⑴ 如何用根号计算开方
在实数范围内,由于任何一个平方数都是非负数,所以负数都不能开平方。
开平方运算与开根号运算是有区别的。对于任何一个正数,开平方都有两个值,比如说9的开平方是±3;而开根号是指求算术平方根,约定是取正数的结果,即√9=3。
当然0的开平方与开根号都只有一个值,等于0。
x²=a,x=正负根号下a,x³=b。
(1)数学中如何根号开方扩展阅读:
有时候被开方数的项数较多,为了避免混淆,笛卡尔就用一条横线把这几项连起来,前面放上根号√ ̄(不过,它比路多尔夫的根号多了一个小钩)就为现时根号形式。
立方根符号出现得很晚,一直到十八世纪,才在一书中看到符号
的使用,比如25的立方根用
表示。以后,诸如√ ̄等等形式的根号渐渐使用开来。
由此可见,一种符号的普遍采用是多么地艰难,它是人们在悠久的岁月中,经过不断改良、选择和淘汰的结果,它是数学家们集体智慧的结晶,而不是某一个人凭空臆造出来的,也绝不是从天上掉下来的。按住ALT,然后按顺序按41420(小键盘)就可以打出电脑中的根号“√”。
参考资料来源:网络-根号
⑵ 数学根号怎么算的,
具体算法如下:
1、打开手机中的计算器,进入后,点击左下角的按钮进入高级计算的界面。如图所示:
⑶ 数学根号怎么算
数学根号把根号下的数开平方。
根号是用来表示对一个数或一个代数式进行开方运算的符号。若aⁿ=b,那么a是b开n次方的n次方根或a是b的1/n次方。开n次方手写体和印刷体用表示,被开方的数或代数式写在符号左方√ ̄的右边和符号上方一横部分的下方共同包围的区域中,而且不能出界。
简介
根号里带一个数字(暂且称它为a)指的是这个数字的正的平方根(称之为b),即b的平方为a。自然数开根号,分几种情况:首先为完全平方数,如4,1,16,9等等,即可直接得出b也为自然数,对应为2,1,4,3。其次为非完全平方数。
此时又分两种情况:若此数a的因数有完全平方数c,则开出c,其余部分仍留在根号中。若此数没有完全平方因数,则全部留在根号中。
⑷ 数学开根号怎么算
方法分类如下:
1.完全平方数
把任何含完全平方数的根式化简。完全平方数是一个数乘以自己得到的数,比如81就是9*9得到的。要简化,直接去掉根号,换成平方根数即可。
比如121就是完全平方数, 11 x 11= 121 你可直接把根号移掉,写成11就可。要想更简单点,你要记住下面的头十二个数的完全平方数:1 x 1 = 1, 2 x 2 = 4, 3 x 3 = 9, 4 x 4 = 16, 5 x 5 = 25, 6 x 6 = 36, 7 x 7 = 49, 8 x 8 = 64, 9 x 9 = 81, 10 x 10 = 100, 11 x 11 = 121, 12 x 12 = 144。
2.完全立方数
把任何含完全立方数的根式化简。完全立方数是一个数连续两次乘以自己而得到的数,比如27就是3*3*3得到的。要简化,直接去掉根号,换成立方根数即可。比如 512 就是完全立方数,因为8 x 8 x 8=512。 因此512的立方根就是8。
3.不能完全化简的根式
(1)把被开方数拆成自己的乘数。乘数是相乘得到目标数的数字。比如5、4是20的一对乘数,要把不能完全化简的根式中的数拆分成所有可能的乘数组合(太大的话就尽量多想),直到有完全平方数为止。
比如试着把所有的45乘数列出: 1, 3, 5, 9, 15, 和 45。 9 是一个乘数 ,亦是一个完全平方数。 9 x 5 = 45。
(2)把任何是完全平方数的乘数移出来。9是完全平方数(3*3),就把3提出来,根号里保留5。如果要把3放回去,就求平方得9再和5相乘得45。3根号5是根号45的简化说法。
4.含有变量的根式
(1)找出完全平方式。a的二次方的平方根就是 a, a的三次方的平方根就是 a乘以根号 a。因为你加了个指数,用根号a乘以a就相当于根号下的a的三次方。因此这里的完全平方数就是“a”的平方。
⑸ 根号怎么开方呢
开方方法:
1、比如说我们计算根号10,有计算机的伙伴们可以按一下,结果3.1622776601683.......将要开方的数在小数点前后,每两位进行分节。然后前后都可以补0哦。
,那么它的n个n次方根是,k=0,1,2…,n-1。
开方_网络
⑹ 如何开方根
1、整数开平方步骤:
(1)将被开方数从右向左每隔2位用撇号分开;
(2)从左边第一段求得算数平方根的第一位数字;
(3)从第一段减去这个第一位数字的平方,再把被开方数的第二段写下来,作为第一个余数;
(4)把所得的第一位数字乘以20,去除第一个余数,所得的商的整数部分作为试商(如果这个整数部分大于或等于10,就改用9左试商,如果第一个余数小于第一位数字乘以20的积,则得试商0);
(5)把第一位数字的20倍加上试商的和,乘以这个试商,如果所得的积大于余数时,就要把试商减1再试,直到积小于或等于余数为止,这个试商就是算数平方根的第二位数字;
(6)用同样方法继续求算数平方根的其他各位数字。
2、小数部分开平方法:
求小数平方根,也可以用整数开平方的一般方法来计算,但是在用撇号分段的时候有所不同,分段时要从小数点向右每隔2段用撇号分开,如果小数点后的最后一段只有一位,就填上一个0补成2位,然后用整数部分开平方的步骤计算。
⑺ 如何开根号,用开方的方法
开根号就像求一个数的几次方的反义词一样,比如3的2次方是9,那么9开根号2就是3。
比如136161这个数字,首先我们找到一个和136161的平方根比较接近的数,任选一个,比方说300到400间的任何一个数,这里选350,作为代表。
我们计算(350+136161/350)/2得到369.5
然后我们再计算(369.5+136161/369.5)/2得到369.0003,我们发现369.5和369.0003相差无几,并且,369^2末尾数字为1。我们有理由断定369^2=136161
⑻ 根号是怎么开方的
设A可以化为平方式A=m^2,B可以化为平方式B=n^2
根号(A*B)=|mn| 【 | | 表示绝对值】
设A可以化为平方式A=m^2,B不可以可以化为平方式
根号(A*B)= |m| 根号A 【 | | 表示绝对值】
设A不可以化为平方式,B可以化为平方式B=n^2
根号(A*B)= |n| 根号B 【 | | 表示绝对值】
设A,B都不可以化为平方式
根号(A*B)= 根号A * 根号B 【其中A>0,B>0】
或者
根号(A*B)= 根号(-A )* 根号(-B) 【其中A<0,B<0】
追问
我要论证 2A+2B大于根号(a*B) 谁论证一下 我给100分
回答
【问题补充:我要论证 2A+2B大于根号(a*B)】
A ≥ 0,B ≥ 0
(根号A-根号B)^2 ≥ 0
A + B - 2根号(A*B) ≥ 0
A + B ≥ 2根号(A*B)
因为A≥0,B≥0
2A+2B ≥ A+B ≥ 2根号(AB) ≥ 根号(AB)
A + B > 2根号(A*B) ,和 2A+2B > 根号(AB)的前提条件是:
A、B非负数,并不同时为零。
⑼ 怎么开根号
根号是一个数学符号。根号是用来表示对一个数或一个代数式进行开方运算的符号。若aⁿ=b,那么a是b开n次方的n次方根或a是b的1/n次方。开n次方手写体和印刷体用表示,被开方的数或代数式写在符号左方√ ̄的右边和符号上方一横部分的下方共同包围的区域中,而且不能出界。
开根号的计算方法
1.将被开方数的整数部分从个位起向左每隔两位划为一段,用撇号分开分成几段,表示所求平方根是几位数。
2.根据左边第一段里的数,求得平方根的最高位上的数。
3.从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数。
4.把求得的最高位数乘以20去试除第一个余数,所得的最大整数作为试商。
5.用商的最高位数的20倍加上这个试商再乘以试商.如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小再试。
6.用同样的方法,继续求平方根的其他各位上的数。