1. X和Y的联合分布律、怎么求它们的期望E(XY)
相互独立是关键。对于离散型,P(X=i, Y=j) = P(X=i) * P(Y=j),谨记。E(XY)的求法可以先求出XY的分布律。
(1) X和Y的联合分布律:
XY 3 4 Pi.
1 0.32 0.08 0.4
2 0.48 0.12 0.6
P.j 0.8 0.2
(2) XY的分布律:
XY 3 4 6 8
P 0.32 0.08 0.48 0.12
E(XY) = 3 * 0.32 + 4 * 0.08 + 6 * 0.48 + 8 * 0.12 = 5.12
连续变量
类似地,对连续随机变量而言,联合分布概率密度函数为fX,Y(x, y),其中fY|X(y|x)和fX|Y(x|y)分别代表X = x时Y的条件分布以及Y = y时X的条件分布;fX(x)和fY(y)分别代表X和Y的边缘分布。
同样地,因为是概率分布函数,所以必须有:∫x∫y fX,Y(x,y) dy dx=1
独立变量
若对于任意x和y而言,有离散随机变量:
P(X=x and Y=y)=P(X=x) ·P(Y=y)
或者有连续随机变量:
pX,Y(x,y)=pX(x)·pY(y)
则X和Y是独立的。
2. 知道联合密度函数 怎么求各自的期望
Fx(x) = ∫f(x,y)*dy
求单变量的期望,可以参考以下公式:
E(x) = ∫x*Fx(x)*dx=∫∫x*f(x,y)*dxdy
设(X,Y)是二维随机变量,x,y是任意实数,二元函数:F(x,y)=P({X≤x∩Y≤y})=P(X≤x,Y≤y),被称二维随机变量(X,Y)的分布函数,或称为X和Y的联合分布函数。
(2)联合分布的数学期望怎么算扩展阅读:
将二维随机变量(X,Y)看成是平面上随机点的坐标,分布函数F(x,y)在(x,y)处的函数值就是随机点(X,Y)落在如图以(x,y)为顶点而位于该点左下方的无穷矩形区域内的概率。
函数与不等式和方程存在联系(初等函数)。令函数值等于零,从几何角度看,对应的自变量的值就是图像与X轴的交点的横坐标。
从代数角度看,对应的自变量是方程的解。另外,把函数的表达式(无表达式的函数除外)中的“=”换成“<”或“>”,再把“Y”换成其它代数式,函数就变成了不等式,可以求自变量的范围。
3. 数学期望怎么求
求解“数学期望”主要有两种方法:
只要把分布列表格中的数字 每一列相乘再相加 即可。
如果X是离散型随机变量,它的全部可能取值是a1,a2,…,an,…,取这些值的相应概率是p1,p2…,pn,…,则其数学期望E(X)=(a1)*(p1)+(a2)*(p2)+…+(an)*(pn)+…;
如果X是连续型随机变量,其概率密度函数是p(x),则X的数学期望E(X)等于
函数xp(x)在区间(-∞,+∞)上的积分。
4. 数学期望的计算公式,具体怎么计算
公式主要为:
性质3和性质4可以推到到任意有限个相互独立的随机变量之和或之积的情况。
参考资料:数学期望-网络