导航:首页 > 数字科学 > 高等数学有哪些

高等数学有哪些

发布时间:2022-02-16 14:54:22

❶ 高等数学包括哪些

高数又称为微积分
具体内容如下
一、 函数与极限分为
常量与变量
函数
函数的简单性态
反函数
初等函数
数列的极限
函数的极限
无穷大量与无穷小量
无穷小量的比较
函数连续性
连续函数的性质及初等函数函数连续性
二、导数与微分
导数的概念
函数的和、差求导法则
函数的积、商求导法则
复合函数求导法则
反函数求导法则
高阶导数
隐函数及其求导法则
函数的微分
三、导数的应用
微分中值定理
未定式问题
函数单调性的判定法
函数的极值及其求法
函数的最大、最小值及其应用
曲线的凹向与拐点
四、不定积分
不定积分的概念及性质
求不定积分的方法
几种特殊函数的积分举例
五、定积分及其应用
定积分的概念
微积分的积分公式
定积分的换元法与分部积分法
广义积分
六、空间解析几何
空间直角坐标系
方向余弦与方向数
平面与空间直线
曲面与空间曲线
八、多元函数的微分学
多元函数概念
二元函数极限及其连续性
偏导数
全微分
多元复合函数的求导法
多元函数的极值
九、多元函数积分学
二重积分的概念及性质
二重积分的计算法
三重积分的概念及其计算法
十、常微分方程
微分方程的基本概念
可分离变量的微分方程及齐次方程
线性微分方程
可降阶的高阶方程
线性微分方程解的结构
二阶常系数齐次线性方程的解法
二阶常系数非齐次线性方程的解法
十一、无穷级数
无穷级数是研究有次序的可数无穷个数或者函数的和的收敛性及和的数值的方法,理论以数项级数为基础,数项级数有发散性和收敛性的区别。只有无穷级数收敛时有一个和;发散的无穷级数没有和。算术的加法可以对有限个数求和,但无法对无限个数求和,有些数列可以用无穷级数方法求和。 包括数项级数、函数项级数(又包括幂级数、Fourier级数;复变函数中的泰勒级数、Laurent(洛朗)级数)。

❷ 高数有哪些分类,急求!!!!

本科高等数学教学中可以分为A、B、C、D四个等级(某些学校以考研的分类分为1、2、3、4),其难度依次有所降低。

其中高等数学A(或者是高等数学1)适用于理工类教学,考查内容最为广泛,包括狭义上的高数(即微积分)、线性代数、概率论和数理统计,有些特殊专业还包括部分数学与物理方程等更深层次的模块内容。

(2)高等数学有哪些扩展阅读:

一、课程特点

在中国理工科各类专业的学生(数学专业除外,数学专业学数学分析),学的数学较难,课本常称“高等数学”;文史科各类专业的学生,学的数学稍微浅一些,课本常称“微积分”。理工科的不同专业,文史科的不同专业,深浅程度又各不相同。

研究变量的是高等数学,可高等数学并不只研究变量。至于与“高等数学”相伴的课程通常有:线性代数(数学专业学高等代数),概率论与数理统计(有些数学专业分开学)。

二、历史发展

一般认为,16世纪以前发展起来的各个数学学科总的是属于初等数学的范畴,因而,17世纪以后建立的数学学科基本上都是高等数学的内容。由此可见,高等数学的范畴无法用简单的几句话或列举其所含分支学科来说明。

19世纪以前确立的几何、代数、分析三大数学分支中,前两个都原是初等数学的分支,其后又发展了属于高等数学的部分,而只有分析从一开始就属于高等数学。分析的基础——微积分被认为是“变量的数学”的开始,因此,研究变量是高等数学的特征之一。

原始的变量概念是物质世界变化的诸量的直接抽象,现代数学中变量的概念包含了更高层次的抽象。如数学分析中研究的限于实变量,而其他数学分支所研究的还有取复数值的复变量和向量、张量形式的。

以及各种几何量、代数量,还有取值具有偶然性的随机变量、模糊变量和变化的(概率)空间——范畴和随机过程。描述变量间依赖关系的概念由函数发展到泛函、变换以至于函子。

与初等数学一样,高等数学也研究空间形式,只不过它具有更高层次的抽象性,并反映变化的特征,或者说是在变化中研究它。

例如,曲线、曲面的概念已发展成一般的流形。按照埃尔朗根纲领,几何是关于图形在某种变换群下不变性质的理论,这也就是说,几何是将各种空间形式置于变换之下来来研究的。

❸ 高等数学有哪些

高等数学主要内容:
函数、极限、连续,一元函数微分学, 一元函数积分学, 向量代数与空间解析几何,
多元函数微分学,重积分,曲线积分与曲面积分,无穷级数, 微分方程

❹ 高等数学包括哪些范围有加分!!!

如果是文科生的话,通常考经济与管理类的研究生会涉及到高数,包括这样一些内容:
函数、极限、导数、微分、积分、线性代数、概率论与数理统计。
至于书嘛,主要是高等数学(上)、线性代数、概率论与数理统计三本。

至于前面提到的那些级数、场论、常微分方程都不会涉及到的。

❺ 高等数学(一)有哪些

包括:极限、导数、微分、不定积分、定积分、微分方程

❻ 高等数学包括哪些内容

包括微积分、代数学、几何学以及它们之间的交叉内容。高等数学的主要学习内容包括数列、极限、微积分、空间解析几何与线性代数、级数、常微分方程。

作为一门基础科学,高等数学有其固有的特点,这就是高度的抽象性、严密的逻辑性和广泛的应用性。抽象性和计算性是数学最基本、最显着的特点,有了高度抽象和统一,我们才能深入地揭示其本质规律,才能使之得到更广泛的应用。

大学数学学内容:

1、极限

极限思想是微积分的基本思想,是数学分析中的一系列重要概念,如函数的连续性、导数(为0得到极大值)以及定积分等等都是借助于极限来定义的。极限是解决高等数学问题的基础。

2、微积分

微积分是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。它是数学的一个基础学科,在许多领域都有重要的应用。

3、空间解析几何

借助矢量的概念可使几何更便于应用到某些自然科学与技术领域中去,因此,空间解析几何介绍空间坐标系后,紧接着介绍矢量的概念及其代数运算。

❼ 高等数学包括哪些内容有哪些

数列、极限、微积分、空间解析几何与线性代数、级数、常微分方程。

作为一门基础科学,高等数学有其固有的特点,这就是高度的抽象性、严密的逻辑性和广泛的应用性。

抽象性和计算性是数学最基本、最显着的特点,有了高度抽象和统一,我们才能深入地揭示其本质规律,才能使之得到更广泛的应用。

学习方法

在课前最好预习一下,看哪些东西看不懂。听课时必须十分认真,还可稍微记点笔记。重点听记自己不懂的地方。

听了教授的课后,一般还要反重复习,先回忆教授讲的课,再重点理解甚至是模仿教授解的题(如高等代数没入门时可这样处,多次反复模仿解题,有助于理解),完成作业。

❽ 高数内容有哪些

高数主要内容包括:数列、极限、微积分、空间解析几何与线性代数、级数、常微分方程。

广义地说,初等数学之外的数学都是高等数学,也有将中学较深入的代数、几何以及简单的集合论初步、逻辑初步称为中等数学的,将其作为中小学阶段的初等数学与大学阶段的高等数学的过渡。

通常认为,高等数学是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。



高数的特点

作为一门基础科学,高等数学有其固有的特点,这就是高度的抽象性、严密的逻辑性和广泛的应用性。抽象性和计算性是数学最基本、最显着的特点,有了高度抽象和统一,我们才能深入地揭示其本质规律,才能使之得到更广泛的应用。

严密的逻辑性是指在数学理论的归纳和整理中,无论是概念和表述,还是判断和推理,都要运用逻辑的规则,遵循思维的规律。所以说,数学也是一种思想方法,学习数学的过程就是思维训练的过程。人类社会的进步,与数学这门科学的广泛应用是分不开的。

无穷进入数学,这是高等数学的又一特征。现实世界的各种事物都以有限的形式出现,无穷是对他们的共同本质的一种概括。所以,无穷进入数学是数学高度理论化、抽象化的反映。数学中的无穷以潜无穷和实无穷两种形式出现。


以上内容参考:网络-高等数学

❾ 高等数学包含哪些内容,有哪些科目

内容包含:
一、 函数与极限
二、导数与微分
三、导数的应用
四、不定积分
五、定积分及其应用
六、空间解析几何
七、多元函数的微分学
八、多元函数积分学
九、常微分方程
十、无穷级数
主要包括的科目有:微积分,数理统计等。
其实,高中就有涉及,高数只是深化了一些。

阅读全文

与高等数学有哪些相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:703
乙酸乙酯化学式怎么算 浏览:1371
沈阳初中的数学是什么版本的 浏览:1316
华为手机家人共享如何查看地理位置 浏览:1009
一氧化碳还原氧化铝化学方程式怎么配平 浏览:846
数学c什么意思是什么意思是什么 浏览:1368
中考初中地理如何补 浏览:1259
360浏览器历史在哪里下载迅雷下载 浏览:670
数学奥数卡怎么办 浏览:1349
如何回答地理是什么 浏览:988
win7如何删除电脑文件浏览历史 浏览:1021
大学物理实验干什么用的到 浏览:1447
二年级上册数学框框怎么填 浏览:1658
西安瑞禧生物科技有限公司怎么样 浏览:826
武大的分析化学怎么样 浏览:1212
ige电化学发光偏高怎么办 浏览:1300
学而思初中英语和语文怎么样 浏览:1605
下列哪个水飞蓟素化学结构 浏览:1387
化学理学哪些专业好 浏览:1451
数学中的棱的意思是什么 浏览:1016