‘壹’ 大学生怎么提高数学能力不是拼命的刷题,和大量的应试技巧!我要的是数字能力和逻辑思维上的真正提高!
数学解题方面存在的问题之一,是不善于理解、分析题意。拿到题,不认真读、想,粗看一遍,就急于动笔。因为粗心大意而经常忽略掉已知中的某一点而导致题解做不下去。针对此种情况,教师在教学中,首先要引导学生理解,分析好题意;弄清已知什么,看已知条件是否有遗漏,所求(证)的是什么;在已知和所求之间,可以运用什么知识(公式、定理),架通桥梁,在运用某个公式定理解答时,看所告诉的已知条件是否正好符合,缺不缺某个条件,在此方面。许多学生粗心大意,不认真核对,往往在条件不对口的情况下草率地得出结论。这些情况,都需要老师在教学中反复强调,认真地进行纠正。
问题之二,解题步骤不合理。要训练好学生的解题步骤,首先要做好逻辑推理能力的训练。一般来说对于问题的思考,可以有顺推法和逆推法两种。顺推的思路和解题步骤一致,而逆推的思路则与解题步骤顺序相反。有部分学生不注意这些,通常写解题步骤时,讲因果倒置,杂乱无序。针对这些情况,教师在教学中,既要做好解题前的思路引导,又要重视正确板书解题过程,给学生以良好的解题示范。不要以为无足轻重,不予重视。如不认真做好此项训练,则会发现许多学生独立解题时,出现步骤残缺、因果倒置、顺序不合理等问题。久而久之,学生解题时不能形成清晰的解题思路,严重影响解题能力的提高。
问题之三。面对复杂问题,心慌意乱,不知如何入手。为了培养学生能够较好地解决复杂问题的能力,我以为除了要培养学生沉着冷静、遇事不慌的品质外,应注重掌握以下几种分析解决问题的方法:
(1)分步考虑法:通常一个复杂问题不能一步解决,而往往需要分几个相互连接的步骤。在教学中,引导学生从最初的已知条件出发,利用相关的知识先解答第一步。然后,在第一步的基础上,再联系别的已知条件和某个知识,解答第二步,再求出一个量。依次进行,直到得出最终所求的那个量。在此方面学生最易范急躁病,不冷静的一步一步分析,而是粗略一读,便急于一蹴而就,得到所想要的结果。所以,这里对学生个性品质的培养和思维方法的训练很重要,要耐心细致。
(2)灵活变形法:有些数学题看起来很复杂,让人感觉无从下手,但只要认真观察、发现特点,经过灵活的恒等变形,还是能够找到合适的途径的。
总之,学生数学解题能力的培养是一项长期而艰辛的工作,需要我们数学教师持之以恒、坚持不懈、精心培养。只要我们在数学教学中既注重学生心理品质的培养,又重视思维方式和解题方法的训练,那么学生的数学能力就一定能得到提高。
‘贰’ 大学生该怎么学大学数学
很多大学生都对大学数学持一种敬畏之心,不敢学习 大学数学,觉得它很难。其实大学数学并不可怕,可怕的是你自己没有信心和勇气去学好它。以下是我分享给大家的大学数学的学习方法的资料,希望可以帮到你!
大学数学的学习方法一
大学如何学好高数
大学的高数分为上下册,对于大部分同学来说,高数都挺难学的,我们上高中的时候学习的都是研究表面的一些东西,在大学高数中,我们有研究微分,定积分,不定积分,还有拉格朗日定理等等,注意这些定理的运用,不但平时要好好的学习,在快考试的时候更要拿出百分之百得精力来学习,这样才能考好,在平时的学习中一定要扎实,并且需要买参考书的话也可以去购买,建议买有详解的,不要买合订本,买上下册分着的那种,那种比较详细,还有就是做题的时候一定要认真,不能马虎,再比如说求导等要一步步的来,只有这样才能少出错,首先保证正确,在提高做题的速度.
高等数学是大学新生普遍反映较难的一门课程。大学数学与高中相比逻辑性强,较抽象。再加上合堂较大,进度较快,老师很难个别辅导,很多大学生在开始接触高等数学课时常常会感觉有些茫然。针对这一点,谈一下我的看法。 学好高等数学必须做好以下六步,这六个步骤是学好高等数学的重要环节。 一(听课,要注于专心
认真听课,这是个不言而喻的道理。所以就不多谈了,这里只谈谈记笔记的事。要学好高等数学,一定要学会记笔记。记笔记会使听课更专注,也能帮你有效地进行课外的复习巩固。有些同学不会记笔记,只要是老师所讲,言无轻重、话无巨细,统统照记不误,耳、眼、手忙得不亦乐乎,累得还哪里顾得上同步思考,如果是这个样子,倒还不如不记。课堂笔记没必要追求齐全、讲究系统。只要有选择、有重点地记就可以了,特别要记那些有概括性和技巧性的解题方法,常见的、典型的例题。并且要注意解题方法的积累,特别证明题,因为证明题较抽象,常常感觉无从下手。但是课后复习时,一定要对笔记进行适当的整理补充,这就是一本好笔记。如果能再加上自己的心得体会与点评,那就是笔记的极品了。如果预习得好,那么对哪些该记、哪些可不记,也会更有的放矢。
大学数学的学习方法二
复习,要做到精心
在整个学习的过程中,复习是最重要的环节,有专家研究过所谓的“知识遗忘规律”有近快远慢的现象。学得越快越多,忘得也越快越多。所以刚学的东西,一下课就要及时复习,这叫“巩固记忆”;期中考试再复习,这叫“加深记忆”;期末考试系统地总复习,这叫“强化记忆”。我们把“知识遗忘规律”总结为“知识记忆的指数衰减律”。于是得到下面两个公式,第一个公式是具体地说就是“复习记忆公式”,其中 为初始学习量, 为时间,正数 就是复习记忆系数, 为时刻 的即时记忆量(那么我们的复习就是在做系数 的修正工作,反复的复习可以
把系数 改变成为一个很小的正数,从而达到最好的记忆效果。在 的极端情况下,记忆就会被“锁住”而成为所谓的“永久记忆”。由于我们在复习的同时,或在复习的基础上,还在不间断地学习着新的知识,所以反复的滚动复习所起的效果就是知识的积累。我们可以把这个意思写成第二个公式称为“温故知新公式”或“知识积累公式”。如果你在任何时刻的复习都能够做得如此的精心,那么两年以后的考研复习时,就只要在你的“记忆库”中进行轻松的搜索、回顾就可以了。古代孔圣人曰“学而时习之,不亦说乎~”现代世俗人谓“曲不离口,越唱越灵;拳不离手,越打越精”。
大学数学的学习方法三
作业,要肯下苦心
作业是复习的一个组成部分,不做作业的复习是虚空复习,不复习而做的作业是低效作业。看书、看笔记、做作业,当然需要有先、后的次序,但是适当地交替进行会更有实效。如果说做好预习是提高课堂听课效率的充分条件,那么及时完成好作业就是读好高等数学的必要条件。老师所布置的作业是最低量作业要求,如果完成这些作业后还找不到明显的感觉,就应该适当地加大自己的作业量。作业是为自己作的,抄作业实际上被欺骗的是自己。老师批过的作业一定要认真仔细地看,这是对老师辛勤劳动的尊重,更是纠正错误,以免重犯的绝好方法。由于多数作业本是由助教批阅的,或许有批错的地方,另外还可能有对老师在作业本上的批语没全搞明白的地方,必须及时问老师。
大学数学的学习方法四
答疑,解决问题不过夜
学习高等数学过程中,会有各种疑问,思考越深,疑问越多。有疑问是好事,攻克的问题无论大小,积累起来就是“学问”。不思无问,就是瞎混混。到头来且不说一事无成,就是想涉险过关也许没那么侥幸。学习要有愤悱意识,不愤不启、不悱不发,自己发问、自己回答。“冥思苦想”之下的“豁然开朗”,那才真叫是“其乐无穷”。当然这是理想境界,可遇可求而不强求。我们的功课门数很多,而精力很有限,不能只化在高等数学一门功课上。问了自己后,再问同窗学友。互相切磋,集思广益。每个人有不同的亮点,一旦互相发生碰撞,兴许就会产生绚丽的火花,三个“臭皮匠”赛过一个诸葛亮嘛~为学生释疑解难是老师的天职,老师安排的答疑值班时间,是你应该充分利用的宝贵资源。只要是教高数的,随便那个老师都可以问,答疑时,不要总希望老师把问题的解答向你和盘托出。注意给你以提示,让你自己继续思考的老师绝对是个好老师。如果你认为这样的老师不够热心,那你就错了。这时候反倒需要你要有足够的耐心,认真地按照老师指点,动手预算一下。如果在经过老师点拨后你真的懂了,那当然是最好。否则,没有搞懂就是没有搞懂,不要不好意思多问,不要担心老师会不耐烦。老师一定会给你第二步引导,第三次启发。直到完全弄懂为止。
大学数学的学习方法五
课外阅读,看书有选择
工科和经济类学生对高等数学的学习要求还是很基本的,个人认为没必要去博览群书、广采泛撷。认真研读两本三本高数的教学辅导书就非常足够了。 (1)教材类的书,没有必要多研究。
国内各校教材,虽然各有特色,但依据统一的大纲编写,围绕的重点也完全相同。有些名牌大学教改步子特别大,压缩了大纲内的很多基本东西,编入了许多大纲外的东西,例如微分几何的内容、运筹学的原理、还有数值计算的方法。我们认为根本没有必要读这些书。除了你所在学校的指定教材外,别的教材不要去分析比较了;
(2)教学辅导书要有选择地读,有指导地读。
不少高数学习指导书,用了大量的篇幅去讲解所谓的'重点、难点,在我看来只是教材简单的重复、罗列;还有一些学习指导书,做了很多所谓知识的图表化、网络化、程序化,有些作者看来编得太简单体现不出他的新意,在我看来编得那么复杂真让人好像感到进入了一个高等数学的迷宫。靠它怎么能学得好高等数学。而学好了本课程,这些简单的“知识图表化、网络化、程序化”完全可以由学生自己动手来编。
(3)各种五花八门的高等数学复习资料与习题集目前是最受欢迎的。但是当大家拿到这一种书时,要请注意若缺少对典型例题的深入剖析,没有足够数量的例题供揣摩,对学生也无多大益处。有人一开学,买书很积极,一大摞一大摞的买,这些人基础可能特别好,精力可能特别充沛,一本接着一本地读。咱们不要去和他们攀比,也跟着去买很多书。读数学书是得边看边仔细思考的,怎能像看小说那样一本接着一本地连着读。有需要才去买,买了就认真看,不要把它作为收藏品。用不着包什么花花绿绿的封皮,把涂塑的封面都翻烂了,才算真有本事。对于工科和经济类学生学高等数学来说,我看只要能“读破两本书”,基本上也就能“知识满肚皮”了。
大学数学的学习方法六
预习,能充分提高听课效率
做好预习是学好高等数学课程的一个重要环节。预习能充分提高课堂听课效率、良好的预习习惯能够为提高将来的自学能力打下扎实的基础。学生对学习高等数学的感受是:“上课听得懂,作业做不来”。说到底,还是上课没真懂,而其因素之一可能是没有认真预习。对于预习,大家都觉得特别累,既费时时间,又达不到很好的效果(也就是所谓的“事倍功半”)。这是因为大家对预习的要求没掌握好,把预习当作了自学。实际上预习与自学是两个不同概念。 下面就具体谈谈高等数学课程的预习要求。
首先预习内容不要太多,根据老师的教学进度表,只要把下一次的教学内容预习一下就行了。太多了理解不了,也难于消化。对于较浅显的内容,预习时可以看得细一点,思考得深一点。通过预习能看懂并理解当然是最好,但是一般说来老师的理解会比你更深刻、更全面。你再在课堂里仔细听听老师的分析、老师的理解,他能帮你产生认识上的一个“叠加”或“倍增”甚至是“飞跃”。高等数学的不少内容是比较艰深的,对于这些内容你可以看得略微粗一点,思考得浅一点。即便如此,恐怕也要硬着头皮把一个完整的内容看完。预习本来就没有要求你能全部都能搞懂,“模模糊糊、似懂非懂”应该是属于很正常的现象。“似懂”之处,课堂上老师会帮你把模糊的影子变成清晰形象,会使你的认识得到“纠正”、“补充”,变“似懂”为“真懂”;而对于“非懂”之处,在课堂上你一定会听得更认真、更仔细。有些同学觉得高等数学课堂上记笔记抓不住要点。那么请你试试看,加强预习以后,这个感觉会不会得到改善。预习与听课效率之间的关系是不容置疑的,预习后的听课收获与感悟和未经预习的情况不可同日而语。高等数学的教学进度是非常快的,每节课上要学的内容多非常多。如果没有经过预习,要想跟上进度确实不是很容易的。不可否认,也有不少同学觉得不经过预习,高等数学也能学得蛮好。但是我想反问一个问题“如果你预习工作做好了,是不是有可能把高等数学这门课程学得更好呢?”其实从近期看,预习可以提高听课效率。从远期看,养成良好的预习习惯,可以为将来自我获取新知识(自学)能力打下良好的基础。
‘叁’ 大学里怎么才能学好数学啊
我觉得最重要的是要自主学习,就要一定的耐心和毅力,课后钻研很必要,其次,上课认真听讲很重要。我觉得高中的那套模式即课前预习,课时认真学习,课后复习很适合大学学高数的,高中倒好像没有那么必要。
‘肆’ 怎样学好数学如何提升数学成绩
数学是一个让人头痛的学科,掌握住规律的人从小学到大学一路通关,觉得其乐无穷。下面是我整理的怎样学好数学相关 文章 ,希望大家喜欢。
怎样学好数学
我从不认为天赋是学好数学的关键因素,兴趣才是最好的老师,而兴趣是要从小开始培养的。
培养兴趣,其实就是要多接触数学,这一学科在小学阶段,家长要有意识地进行数学 教育 ,启发幼儿对数学的兴趣和数学生活化、游戏化、 儿童 化,最重要的是要有趣味性。比如通过游戏,让孩子把数学和食物联系起来,通过模拟收银员游戏,把金钱的概念灌输给孩子等等。
今天我们这篇文章主要讨论的是学生在中学阶段如何学好数学的问题。结合笔者20多年数学教学 经验 ,再加上对班级学霸的 学习 方法 的分析,我得出如下结论:想要学好数学,掌握学习方法很重要,那么初中阶段学习数学的方法有哪些呢?
第一、课堂上要认真听讲。老师讲的比例题更直观、更具体,所以课堂上一定要专心致志,不放过任何一个要点,不懂就要问,直至弄懂为止。作业是对知识掌握情况的检验,认真完成作业,看看自己能否熟练使用新知识,查缺补漏,争取把知识全部消化吸收。
数学与其他学科不同,必须循序渐进,才能打好基础。
第二、适当多做一些习题。初中数学理论性的东西很少,主要还是通过多做习题来打好基础,先从容易一些的题做起,待有了自信和兴趣之后,再做难一些的题。只要能持之以恒,便能慢慢加深对数学的 爱好 ,踏入数学大门之后,许多学霸们对常规练习兴趣不大,他们会自己选做一些需要思考或有些“曲折”的习题。
万事开头难,培养兴趣需要每天接触数学,接触各类题型,多花一些功夫,开始有一些心得和体会,兴趣自然就来了。
第三、要学会举一反三。遇到难题时,要给自己留下充足的思考时间,不要马上求助。思考的过程,就是对数学知识的提炼和巩固,最后实在解不出,再向老师或同学求助,当老师和同学讲解之后,还要认真琢磨一下解题的过程和方法,如果认为它非常具有典型性,最好再把它抄在错题本上。这样做能让你触类旁通,不断提高知识水平。
最后奉劝大家:学习数学不可能一蹴而就,这是一个循序渐进的过程,只要大家能够坚持下去,就一定能提高兴趣掌握规律。
数学成绩提升,应该如何去做
能不能做到让自己的数学成绩得到提高,这是很多同学都希望了解到的,如果数学成绩能够得到提升,将会改变很多同学填报志愿的选择,因为只有数学成绩提升了,才会让同学们以后的学业走得更远,因为数学对于很多同学来说,就是中考和高考的拦路虎。很多同学都是倒在了数学的前面!
我当初学习数学时,成绩也不好,甚至非常怕数学,后来我的初中数学老师跟说“夏岩,你每天完成三道简单的数学题,两道中难度题数学题,难不难?”当时我是真的一直找不到学习数学的方法,总是在不断地在摸索适合自己的学习数学方法,但是收效一直不大。突然之间数学老师,让我完成这个,说实在的我自己也不太有把握,但是这个时候也不能退缩,要不和其他同学说起来也多没有面子,所以就答应了下来,然后每天坚持五道数学题,写完就拿给数学老师检查。日子就这样过来了,但是我的数学变化也从那时开始了。
到了高三我才逐渐意识到,要想学好数学,初中的基础非常的重要。而自己的数学基础是否牢固,需要的是长时间的学习和坚持。恒心和勇气,比一时的天赋能加重要,因为我的数学天赋真的不高,但是我能坚持六年的时间,换来的是今天我对于数学的把握和信心。
每天攻克几道数学题,开始看起来很容易,但是越到后面越是困难,越是需要坚持的信念。做好数学题,开始的时候总是先易后难,但是容易的题型总有做完的那天,接着就是中难度题和难题,基础的题目一过,就会集中到中难度题的结合题。如果你能坚持下去,那么就会在数学上有巨大的提升。后来我也是从其他的同学那里得知,当初数学老师在私下场合,对很多同学都说了相同的那句话“每天完成三道简单的数学题,两道中难度题数学题,难不难?”可是最后能坚持下来的不过十人,而这十人当中就有我一个。我很庆幸我一直坚持了下来,应为我把数学的学业把握在了自己的手里,没有因为当初的难,而选择放弃。
很多同学就问,为什么要每天坚持去做数学题,这是因为在初中阶段数学讲究的是思维和训练,如果没有每天的数学 思维训练 ,做数学题时,就没有相应的解题思路,一碰到那些比较难的数学题,就会不知道从何入手,而有了数学思维训练,就会习惯性地去找解题的突破口进行解题。
对于很多初中的同学来说,如果数学题一下解不开,就不想再做下去了。其实数学对于很多同学来说都比较困难,因为的确是在考察同学们的思维和对数学的运算以及逻辑上的推断。但是在学习数学上困难总是有的,如果不去解决,那么所遇到的困难就会越越多。最后损失的还是同学们自己。
所以坚持每天做好几道数学中难题,有助于培养同学们的数学思维。而且数学思维的培养,则是起步得越早越好,坚持得越久效果越是明显,同时尽量把解题过程和解题思路写的详细些,配上自己的理解和标记,这样更利于学习数学时的延伸和扩展。
我在初中时,就是在积累数学题到了一定程度后,才学会转换自己的数学思维,学会去运用各种学到的数学公式和解题步骤。这些数学思维的方法,必须是经过多练,长时间的积累形成。而有些同学想走捷径,不愿意去积累,也不愿去背记数学公式,短时间还看不出数学知识上的缺陷,但是时间越久数学基础越不牢固。
每天做五题数学中难度题,通过漫长的时间去进行积累,对于很多同学来说,其实是很有作用的,只是这个过程很难走,但是前途很光明。一天五道题,100天都一千道题数学中难题。因为越到后期,数学兴趣和成就感上来了,解题的速度会变快,每天自己也会不断增加做题数量,形成一种学习上的良性循环。这种数学积累方式,短期内可能没有什么突出 的效果。但是长期而言,就会积累很多的解题方式和思路。等到初三的时候,就会发现数学对你来说不难了。希望你今天的坚持,换到你明天的数学上的成功,还有就是学习数学脸皮一定要厚,不懂就去问,问了才能突破自己数学上的不足。
有很多初中同学当初在学习数学上,其实也有自己的雄心壮志,希望能通过自己的努力去把数学成绩提高。但是到了最后,很多同学选择了放弃,为什么呢?因为学习数学,没有想象中那么容易,很多初中同学就发现自己很努力了,但是好像效果并不明显,还不如从其他科目上多要些分数进行弥补,反正总分上看相差不了多少,而就找到了放弃数学的借口后,很快就把数学放弃了。而到了后来,再想学习数学,就变得越来越困难。所以学习数学,首先要做到的就是绝对不能放弃,并且有持之以恒的学习,不懂的数学知识一定要及时去请教老师和同学。学习数学绝对不能拖延时间,这是对自己学习数学的不负责任。
笔者认为:学好数学难,想放弃数学很容易。但是如果一旦放弃后,再想重新学习数学就会变得难上加难。因为错过学习数学的时间,再想追回来,就需要花费几倍时间的代价。但是如果从一开始就咬紧牙关坚持下去,每天学会攻克几道数学中难度题,会学为自己的数学做积累,就会得到很多解答数学题的方式。长时间的坚持下去,学习数学思维也会变得更加的灵活,同时还会积累更多的解题经验。这是最好的,也是最有效的学习数学的方法之一。
‘伍’ 大学数学怎么学学好大学数学的8个方法
进入大学,每个人都应该先做个自我反省,在学习过程中将会出现很多与过去不同的一面,尤其是在数学学习上,我整理了数学学习相关内容,希望能帮助到您。
学好大学数学的8个方法
1)大一生大都自我感觉良好,认为自己的学习方法是成功的。自己能考上不错的本科,就说明自己在学习上有一套。自己高中怎样学,大学还怎样学,就一定能成功。不知道改进学习方法的必要性。
2)缺少迎难而上的思想准备。基础知识大滑坡,基本技能大退步,头脑时常出现空白。学习时跟不上教学的进度与要求。
3)对大学课程的学习特点,缺少全面准确的了解。对大学生应该掌握的学习方法,缺少系统的学习和掌握。
提高大学数学学习成绩的关键:
大学生学数学,靠的是一个字:悟!
借助这8个方法,教你更好领悟高数
1
先看笔记后做作业
有的学生感到,老师讲过的,自己已经听得明明白白了。但是,为什么自己一做题就困难重重了呢?其原因在于,学生对教师所讲的内容的理解,还没能达到教师所要求的层次。
因此,每天在做作业之前,一定要把课本的有关内容和当天的课堂笔记先看一看。
2
做题之后加强反思
现在正做着的题,一定不是考试的题目。而是要运用现在正做着的题目的解题思路与方法。因此,要把自己做过的每道题加以反思,总结一下自己的收获。
要总结出:这是一道什么内容的题,用的是什么方法。做到知识成片,问题成串,构建起一个内容与方法的科学的网络系统。
要看看自己做对了没有;还有什么别的解法;题目处于知识体系中的什么位置;解法的本质什么;题目中的已知与所求能否互换,能否进行适当增删改进。
3
主动复习和总结
进行章节总结是非常重要的。
怎样做章节总结呢?
①要把课本,笔记,校期末测验试卷,都从头到尾阅读一遍。
②把本章节的内容一分为二,一部分是基础知识,一部分是典型问题。
③在基础知识的疏理中,要罗列出所学的所有定义,定理,法则,公式。
④把重要的,典型的各种问题进行编队。
⑤总结那些尚未归类的问题,作为备注进行补充说明。
4
重视改错,错不重犯
一定要重视改错工作,做到错不再犯。
5
积累资料随时整理
把课堂笔记,练习,试卷,都分门别类按时间顺序整理好。每读一次,就在上面标记出自己下次阅读时的重点内容。这样,复习资料才能越读越精,一目了然。
6
精挑慎选课外读物
大学数学考的是学生解决常规题的能力。作为一名大学生,如果还想围着自己的老师转,是不可能的,老师一般一下课就走,所以这种方法会存在着很大的局限性。因此,要想学好数学,必须打开一扇门,看看外面的世界。当然,也不要自立门户,另起炉灶。一旦脱离校内教学和自己的老师的教学体系,也必将事倍功半。
7
配合老师主动学习
大学生必须提高自己学习的主动性,随时预防挂科。
8
合理规划步步为营
大学的学习表面上是轻松的,实则是暗藏危机。没有了高中老师的步步紧抓,许多自制力差,又没计划性的学生任由自己堕落。所以,要想能迅速取得进步,就要给自己制定一个较长远的切实可行的学习目标和计划。此外,还要给自己制定学习计划,详细地安排好自己的零星时间,并及时作出合理的微量调整。
大学数学怎么学?
众所周知,数学是一门富有魅力又极具挑战性的学科。有些时候,花了大量的时间,但还是没有什么结论或是还是理解不了一些过程,而且,往往会有一种挫败感——为什么别人想的到而我想不到。可见,学好数学绝不是一件易事,需要付出大量的努力,需要大量的积累和细心体会。但是,大家也不必太过害怕或是灰心,要相信,只要付出了努力,只要有不断地、耐心地思考,一定能够理解好所学内容,能够解决问题。
对于刚入学的新生,要面对的专业课就是数学专业中基础中的基础:数学分析、高等代数和解析几何,正好对应数学的三大核心领域:分析、代数、几何。
数学分析是指以微积分学和无穷级数一般理论为主要内容,并包括它们的理论基础(实数、函数和极限的基本理论)的一个较为完整的数学学科。数学分析的主要内容是微积分学,微积分学的理论基础是极限理论,极限理论的理论基础是实数理论。实数系最重要的特征是连续性,有了实数的连续性,才能讨论极限,连续,微分和积分。正是在讨论函数的各种极限运算的合法性的过程中,人们逐渐建立起了严密的数学分析理论体系。在学习这门课程时,既需要感觉和直觉去分析理解问题,又需要严密的证明来说明你的观点。刚接触时,由于和高中的思维方式有很大不同,可能会有无从下手的感觉,但多看例题,反复练习,慢慢就会熟悉理解。
高等代数主要研究线性空间、线性变换和多项式理论等。通过引入向量、矩阵、行列式等工具,在一般的集合上研究问题,并将抽象的线性变换视为成更实际的矩阵进行研究。这是一套严密完整的理论,全部学完后,你将看到它完整的面目。在学习时,要注意将知识融会贯通,形成一个整体,一套体系。
解析几何在大一学的不多也不难,多用线性代数方法研究。
数分和高代是数学专业中的基础,需要高度重视,学到高年级的课程时,会发现有一些内容和数分高代的内容相近或是类似,如果一开始没好好学,后面会越学越辛苦。
学习数学必须要多思考,要多想想一个定理是怎么引入的,为什么需要这些条件,缺了某一个条件会有什么后果,多记一些例子,尤其是反例,再想想看如果不看证明,自己能不能证明出来。多研究例题,看看人家是怎么想的,思考为什么别人能想到,有什么地方可以找到突破口,要积累。多做题,多做好题,注意老师课堂上讲的题目和勾出来的题目。
在大学期间,也会有数学竞赛,主要的有:全国大学生数学建模竞赛(国赛)、美国大学生数学建模竞赛(美赛)、全国大学生数学竞赛(数学竞赛)、丘成桐大学生数学竞赛(丘赛)。对自己的数学实力有自信的,或是想要挑战一下自己的同学可以考虑参加这几个竞赛,检验一下自己。
要学好数学需要多读书,要扩大自己在数学领域的知识面,才会有更加深入的体会和了解。故在此推介一些适合数学专业的同学看的书,希望对大家有所帮助。
数学分析
1. 基础教材
(1)数学分析 陈纪修 复旦大学出版社
(2)数学分析 华东师范大学出版社(没有复旦的版本好,当作基础中的基础,全部掌握文本内容和习题即可)
(3)数学分析教程 常庚哲(较难)
2. 参考书
(1)微积分学教程 菲赫金哥尔茨(非常详细,可作数学分析“词典”用,若要顺序读下来可能比较耗时)
(2)数学分析 卓里奇(观点比较高级,建议高年级时或觉得自己学得很清晰的同学阅读)
(3)数学分析讲义 陈天权 (视角非常高,建议较高年级时阅读)
(4)数学分析原理(Principles of Mathematical Analysis) Rudin (比较全面的经典教材,写得比较简练,可以学完后看)
(5)陶哲轩实分析 陶哲轩 (从最基础写起,可以当作课外读物)
(6)重温微积分 齐民友 (可以学得差不多时作为回顾)
(7)数学分析新讲 张筑生
(8)数学分析全程辅导及习题精解
3. 习题
(1)数学分析习题课讲义(上下册) 谢惠民等 (很好的习题集)
(2)数学分析中的典型问题与方法 裴礼文 (很好的习题集,慢慢做不必着急)
(3)吉米多维奇数学分析习题集(1—6)(题目以计算为主,可以选取里面的计算题作为对自己计算能力的检验,不要刷题,挑取类型题做熟练就行)
高等代数
1. 参考书
(1)高等代数学习指导书(上下册) 丘维声 (非常厚的两本书,也非常详细清晰,可作参考)
(2)高等代数简明教程(上下册) 蓝以中 (比较薄,易携带)
(3)高等代数学 张贤科、许甫华 (相比以上较难,但非常全面,有一些知识在高等代数课上并未涉及,可以到这里阅读)
(4)高等代数解题方法 张贤科、许甫华(上本书的配套习题书)
2. 习题集
(1)高等代数习题集(上下册) 杨子胥(比较全面的一本高等代数习题集,可以作参考)
(2)高等代数习题精解 刘丁酉 中国科学技术大学出版社 (较全面)
(3)我院樊启斌老师整理的高等代数习题集非常好,除了该本练习和课后习题,一般不需要再多做题目。
概率论
(1)概率论 何书元 北京大学出版社(轻便而易懂)
(2)概率论教程 钟开莱(均以实变函数知识为基础的概率论,是真正意义上的数学中的概率论,大三的数基与弘毅同学可看)
(3)概率论教程 缪柏其、 胡太忠 中国科学技术大学出版社
数值分析
(1)数值线性代数 北京大学出版社
(2)数值计算方法 武汉大学出版社
常微分方程
(1)常微分方程教程 丁同仁(国内经典教材)
(2)常微分方程习题集 庄万(习题比较多可以参考一下)
(3)高等数学例题与习题集(四)常微分方程 博亚尔丘克(还不错的一本ODE习题集)
(4)常微分方程 阿诺尔德(观点较高的一个经典着作)
复变函数
(1)复变函数简明教程 谭小江,伍胜健(北大教材,条理清晰,可作初次学习用)
(2) Complex Analysis, Stein (非常简练而全面,可作参考书)
(3)实分析与复分析(Real and Complex Analysis), Rudin (经典的西方教材)
(4)复分析(Complex Analysis), Ahlfors(最经典的西方教材之一)
(5)高等数学例题与习题集(三) 复变函数 博亚尔丘克(非常全面的一本复变函数习题集)
实变函数
(1)Real Analysis, Folland(深入浅出,很详细)
(2)Real Analysis, Stein(比较经典的教材)
(3)实分析与复分析(Real and Complex Analysis), Rudin(经典教材,比较概括而全面)
(4)实变函数论,实变函数学习指南 周民强(非常好的国内教材,里面思考题非常多,可以慢慢阅读思考)
泛函分析
(1)泛函分析,江泽坚(非常简明)
(2)泛函分析讲义(上下册) 张恭庆、林源渠、郭懋正(北大教材,比较全面,习题也不错)
(3)Functional Analysis, Rudin(经典教材)
(4)泛函分析(Functional Analysis), Peter Lax(经典教材)
‘陆’ 如何才能学好大学数学
1、重视平时的学习很多的学生不注重平时的学习,只是一味的在考试之前做突击,那是很不够的。首先,要重视日常的每一节数学课,上课要积极参与,要主动学习。对老师的讲解、提问、板书及同学的发言都要进行消化,而且自己要积极、大胆地参与到讨论甚至争论之中,还要敢于大胆提出自己独特的想法、见解或疑问,切切实实提高每节数学课的学习效力。其次,要认真完成每一天的课堂作业和家庭作业。作业除按时、按量完成外,还要注意到作业的质量,做到书写,认真,正确率高。如果能做到把每一次作业当做一次考试,把每次的考试当做一次作业,那么,你的考试成绩一定会令人满意的。
2、重视获取知识的过程要提高自己的数学水平,一定要改变“重结论,轻探究;重法则,轻创新”的错误想法。在平时的学习过程中,要认真经历获取知识的全过程,如概念是如何抽象概括的、公式又是如何推导的等,使自己既知道“是什么”,又知道“为什么”“为什么这样做”,通过亲身参与、经历知识获取的过程,培养自己分析问题、解决问题的能力,进而掌握科学的学习方法,提高自己的自学能力。
3、重视能力的培养要提高自己的数学水平,一定要改变“重分数,轻能力”的错误想法。对每一位学生而言,分数只是暂时的,而能力则是陪伴你一生的,因此在平时的学习中要重视自己能力的培养,防止死记硬背、生搬硬套。要学会分析问题、解决问题,注意思维的准确性、深刻性以及广阔性和灵活性。同时,还要有意识地培养自己的应变能力、逆向思维的能力和创造能力,适当加大一些变式题和逆向思维习题的训练量。
4、重视学习习惯的养成考试成绩的好坏,除了决定于知识的掌握、能力的高低以外,还取决于学生是否具有良好的学习习惯和心理素质。良好的学习习惯除了认真听课的习惯、认真作业的习惯等之外,还应提倡自学的习惯。另外考试也是一门学问,它牵涉到方方面面,如还须有良好的审题习惯、验算的习惯、认真检查的习惯等。同时,具有健康的身体和心理也是获取优秀的考试成绩所必备的条件。这些方面,都是必须引起广大教师、家长和学生充分重视的。
‘柒’ 如何学好大学数学
无论你对大学数学科学都非常非常的困惑,你仔细来听一听我是如何拆解的学习框架的学习思路的,如果你能把握住我这个思路,并且真真正正地实现,在你这个学期的全过程之中,我相信一定的数学会从60分的水平提高到90多分的水平。一定要看到最后第三个点,如果做不到的话,最多最多大概能停留在70分左右。前面两个都是基础,最后一个才是关键。
首先第一个要点是要改变你对大学数学学习体系的一个看法。大学数学不是高考数学,不是让你去做难题,不是让你上高分的,是要降低你的期望以及目标,你的目标不是要去做难题,你的目标仅仅是把所有的简单的基础题,甚至是课本例题能搞懂,你就已经超过了90%的人。不要想着自己有几轮几轮复习,有多少卷子多少卷子去做根本没用,也没有老师会监督你。因此,你唯一能做的就是自觉的开始学你的大学数学,千万千万不要把大学数学放到期末一个月、两个月才去复习,应当是贯穿你整个大学学习内,才能最后挑战90分以上的高分。
‘捌’ 大学数学如何学
大学数学是大学新生普遍反映较难学习的一门课,那么大学数学如何学呢,下面我们一起来看看吧。
1.建立
大学生的学习比中学生更复杂更高级,同时也更为自觉、更为独立,因此,学习动机的强弱对大学生的学业成就有着极大的影响。在高中阶段,学生以考上大学为惟一的,目标明确,再加上老师和家长的监督,学习抓得很紧,一旦目标实现,容易产生松懈心理,希望在大学里好好享乐一番。没有及时树立起进一步的。另一方面大学新生自我控制能力一般较差,容易受别人的影响,有时会有意无意地模仿高年级学生的做法。渐渐便失去了自控能力。
因而大学新生应尽快建立学习目标,以适应大学校园的学习气氛,大学里面的.学习气氛是外松内紧的。在大学里很少有人监督你,很少有人主动指导你;没有人给你制订具体的学习目标,每个人都在独立地面对学业,每个人都该有自己设定的目标,每个人都在和自己的昨天比,和自己的潜能比,也暗暗地与别人比。
2.调整学习方法
承袭过去在高中阶段的学习方法,即使勤奋用功可能也难以获得能力的全面提高,这在大学新生里是相当普遍的现象。进入大学后,以教师为主导的教学模式变成了以学生为主导的自学模式。教师在课堂讲授知识后,学生不仅要消化理解课堂上学习的内容,而且还要大量阅读相关方面的书籍和文献资料。可以说自学能力的高低成为影响学业成绩的最重要因素。这种自学能力包括:能独立确定学习目标,能对教师所讲内容提出质疑,会归纳总结所学习的内容,并能表达出来与人讨论。
自学能力是每一个人都必须具备的一种能力。其实在每一个学习阶段都需要有自学能力,只是在不同的教育阶段对自学能力的要求不同。基础教育阶段对自学能力的要求没有那么突出,到了大学是个质的飞跃。课堂学习只是大学学习中很少的一部分,更多的知识要靠自学,老师更多的时候是起到引导的作用。大学更多的是传授学生学习的方法。
从旧的学习方法向新的学习方法过渡,这是每个大学新生都必须经历的过程。在思想上应认识到要想在学业上获得成功,一定要充分利用现有的学习条件,掌握、运用自己所学的知识,提高自己的能力。尽早做好思想准备,就能较好地、顺利地度过这一阶段,少走弯路,减少心理压力,促进学业成绩的提高。
3.如何学好大学数学
大学数学是大学新生普遍反映较难学习的一门课大学数学与其它课程相比逻辑性强,比较抽象。这里给新生提一点建议:
首先掌握理解与记忆的关系。数学中概念、公式较多,在学习过程中应注意理解,而不应机械地去记忆。要特别注意前后知识的联系,例如极限、连续、导数几个概念都与极限有关,在学习中就应注意它们的联系,应注意它们的相同点和不同点。又如,如果你不能理解它的含义,了解复合函数的构造,你即使把公式背的再熟对作题也没有什么帮助。
认真读书与积极动手。课前尽可能的预习,但课后一定要认真复习,独立完成作业。做题过程应看成是检验对知识的掌握。要注意大学数学与中学数学知识的联系。实际上在大学数学里用了很多的初等数学的知识,这一点是很重要的。
做好吃苦的准备。学习是一个很艰苦的事,要适应数学的思维方式,主动克服各种,不断提高学习兴趣。
‘玖’ 怎么提高大学数学成绩
身为文科生的我对于数学有着千丝万缕的感触,数学是一直让我头疼的学科。上到了大学所选的专业也是要学习数学,依然摆脱不了被数学支配的恐惧。那怎么办?那只能 “投机取巧”了,适用了很多的数学方法,我依然觉得掌握对的方法是非常有必要也是非常重要的。从班上的数学学霸身上我薅到了学霸的数学学习方法,哈哈哈,用了学霸的方法之后成绩真的有显而易见的提升!so,我想把这个实用的方法分享给大家,希望对想学好数学的小伙伴们有帮助噢~
第一、就是要做错题本!
学生党一定要有错题本!
不要觉得上到大学就什么笔记本错题本都不需要了,其实不然,学习工具用的好关键时刻助你跑。学霸每学期都会整理出很多很多的数学错题,大考前都会翻翻看一看的。这个习惯真的受益终身,对于学数学。错题本里不止有错题,还可以包括老师上课讲的做题方法,自己做题摸索出来的规律,模型等等,考前翻一翻对自己帮助非常大。(可以买分页的活页本,把几个板块分隔开,便于找到你想看的东西)
翻一翻对自己帮助非常大。(可以买分页的活页本,把几个板块分隔开,便于找到你想看的东西)
‘拾’ 新生如何学好大学数学
聪明和敏捷对于数学学习来说固然重要,但良好的学习方法可以把学习效果提高几倍,这是先天因素不可比拟的。那新生如何学好大学数学呢?更多相关信息请关注相应栏目!
1.建立学习目标
大学生的学习比中学生更复杂更高级,同时也更为自觉、更为独立,因此,学习动机的强弱对大学生的学业成就有着极大的影响。在高中阶段,学生以考上大学为惟一的学习目标,目标明确,再加上老师和家长的监督,学习抓得很紧,一旦目标实现,容易产生松懈心理,希望在大学里好好享乐一番。没有及时树立起进一步的学习目标。另一方面大学新生自我控制能力一般较差,容易受别人的影响,有时会有意无意地模仿高年级学生的做法。渐渐便失去了自控能力。
因而大学新生应尽快建立学习目标,以适应大学校园的学习气氛,大学里面的学习气氛是外松内紧的。在大学里很少有人监督你,很少有人主动指导你;没有人给你制订具体的学习目标,每个人都在独立地面对学业,每个人都该有自己设定的目标,每个人都在和自己的昨天比,和自己的潜能比,也暗暗地与别人比。
2.调整学习方法
承袭过去在高中阶段的学习方法,即使勤奋用功可能也难以获得能力的全面提高,这在大学新生里是相当普遍的现象。进入大学后,以教师为主导的教学模式变成了以学生为主导的自学模式。教师在课堂讲授知识后,学生不仅要消化理解课堂上学习的内容,而且还要大量阅读相关方面的书籍和文献资料。可以说自学能力的高低成为影响学业成绩的最重要因素。这种自学能力包括:能独立确定学习目标,能对教师所讲内容提出质疑,会归纳总结所学习的`内容,并能表达出来与人讨论。
自学能力是每一个人都必须具备的一种能力。其实在每一个学习阶段都需要有自学能力,只是在不同的教育阶段对自学能力的要求不同。基础教育阶段对自学能力的要求没有那么突出,到了大学是个质的飞跃。课堂学习只是大学学习中很少的一部分,更多的知识要靠自学,老师更多的时候是起到引导的作用。大学更多的是传授学生学习的方法。
从旧的学习方法向新的学习方法过渡,这是每个大学新生都必须经历的过程。在思想上应认识到要想在学业上获得成功,一定要充分利用现有的学习条件,掌握、运用自己所学的知识,提高自己的能力。尽早做好思想准备,就能较好地、顺利地度过这一阶段,少走弯路,减少心理压力,促进学业成绩的提高。
3.如何学好大学数学
大学数学是大学新生普遍反映较难学习的一门课。大学数学与其它课程相比逻辑性强,比较抽象。这里给新生提一点建议:
首先掌握理解与记忆的关系。数学中概念、公式较多,在学习过程中应注意理解,而不应机械地去记忆。要特别注意前后知识的联系,例如极限、连续、导数几个概念都与极限有关,在学习中就应注意它们的联系,应注意它们的相同点和不同点。又如复合函数求导法则,如果你不能理解它的含义,了解复合函数的构造,你即使把公式背的再熟对作题也没有什么帮助。
认真读书与积极动手。课前尽可能的预习,但课后一定要认真复习,独立完成作业。做题过程应看成是检验对知识的掌握。要注意大学数学与中学数学知识的联系。实际上在大学数学里用了很多的初等数学的知识,这一点是很重要的。
做好吃苦的准备。学习是一个很艰苦的事,要适应数学的思维方式,主动克服各种学习困难,不断提高学习兴趣。