⑴ 排列组合的计算公式是什么
排列组合的计算公式是A(n,m)=n×(n-1).(n-m+1)=n/(n-m)。排列组合是组合学最基本的概念,所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序,组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。
排列组合的发展
排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。排列组合与古典概率论关系密切,虽然数学始于结绳计数的远古时代,由于那时社会的生产水平的发展尚处于低级阶段,谈不上有什么技巧。
随着人们对于数的了解和研究,在形成与数密切相关的数学分支的过程中,如数论、代数、函数论以至泛函的形成与发展,逐步地从数的多样性发现数数的多样性,产生了各种数数的技巧,同时,人们对数有了深入的了解和研究,在形成与形密切相关的各种数学分支的过程中,如几何学、拓扑学以至范畴论的形成与发展。
⑵ 排列a的算法是什么
计算方法:
(1)排列数公式
排列用符号A(n,m)表示,m≦n。
计算公式是:A(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!
此外规定0!=1,n!表示n(n-1)(n-2)…1
例如:6!=6x5x4x3x2x1=720,4!=4x3x2x1=24。
(2)组合数公式
组合用符号C(n,m)表示,m≦n。
公式是:C(n,m)=A(n,m)/m!或C(n,m)=C(n,n-m)。
例如:C(5,2)=A(5,2)/[2!x(5-2)!]=(1x2x3x4x5)/[2x(1x2x3)]=10。
两个常用的排列基本计数原理及应用:
1、加法原理和分类计数法:
每一类中的每一种方法都可以独立地完成此任务。两类不同办法中的具体方法,互不相同(即分类不重)。完成此任务的任何一种方法,都属于某一类(即分类不漏)。
2、乘法原理和分步计数法:
任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务。各步计数相互独立。只要有一步中所采取的方法不同,则对应的完成此事的方法也不同。
⑶ 排列组合公式及排列组合算法
排列组合公式
排列组合公式/排列组合计算公式
公式P是指排列,从N个元素取M个进行排列。
公式C是指组合,从N个元素取M个进行组合,不进行排列。
N-元素的总个数
M参与选择的元素个数
!-阶乘,如9!=9*8*7*6*5*4*3*2*1
从N到数M个,表达式应该为n*(n-1)*(n-2)..(n-m+1);
因为从n到(n-m+1)个数为n-(n-m+1)=m
举例:
Q1: 有从1到9共计9个号码球,请问,可以组成多少个三位数?
A1: 123和213是两个不同的排列数。即对排列顺序有要求的,既属于“排列P”计算范畴。
上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积)
Q2:有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”?
A2:213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。即不要求顺序的,属于“组合C”计算范畴。
上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1
⑷ 排列组合公式算法是什么
排列组合是组合学最基本的概念公式,从n个中取m个排一下,有n(n-1)(n-2)…(n-m+1)种,即n/(n-m)。排列组合计算公式从n个不同元素中取出m(m≤n)个元素的所有排列的个数。
从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号 C(n,m) 表示。
根据组合学研究与发展的现状,它可以分为如下五个分支:经典组合学、组合设计、组合序、图与超图和组合多面形与最优化。
由于组合学所涉及的范围触及到几乎所有数学分支,也许和数学本身一样不大可能建立一种统一的理论。然而,如何在上述的五个分支的基础上建立一些统一的理论,或者从组合学中独立出来形成数学的一些新分支将是对21世纪数学家们提出的一个新的挑战。
⑸ 数学排列组合计算方法是什么
A开头的叫排列,C开头的叫组合。
排列A(n,m)=n×(n-1).(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)
组合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)。
P是排列,右下脚码n,右上脚码m,n(n-1)(n-2)……(n-k+1);
C是组合,右下脚码n,右上脚码m,n(n-1)(n-2)……(n-k+1)/m!
(5)数学排列法怎么计算扩展阅读:
假设C(n-1,k)和C(n-1,k-1)为奇数:
则有:(n-1)&k == k;
(n-1)&(k-1) == k-1;
由于k和k-1的最后一位(在这里的位指的是二进制的位,下同)必然是不同的,所以n-1的最后一位必然是1。
现假设n&k == k。
则同样因为n-1和n的最后一位不同推出k的最后一位是1。
因为n-1的最后一位是1,则n的最后一位是0,所以n&k != k,与假设矛盾。
所以得n&k != k。
⑹ 排列组合中A和C怎么算啊
排列:
A(n,m)=n×(n-1)...(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)
组合:
C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!
例如:
A(4,2)=4!/2!=4*3=12
C(4,2)=4!/(2!*2!)=4*3/(2*1)=6
(6)数学排列法怎么计算扩展阅读:
排列组合的基本计数原理:
1、加法原理和分类计数法
加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法。
那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。
第一类办法的方法属于集合A1,第二类办法的方法属于集合A2,……,第n类办法的方法属于集合An,那么完成这件事的方法属于集合A1UA2U…UAn。
分类的要求 :每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。
2、乘法原理和分步计数法
乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法。
合理分步的要求:
任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同。
与后来的离散型随机变量也有密切相关。
⑺ 如何计算排列组合的数学问题
排列组合的计算公式:
排列A(n,m)=n×(n-1)。(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)。
组合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!
例如:
A(4,2)=4!/2!=4*3=12
C(4,2)=4!/(2!*2!)=4*3/(2*1)=6
除法运算
1、除以一个不等于零的数,等于乘这个数的倒数。
2、两数相除,同号得正,异号得负,并把绝对值相除。零除以任意一个不等于零的数,都得零。
注意:
零不能做除数和分母。
有理数的除法与乘法是互逆运算。