‘壹’ 高中数学八大定理
高中数学:立体几何的八大定理
—、直线与平面平行的判定定理
如果平面外的一条直线与平面内的一条直线平行,则这条直线与平面平行
作用:线线平行→线面平行
二、直线与平面平行的性质定理
如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行
作用∶线面平行→线线平行
三、平面与平面平行的判定定理
如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行
作用︰线线平行→面面平行
四、平面与平面平行的性质定理
1如果两个平行平面同时和第三个平面相交,那么所得的两条交线平行
‘贰’ 小学数学七大定律
小学数学七大定律如下:
一、加法交换律
两个数相加,交换两个加数的位置,和不变,叫做加法交换律。
a+b=b+a
二、加法结合律
三个数相加,先把前二个数相加,再加第三个数,或者,先把后二个数相加,再加上第一个数,其和不变。这叫做加法结合律。
a+b+c=(a+b)+c=a+(b+c)
三、减法性质
在减法中,被减数、减数同时加上或者减去一个数,差不变。
a-b=(a+c)-(b+c) ab=(a-c)-(b-c)
在减法中,被减数增加多少或者减少多少,减数不变,差随着增加或者减少多少。反之,减数增加多少或者减少多少,被减数不变,差随着减少或者增加多少。
在减法中,被减数减去若干个减数,可以把这些减数先加,差不变。
a –b - c = a - (b + c)
四、乘法交换律
个数相乘,交换两个因数的位置,积不变,叫做乘法的交换律。
a×b = b×a
五、乘法结合律
三个数相乘,先把前两个数相乘,再乘以第三个数,或者,先把后两个数相乘,再和第一个数相乘,积不变。这叫做乘法结合律。
a×b×c = a×(b×c)
六、乘法分配律
两个数的和(或差)与一个数相乘,等于把这两个数分别与这个数相乘,再把两个积相加(或相减)。这叫做乘法分配律。
(a + b) ×c= a×c + b×c (a - b)×c= a×c - b×c
乘法的其他运算性质
一个因数扩大若干倍,必须把另一个因数缩小相同的倍数,其积不变。
a×b = (a×c) ×( b÷c)
七、除法的运算性质
商不变性质,两个数相除,被除数和除数同时扩大或者缩小相同的一个数(0除外),商的大小不变。
a÷b=(a×c)÷(b×c) a÷b=(a÷c)÷(b÷c )
一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。
a÷b÷c = a÷(b×c)
‘叁’ 求数学各种定理
欧拉公式
简单多面体的顶点数v、面数f及棱数e间有关系
v+f-e=2
这个公式叫欧拉公式。公式描述了简单多面体顶点数、面数、棱数特有的规律。
认识欧拉
欧拉,瑞士数学家,13岁进巴塞尔大学读书,得到着名数学家贝努利的精心指导.欧拉是科学史上最多产的一位杰出的数学家,他从19岁开始发表论文,直到76岁,他那不倦的一生,共写下了886本书籍和论文,其中在世时发表了700多篇论文。彼得堡科学院为了整理他的着作,整整用了47年。
欧拉着作惊人的高产并不是偶然的。他那顽强的毅力和孜孜不倦的治学精神,可以使他在任何不良的环境中工作:他常常抱着孩子在膝盖上完成论文。即使在他双目失明后的17年间,也没有停止对数学的研究,口述了好几本书和400余篇的论文。当他写出了计算天王星轨道的计算要领后离开了人世。欧拉永远是我们可敬的老师。
欧拉研究论着几乎涉及到所有数学分支,对物理力学、天文学、弹道学、航海学、建筑学、音乐都有研究!有许多公式、定理、解法、函数、方程、常数等是以欧拉名字命名的。欧拉写的数学教材在当时一直被当作标准教程。19世纪伟大的数学家高斯(gauss,1777-1855)曾说过“研究欧拉的着作永远是了解数学的最好方法”。欧拉还是数学符号发明者,他创设的许多数学符号,例如π,i,e,sin,cos,tg,σ,f (x)等等,至今沿用。
欧拉不仅解决了彗星轨迹的计算问题,还解决了使牛顿头痛的月离问题。对着名的“哥尼斯堡七桥问题”的完美解答开创了“图论”的研究。欧拉发现,不论什么形状的凸多面体,其顶点数v、棱数e、面数f之间总有关系v+f-e=2,此式称为欧拉公式。v+f-e即欧拉示性数,已成为“拓扑学”的基础概念。那么什么是“拓扑学”? 欧拉是如何发现这个关系的?他是用什么方法研究的?今天让我们沿着欧拉的足迹,怀着崇敬的心情和欣赏的态度探索这个公式......
欧拉定理的意义
(1)数学规律:公式描述了简单多面体中顶点数、面数、棱数之间特有的规律
(2)思想方法创新:定理发现证明过程中,观念上,假设它的表面是橡皮薄膜制成的,可随意拉伸;方法上将底面剪掉,化为平面图形(立体图→平面拉开图)。
(3)引入拓扑学:从立体图到拉开图,各面的形状、长度、距离、面积等与度量有关的量发生了变化,而顶点数,面数,棱数等不变。
定理引导我们进入一个新几何学领域:拓扑学。我们用一种可随意变形但不得撕破或粘连的材料(如橡皮波)做成的图形,拓扑学就是研究图形在这种变形过程中的不变的性质。
(4)提出多面体分类方法:
在欧拉公式中, f (p)=v+f-e 叫做欧拉示性数。欧拉定理告诉我们,简单多面体f (p)=2。
除简单多面体外,还有非简单多面体。例如,将长方体挖去一个洞,连结底面相应顶点得到的多面体。它的表面不能经过连续变形变为一个球面,而能变为一个环面。其欧拉示性数f (p)=16+16-32=0,即带一个洞的多面体的欧拉示性数为0。
(5)利用欧拉定理可解决一些实际问题
如:为什么正多面体只有5种? 足球与c60的关系?否有棱数为7的正多面体?等
欧拉定理的证明
方法1:(利用几何画板)
逐步减少多面体的棱数,分析v+f-e
先以简单的四面体abcd为例分析证法。
去掉一个面,使它变为平面图形,四面体顶点数v、棱数v与剩下的面数f1变形后都没有变。因此,要研究v、e和f关系,只需去掉一个面变为平面图形,证v+f1-e=1
(1)去掉一条棱,就减少一个面,v+f1-e不变。依次去掉所有的面,变为“树枝形”。
(2)从剩下的树枝形中,每去掉一条棱,就减少一个顶点,v+f1-e不变,直至只剩下一条棱。
以上过程v+f1-e不变,v+f1-e=1,所以加上去掉的一个面,v+f-e =2。
对任意的简单多面体,运用这样的方法,都是只剩下一条线段。因此公式对任意简单多面体都是正确的。
方法2:计算多面体各面内角和
设多面体顶点数v,面数f,棱数e。剪掉一个面,使它变为平面图形(拉开图),求所有面内角总和σα
一方面,在原图中利用各面求内角总和。
设有f个面,各面的边数为n1,n2,…,nf,各面内角总和为:
σα = [(n1-2)·1800+(n2-2)·1800 +…+(nf-2) ·1800]
= (n1+n2+…+nf -2f) ·1800
=(2e-2f) ·1800 = (e-f) ·3600 (1)
另一方面,在拉开图中利用顶点求内角总和。
设剪去的一个面为n边形,其内角和为(n-2)·1800,则所有v个顶点中,有n个顶点在边上,v-n个顶点在中间。中间v-n个顶点处的内角和为(v-n)·3600,边上的n个顶点处的内角和(n-2)·1800。
所以,多面体各面的内角总和:
σα = (v-n)·3600+(n-2)·1800+(n-2)·1800
=(v-2)·3600. (2)
由(1)(2)得: (e-f) ·3600 =(v-2)·3600
所以 v+f-e=2.
欧拉定理的运用方法
(1)分式:
a^r/(a-b)(a-c)+b^r/(b-c)(b-a)+c^r/(c-a)(c-b)
当r=0,1时式子的值为0
当r=2时值为1
当r=3时值为a+b+c
(2)复数
由e^iθ=cosθ+isinθ,得到:
sinθ=(e^iθ-e^-iθ)/2i
cosθ=(e^iθ+e^-iθ)/2
(3)三角形
设r为三角形外接圆半径,r为内切圆半径,d为外心到内心的距离,则:
d^2=r^2-2rr
(4)多面体
设v为顶点数,e为棱数,f是面数,则
v-e+f=2-2p
p为欧拉示性数,例如
p=0 的多面体叫第零类多面体
p=1 的多面体叫第一类多面体
(5) 多边形
设一个二维几何图形的顶点数为v,划分区域数为ar,一笔画笔数为b,则有:
v+ar-b=1
(如:矩形加上两条对角线所组成的图形,v=5,ar=4,b=8)
(6). 欧拉定理
在同一个三角形中,它的外心circumcenter、重心gravity、九点圆圆心nine-point-center、垂心orthocenter共线。
其实欧拉公式是有很多的,上面仅是几个常用的。
使用欧拉定理计算足球五边形和六边形数
问:足球表面由五边型和六边型的皮革拼成,计算一共有多少个这样的五边型和六边型?
答:足球是多面体,满足欧拉公式f-e+v=2,其中f,e,v分别表示面,棱,顶点的个数
设足球表面正五边形(黑皮子)和正六边形(白皮子)的面各有x个和y个,那么
面数f=x+y
棱数e=(5x+6y)/2(每条棱由一块黑皮子和一块白皮子共用)
顶点数v=(5x+6y)/3(每个顶点由三块皮子共用)
由欧拉公式,x+y-(5x+6y)/2+(5x+6y)/3=2,解得x=12
所以共有12块黑皮子
所以,黑皮子一共有12×5=60条棱,这60条棱都是与白皮子缝合在一起的
对于白皮子来说:每块白色皮子的6条边中,有3条边与黑色皮子的边缝在一起,另3条边则与其它白色皮子的边缝在一起,所以白皮子所有边的一半是与黑皮子缝合在一起的
那么白皮子就应该一共有60×2=120条边,120÷6=20
所以共有20块白皮子 在动力学里,欧拉旋转定理阐明,一个刚体在三维空间里,如果做至少有一点是固定点的位移,则此位移必相等于一个绕着 包含那固定点的固定轴 的旋转。这定理是以瑞士数学家莱昂哈德·欧拉命名的。用数学的术语,在三维空间内,任何共原点的两个座标系之间的关系,是一个绕着 包含原点的固定轴 的旋转。这并且意味着,两个旋转矩阵的乘积还是旋转矩阵。一个不是单位矩阵的旋转矩阵必有一个实数的本征值,而这本征值是 1 。 对应于这本征值的本征矢量与旋转所环绕的固定轴同线[1]。目录[隐藏] 1 应用 1.1 旋转生成元 1.2 四元数 2 参阅 3 参考文献 [编辑] 应用 [编辑] 旋转生成元 主要项目:旋转矩阵,旋转群 假若我们设定单位矢量 为固定轴,并且假设我们绕着这固定轴,做一个微小的角值 Δθ 的旋转; 取至第一次方近似值,旋转矩阵可以表述为:。 绕着固定轴做一个 角值的旋转,可以被视为许多绕着同样固定轴的连续的小旋转;每一个小旋转的角值为 ,是一个很大的数字。这样,绕着固定轴 角值的旋转,可以表述为:。 我们可以看到欧拉旋转定理基要的阐明: 所有的旋转都可以用这形式来表述。乘积 是这个旋转的生成元。用生成元来分析通常是较简易的方法,而不是用整个旋转矩阵。用生成元来分析的学问,被通认为旋转群的李代数。[编辑] 四元数 根据欧拉旋转定理,任何两个座标系的相对定向,可以由一组四个数字来设定;其中三个数字是方向余弦,用来设定特征矢量(固定轴);第四个数字是绕着固定轴旋转的角值。这样四个数字的一组称为四元数。如上所描述的四元数,并不介入复数。如果四元数被用来描述二个连续的旋转,则必须使用由威廉·卢云·哈密顿导出的非可换代数以复数来计算。在航空学的应用方面,通过四元数的方法来演算旋转,已经替待了方向余弦的方法。这是因为它们能减少所需的工作,以及它们能使舍入误差减到最小。并且,在 电脑图形学 里,四元数与四元数之间,简易执行 spherical linear interpolation 的能力是很有价值的。
‘肆’ 数学定律有哪些
数学定律有:加法交换律、加法结合律、乘法交换律、乘法结合律、乘法分配律等。具体如下:
加法交换律:两个数相加,交换加数的位置,它们的和不变。即a+b=b+a;
加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,它们的和不变。
加法的这两个运算定律,可以推广到任意多个数相加。
因此多位数加法计算法则是:相同数位对齐,从个位加起。
乘法交换律:两个数相乘,交换因数的位置,积不变。
乘法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再与第一个数相乘,它们的积不变。
乘法分配律:两个数的和与一个数相乘,可以把两个加数分别与这个数相乘,再把两个积相加,所得的结果不变。
乘法交换律和结合律可以推广到多个数的乘法。乘法分配律不仅可以推广到多个加数的情况,还可以推广到两个数的差与一个数相乘的情况。
多位数乘以一位数及多位数乘以多位数计算法则就是根据推广的乘法分配律得出的。
‘伍’ 求数学定理名称、内容
数学定理列表:
数学定理列表(按字母顺序排列)
阿贝尔-鲁菲尼定理
阿蒂亚-辛格指标定理
阿贝尔定理
安达尔定理
阿贝尔二项式定理
阿贝尔曲线定理
艾森斯坦定理
奥尔定理
阿基米德中点定理
波尔查诺-魏尔施特拉斯定理
巴拿赫-塔斯基悖论
伯特兰-切比雪夫定理
贝亚蒂定理
贝叶斯定理
博特周期性定理
闭图像定理
伯恩斯坦定理
不动点定理
布列安桑定理
布朗定理
贝祖定理
博苏克-乌拉姆定理
垂径定理
陈氏定理
采样定理
迪尼定理
等周定理
代数基本定理
多项式余数定理
大数定律
狄利克雷定理
棣美弗定理
棣美弗-拉普拉斯定理
笛卡儿定理
多项式定理
笛沙格定理
二项式定理
富比尼定理
范德瓦尔登定理
费马大定理
法图引理
费马平方和定理
法伊特-汤普森定理
弗罗贝尼乌斯定理
费马小定理
凡�6�1奥贝尔定理
芬斯勒-哈德维格尔定理
反函数定理
费马多边形数定理
格林公式
鸽巢原理
吉洪诺夫定理
高斯-马尔可夫定理
谷山-志村定理
哥德尔完备性定理
惯性定理
哥德尔不完备定理
广义正交定理
古尔丁定理
高斯散度定理
古斯塔夫森定理
共轭复根定理
高斯-卢卡斯定理
哥德巴赫-欧拉定理
勾股定理
格尔丰德-施奈德定理
赫尔不兰特定理
黑林格-特普利茨定理
华勒斯-波埃伊-格维也纳定理
霍普夫-里诺定理
海涅-波莱尔定理
亥姆霍兹定理
赫尔德定理
蝴蝶定理
绝妙定理
介值定理
积分第一中值定理
紧致性定理
积分第二中值定理
夹挤定理
卷积定理
极值定理
基尔霍夫定理
角平分线定理
柯西定理
克莱尼不动点定理
康托尔定理
柯西中值定理
可靠性定理
克莱姆法则
柯西-利普希茨定理
戡根定理
康托尔-伯恩斯坦-施罗德定理
凯莱-哈密顿定理
克纳斯特-塔斯基定理
卡迈克尔定理
柯西积分定理
克罗内克尔定理
克罗内克尔-韦伯定理
卡诺定理
零一律
卢辛定理
勒贝格控制收敛定理
勒文海姆-斯科伦定理
罗尔定理
拉格朗日定理 (群论)
拉格朗日中值定理
拉姆齐定理
拉克斯-米尔格拉姆定理
黎曼映射定理
吕利耶定理
勒让德定理
拉格朗日定理 (数论)
勒贝格微分定理
雷维收敛定理
刘维尔定理
六指数定理
黎曼级数定理
林德曼-魏尔斯特拉斯定理
毛球定理
莫雷角三分线定理
迈尔斯定理
米迪定理
Myhill-Nerode定理
马勒定理
闵可夫斯基定理
莫尔-马歇罗尼定理
密克定理
梅涅劳斯定理
莫雷拉定理
纳什嵌入定理
拿破仑定理
欧拉定理 (数论)
欧拉旋转定理
欧几里德定理
欧拉定理 (几何学)
庞加莱-霍普夫定理
皮克定理
谱定理
婆罗摩笈多定理
帕斯卡定理
帕普斯定理
普罗斯定理
皮卡定理
切消定理
齐肯多夫定理
曲线基本定理
四色定理
算术基本定理
斯坦纳-雷姆斯定理
四顶点定理
四平方和定理
斯托克斯定理
素数定理
斯托尔兹-切萨罗定理
Stone布尔代数表示定理
Sun-Ni定理
斯图尔特定理
塞瓦定理
射影定理
泰勒斯定理
同构基本定理
泰勒中值定理
泰勒公式
Turán定理
泰博定理
图厄定理
托勒密定理
Wolstenholme定理
无限猴子定理
威尔逊定理
魏尔施特拉斯逼近定理
微积分基本定理
韦达定理
维维亚尼定理
五色定理
韦伯定理
西罗定理
西姆松定理
西尔维斯特-加莱定理
线性代数基本定理
线性同余定理
有噪信道编码定理
有限简单群分类
演绎定理
圆幂定理
友谊定理
因式定理
隐函数定理
有理根定理
余弦定理
中国剩余定理
证明所有素数的倒数之和发散
秩-零度定理
祖暅原理
中心极限定理
中值定理
詹姆斯定理
最大流最小割定理
主轴定理
中线定理
正切定理
正弦定理
‘陆’ 数学定理有哪些
1、三角形各边的垂直一平分线交于一点。
2、勾股定理(毕达哥拉斯定理)
勾股定理是一个基本的几何定理,直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。也就是说,设直角三角形两直角边为a和b,斜边为c,那么a²+b²=c² 。
3、从三角形的各顶点向其对边所作的三条垂线交于一点
4、射影定理(欧几里得定理)
5、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分
6、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足为M,则AH=2OM
7、三角形的外心,垂心,重心在同一条直线上。
8、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,
9、四边形两边中点的连线和两条对角线中点的连线交于一点
10、间隔的连接六边形的边的中点所作出的两个三角形的重心是重合的。
11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上
12、库立奇*大上定理:(圆内接四边形的九点圆)
圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。
13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:$r=sqrt{[(s-a)(s-b)(s-c)]/s}$s为三角形周长的一半
14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点
15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有$AB^2+AC^2=2(AP^2+BP^2)$
16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有$nxxAB^2+mxxAC^2=(m+n)AP^2+(mn)/(m+n)BC^2$
17、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD
18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上
19、托勒密定理:
圆的内接四边形中,两对角线所包矩形的面积等于 一组对边所包矩形的面积与另一组对边所包矩形的面积之和。 从这个定理可以推出正弦、余弦的和差公式及一系列的三角恒等式,托勒密定理实质上是关于共圆性的基本性质。
20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形
‘柒’ 数学十大定理
1。人生的痛苦在于追求错误的东西。所谓追求错误的东西,就是你在无限趋近于它的时候,才猛然发现,你和它是不连续的。
2。人和人就像数轴上的有理数点,彼此可以靠得很近很近,但你们之间始终存在隔阂。
3。人是不孤独的,正如数轴上有无限多个有理点,在你的任意一个小邻域内都可以找到你的伙伴。但人又是寂寞的,正如把整个数轴的无理点标记上以后,就一个人都见不到了。
4。人和命运的关系就像F(x)=x与G(x)=x^2的关系。一开始,你以为命运是你的无穷小量。随着年龄的增长,你才发现你用尽全力也赶不上命运的步伐。这时候,若不是以一种卑微的姿态走下去,便是结束自己的生命。
5。零点存在定理告诉我们,哪怕你和他站在对立面,只要你们的心还是连续的,你们就能找到你们的平衡点。
6。人生是一个级数,理想是你渴望收敛到的那个值。不必太在意,因为我们要认识到有限的人生刻画不出无穷的级数,收敛也只是一个梦想罢了。不如脚踏实地,经营好每一天吧。
7。有限覆盖定理告诉我们,一件事情如果是可以实现的,那么你只要投入有限的时间和精力就一定可以实现。至于那些在你能力范围之外的事情,就随他去吧。
8。痛苦的回忆是可以缩小的,但不可能消亡。区间套最后套出的那一个点在整个区间上微不足道,但一定是存在的,而且刻骨铭心。
9。我们曾有多少的理想和承诺,在经历几次求导的考验之后就面目全非甚至荡然无存?有没有那么一个誓言,叫做f(x)=e^x?
10。幸福是可积的,有限的间断点并不影响它的积累。所以,乐观地面对人生吧~
1不等式定律:
3两+1两>2两+2两>4两
2衰减指数定律:
食堂装修后开张和新学期开始后,饭菜质量和份量呈指数形式衰减。
3多功能定律:
食堂不仅具有普通食堂的功能,它还具有小卖部,录像厅,自习室,还有陪心情不爽的同学叫板等多种功能。
4拉面拉抻次数定律:
每个拉面师傅在拉面时的拉抻次数永远是恒定的,习惯是很难更改的。(以6食堂为例,拉面永远是拉七次下锅:拉面平均长度的均值为0.5米*2的7次方=64米)
5 免费汤定律:
因为根据分子的不规则运动,所以从理论上讲,如果用一缸水煮上一颗红豆,那么这就不再是一缸水,而是一缸能消暑的免费汤。
6互补定律:
打饭师傅的发福程度与打给你饭菜的份量互补,打给你饭菜的质量与份量互补,(例如,如果给你的牛肉很多,一定是嚼不动的,如果给你饭很多,一定是夹生的,如果给你菜很多,一定难以下咽)
7 唯一性定律:
如果食堂的师傅给你的饭菜足够质量和份量,而且你又不是很pp,那么一定是膳食大检查的人员在食堂里。
8随机性定律:
无论是经济快餐,汤煲,还是特色炒菜都有随机出现铁丝,头发,苍蝇,石头,蜈蚣或别的令你胃口全无的可能性,随机率不可预计。
9 随机性定律推论:
我们仅仅从食物中随机出现的杂物,就推断出食堂大师傅的一些特点:师傅大多是经常脱发,用金属铁丝洗碗,而且非常喜欢昆虫和树叶的标本。
10 相对论定律:
如果你感觉勺子筷子或者餐具不干净,请你闭上眼睛,心里默念“这是经过红外线消过毒的!”然后就干净了。
‘捌’ 定理有哪些
共3个含义
定理(英语:Theorem)是经过受逻辑限制的证明为真的陈述。一般来说,在数学中,只有重要或有趣的陈述才叫定理。证明定理是数学的中心活动。一个定理陈述一个给定类的所有(全称)元素一种不变的关系,这些元素可以是无穷多,它们在任何时刻都无区别地成立,而没有一个例外。(例如:某些是,某些是,就不能算是定理)。猜想是相信为真但未被证明的数学叙述,或者叫做命题,当它经过证明后便是定理。猜想是定理的来源,但并非唯一来源。一个从其他定理引伸出来的数学叙述可以不经过成为猜想的过程,成为定理。 如上所述,定理需要某些逻辑框架,继而形成一套公理(公理系统)。同时,一个推理的过程,容许从公理中引出新定理和其他之前发现的定理。 在命题逻辑,所有已证明的叙述都称为定理。
各种数学叙述(按重要性来排列)
引理(又称辅助定理,补理)-某个定理的证明的一部分的叙述。它并非主要的结果。引理的证明有时还比定理长,例如舒尔引理。
推论-一个从定理随之而即时出现的叙述。若命题B可以很快、简单地推导出命题A,命题A为命题B的推论。
命题
定理
数学原理
结构
定理一般都有许多条件。然后有结论——一个在条件下成立的数学叙述。通常写作“若条件,则结论”。用符号逻辑来写就是条件→结论。而当中的证明不视为定理的成分。
逆定理
若存在某叙述为,其逆叙述就是。逆叙述成立的情况是,否则通常都是倒果为因,不合常理。若果叙述是定理,其成立的逆叙述就是逆定理。
若某叙述和其逆叙述都为真,条件必要且充足。
若某叙述为真,其逆叙述为假,条件充足。
若某叙述为假,其逆叙述为真,条件必要。
逻辑中的定理
逻辑语言中的定理表示的是一个公式集合,并且该公式集合中的每一个公式都代表着知识的一个片段,由此我们可以给定理一个更准确的表达(这里所说的定理