已知两个非零向量a和b。作OAa,OBb,则AOB(0°≤θ≤180°)叫

做向量a与b的夹角。当θ=0°时,a与b同向;当θ=180°时,a与b反向。如果a与b的夹角是90°,我们说a与b垂直,记作ab。

16.补充结论:已知向量a、b是两个不共线的两个向量,且m、n∈R,若manb0,则m=n=0。

17.正交分解:把一个向量分解为两个互相垂直的向量,叫做把向量正交分解。

18.两个向量和(差)的坐标分别等于这两个向量相应坐标的和(差)。即若a(x1,y1),b(x2,y2),则

ab(x1x2,y1y2),ab(x1x2,y1y2)

19.实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标。即若a(x1,y1),则a(x1,y1)

20.当且仅当x1y2-x2y1=0时,向量a、b(b≠0)共线

x1x2y1y2

21.定比分点坐标公式:当P1PPP2时,P点坐标为(,)

11

①当点P在线段P1P2上时,点P叫线段P1P2的内分点,λ>0 ②当点P在线段P1P2的延长线上时,P叫线段P1P2的外分点,λ<-1; 当点P在线段P1P2的反向延长线上时,P叫线段P1P2的外分点,-1<λ<0. 22. 从一点引出三个向量,且三个向量的终点共线,

B

则OCOAOB,其中λ+μ=1

23.数量积(内积):已知两个非零向量a与b,我们把数量|a||b|cos叫做a与b 的数量积(或内积),记作a2b即a2b=|a||b|cos。其中θ是a与b的夹角,

|a|cos(|b|cos)叫做向量a在b方向上(b在a方向上)的投影。我们规定,零向量与任一向量的数量

积为0。

24. a2b的几何意义:数量积a2b等于a的长度|a|与b在a的方向上的投影|b|cos的乘积。

25.数量积的运算定律:①a2b=b2a ②(λa)2b=λ(a2b)=a2(λb) ③(a+b)2c=a2c+b2c 22222222④(ab)a2abb ⑤(ab)a2abb ⑥(ab)(ab)ab

26.两个向量的数量积等于它们对应坐标的乘积的和。即abx1x2y1y2。则:

22

2

①若a(x,y),则|a|xy,或|a|。如果表示向量a的有向线段的起点和中点的坐标分别为(x2x1,y2y1)

(x1,y1)(x2,y2)、,那么a,|a|

(x1,y1)(x2,y2)②设a,b,则abx1x2y1y20ab0

(x1,y1)(x2,y2)27.设a、b都是非零向量,a,b,θ是a与b的夹角,根据向量数量积的定义及坐标表

ab

示可得:cos

|a||b|

第三章 三角恒等变换

cs1.两角和的余弦公式【简记C(α+β)】:oos2.两角差的余弦公式【简记C(α-β)】:c

csocsnisniso

coscosnisnis

3.两角和(差)余弦公式的公式特征:①左加号,右减号。②同名函数之积的和与差。③α、β叫单角,α±β

叫复角,通过单角的正、余弦求和(差)的余弦值。④“正用”、“逆用”、“变用”

is4.两角和的正弦公式【简记S(α+β)】:nis5.两角差的正弦公式【简记S(α-β)】:n

isoscosnisnc

nisoscosnisc

6.两角和(差)正弦公式的公式特征及用途:①左右运算符号相同。②右方是异名函数之积的和与差,且正弦值

篇三:高中数学人教版必修四常见公式及知识点系统总结(全)

必修四常考公式及高频考点

第一部分 三角函数与三角恒等变换

考点一 角的表示方法 1.终边相同角的表示方法:

所有与角终边相同的角,连同角在内可以构成一个集合:{β|β= k2360 °+α,k∈Z } 2.象限角的表示方法: 第一象限角的集合为{α第二象限角的集合为{α第三象限角的集合为{α第四象限角的集合为{α

| k2360 °<α<k2360 °+90 °,k∈Z }

| k2360 °+90 °<α<k2360 °+180 °,k∈Z } | k2360 °+180 °<α<k2360 °+270 °,k∈Z } | k2360 °+270 °<α<k2360 °+360 °,k∈Z }

3.终边在某条射线、某条直线或两条垂直的直线上(如轴线角)的表示方法:

(1)若所求角β的终边在某条射线上,其集合表示形式为{β|β= k2360 °+α,k∈Z },其中α为射线与x轴非负半轴形成的夹角

(2)若所求角β的终边在某条直线上,其集合表示形式为{β|β= k2180 °+α,k∈Z },其中α为直线与x轴非负半轴形成的任一夹角

(3)若所求角β的终边在两条垂直的直线上,其集合表示形式为{β|β= k290 °+α,k∈Z },其中α为直线与x轴非负半轴形成的任一夹角 例:

终边在y轴非正半轴上的角的集合为{α|α= k2360 °+270 °,k∈Z }

终边在第二、第四象限角平分线上的集合为{α|α= k2180 °+135 °,k∈Z } 终边在四个象限角平分线上的角的集合为{α|α= k290 °+45 °,k∈Z } 易错提醒:

区别锐角、小于90度的角、第一象限角、0~90、小于180度的角

考点二 弧度制有关概念与公式 1.弧度制与角度制互化

180,1

180

57.3,1弧度

180

2.扇形的弧长和面积公式(分别用角度制、弧度制表示方法)

nR

R, 其中为弧所对圆心角的弧度数 180

1nR21

lR2||, 其中为弧所对圆心角的弧度数 扇形面积公式:S

23602

弧长公式:l

12

易错提醒:利用S= R||求解扇形面积公式时,为弧所对圆心角的弧度数,不可用角度数

2

规律总结:“扇形周长、面积、半径、圆心角”4个量,“知二求二”,注意公式选取技巧

考点三 任意角的三角函数 1.任意角的三角函数定义

设是一个任意角,它的终边与单位圆交于点Px,y,那么siny,cosx,tan

y(r|OP|

rrx化简为siny,cosx,tan2.三角函数值符号

y

. x

规律总结:利用三角函数定义或“一全正、二正弦、三正切、四余弦”口诀记忆象限角或轴线角的三角函数值符号. 3.特殊角三角函数值

除此之外,还需记住150、750的正弦、余弦、正切值 4.三角函数线

经典结论: (1)若x(0,(2)若x

(0,

2

),则sinxxtanx

),则1sinxcosx2

(3)|sinx||cosx|1

例:

11

在单位圆中分别画出满足sinα=cosα=、tanα=-1的角α的终边,并求角α的取值集合

22考点四 三角函数图像与性质

考点五 正弦型(y=Asin(ωx+φ))、余弦型函数(y=Acos(ωx+φ))、正切性函数(y=Atan(ωx+φ))图像与性质 1.解析式求法

(1)y=Asin(ωx+φ)+B 或y=Acos(ωx+φ)+B解析式确定方法

A、B通过图像易求,重点讲解φ、ω求解思路: ①φ求解思路:

代入图像的确定点的坐标.如带入最高点(x1,y1)或最低点坐标(x

2,y2),则x1

2

2k(kZ)或

x2

3

2k(kZ),求值. 2

易错提醒:y=Asin(ωx+φ),当ω>0,且x=0时的相位(ωx+φ=φ)称为初相.如果不满足ω>0,先利用诱导公式进行变形,使之满足上述条件,再进行计算.如y=-3sin(-2x+60)的初相是-60

②ω求解思路:

利用三角函数对称性与周期性的关系,解ω.相邻的对称中心之间的距离是周期的一半;相邻的对称轴之间的距离是周期的一半;相邻的对称中心与对称轴之间的距离是周期的四分之一. 2.“一图、两域、四性” “一图”:学好三角函数,图像是关键。

易错提醒:“左加右减、上加下减”中“左加右减”仅仅针对自变量x,不可针对-x或2x等. 例:

“两域”: (1) 定义域

求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象或数轴法来求解. (2) 值域(最值): a.直接法(有界法):利用sinx,cosx的值域.

b.化一法:化为y=Asin(ωx+φ)+k的形式逐步分析ωx+φ的范围,根据正弦函数单调性写出函数的值域(最值). c.换元法:把sinx或cosx看作一个整体,化为求一元二次函数在给定区间上的值域(最值)问题. 例:

1.y=asinx+bsinx+c

2

2.y=asinx+bsinxcosx+ccosx 3.y=(asinx+c)/(bcosx+d)

4.y=a(sinx±cosx)+bsinxcosx+c “四性”: (1)单调性

ππ

①函数y=Asin(ωx+φ)(A>0, ω>0)图象的单调递增区间由2kπ-ωx+φ<2kπ+,k∈Z解得, 单调递减区间由

22π

2kπωx+φ<2 kπ+1.5π,k∈Z解得;

2

②函数y=Acos(ωx+φ)(A>0, ω>0)图象的单调递增区间由2kπ+π<ωx+φ<2kπ+2π,k∈Z解得, 单调递减区间由2kπ<ωx+φ<2 kπ+π,k∈Z解得;

ππ

③函数y=Atan(ωx+φ)(A>0, ω>0)图象的单调递增区间由kπ-<ωx+φ<kπ+k∈Z解得,.

22规律总结:注意ω、A为负数时的处理技巧. (2)对称性

π

①函数y=Asin(ωx+φ)的图象的对称轴由ωx+φ= kπ+(k∈Z)解得,对称中心的横坐标由ωx+φ= kπ(k∈Z)解得;

②函数y=Acos(ωx+φ)的图象的对称轴由ωx+φ= kπ(k∈Z)解得,对称中心的横坐标由ωx+φ=kπ+(k∈Z) 解得;

2③函数y=Atan(ωx+φ)的图象的对称中心由ωx+φ= kπ(k∈Z)解得. 规律总结:φ可以是单个角或多个角的代数式.无需区分ω、A符号. (3)奇偶性

π

①函数y=Asin(ωx+φ),x∈R是奇函数φ=kπ(k∈Z),函数y=Asin(ωx+φ),x∈R是偶函数φ=kπ2∈Z);

②函数y=Acos(ωx+φ),x∈R是奇函数φ=kπ∈Z);

③函数y=Atan(ωx+φ),x∈R是奇函数φ=(k∈Z).

2规律总结:φ可以是单个角或多个角的代数式.无需区分ω、A符号. (4)周期性

函数y=Asin(ωx+φ)或y=Acos(ωx+φ))的最小正周期T=,

|ω|y=Atan(ωx+φ) 的最小正周期T=

考点六 常见公式

常见公式要做到“三用”:正用、逆用、变形用 1.同角三角函数的基本关系

π. |ω|

π

∈Z);函数y=Acos(ωx+φ),x∈R是偶函数φ=kπ(k2

22

阅读全文

与高中数学必修四是什么相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:739
乙酸乙酯化学式怎么算 浏览:1404
沈阳初中的数学是什么版本的 浏览:1350
华为手机家人共享如何查看地理位置 浏览:1042
一氧化碳还原氧化铝化学方程式怎么配平 浏览:884
数学c什么意思是什么意思是什么 浏览:1408
中考初中地理如何补 浏览:1299
360浏览器历史在哪里下载迅雷下载 浏览:701
数学奥数卡怎么办 浏览:1387
如何回答地理是什么 浏览:1023
win7如何删除电脑文件浏览历史 浏览:1055
大学物理实验干什么用的到 浏览:1484
二年级上册数学框框怎么填 浏览:1699
西安瑞禧生物科技有限公司怎么样 浏览:973
武大的分析化学怎么样 浏览:1247
ige电化学发光偏高怎么办 浏览:1337
学而思初中英语和语文怎么样 浏览:1650
下列哪个水飞蓟素化学结构 浏览:1423
化学理学哪些专业好 浏览:1486
数学中的棱的意思是什么 浏览:1057