导航:首页 > 数字科学 > 小学数学比的解决问题应用了什么思想

小学数学比的解决问题应用了什么思想

发布时间:2022-12-09 22:49:59

‘壹’ 如何在小学数学教学中渗透数学思想方法

数学思想方法是解决数学问题所采用的方法。它是数学概念的建立、数学规律的归纳、数学知识的掌握和数学问题解决的基础。在人的数学研究中,最有用的不仅仅是数学知识,更重要的是数学思想方法。小学数学中常用的数学思想方法有数形结合思想方法、对应思想方法、符号化思想方法、化归思想方法等。下面我就如何向学生渗透这些数学思想方法分别举例说明。
1数形结合的数学思想方法。
数和形是数学研究的两个主要对象,两者既有区别,又有联系,互相促进。所谓数形结合的思想方法就是通过具体事实的形象思维过渡到抽象思维的方法。数形的结合是双向的,一方面,抽象的数学概念、复杂的数量关系,借助图形使之直观化、形象化、简单化;另一方面,复杂的形体可以用简单的数量关系表示。用图解法分析问题就是运用这种方法。我从二年级开始就教学生画线段图分析应用题的数量关系。例如《现代小学数学》第三册的例题:“南庄小学秋季种树53棵,比春季多种8棵。春季种树多少棵?”先让学生找到关健句,弄清谁与谁比,谁多谁少,画出线段图:

这样做学生比较容易找到数量关系,列出正确版式,同时有克服见“多”就“加”,见“少”就“减”的思维定势。
2对应的思想方法。
对应是人们对两上集合元素之间的联系的一种思想方法。为此在教学中,我充分发挥教材优势,结合教学内容逐步渗透“对应”的数学思想方法。例如《现代小学数学》第一册的“多和少”,课本先出示散乱排列的等量的茶杯和茶杯盖图,接着重新排列整理,使每一个茶杯盖与每一个茶杯对应,直观看到“茶杯与茶杯盖相比,一个对一个,一个也不多,一个也不少”,我们就说茶杯与茶杯盖同样多。使学生初步接触一一对应的思想,初步感知两个集合的各元素之间能一一对应,它们的数量就是“同样多”。
3符号化数学思想方法。
数学的一个突出特点是符号加逻辑。而符号化思想是数学信息的载体,能大大简化运算或推理过程,加快思维的速度,提高学习效率。因此在教学中,要尽量把实际问题用数学符号来表达,还要充分把握每个数学符号所蕴含的丰富内涵和实际意义。例如《现代小学数学》中关于“1”的认识,先让学生从1架飞机、1棵树、1个女孩等具体事物中,概括出数字符号“1”,从具体的量到抽象的数。然后再从抽象的数学符号“1”到具体量,让学生列举表示“1”的具体事物,1把椅、1顶帽子、1件衣服………。
又如,教学“小于和大于”一课,从左右相等的积木的左端拿一个积森到右端。

这时右边的积木块数增多,“=”右边开口张大;左边积木数减少,“=”左边的开口缩小,边说边用左手的食指、中指摆成一个小于号,使学生认识小于号。再用同样的方法认识“大于号”。直观形象地引导学生掌握表示大小关第的符号,从中渗透符号化数学思想方法。
4“化归”的数学思想方法。
化归思想能增长学生智慧与创造能力,是数学中最普遍使用的一种思想方法。即先挖掘内在联系,把问题A转化为熟悉的问题B,再通过问题的解决方法去获得问题A的解。这样做能把问题化难为易、化生为熟、化繁为简、化整为零、化曲为直,可以促使学生提高解决问题的速度。
例如第四册《思维训练》例1,计算一个乒乓球重多少克?
本题直接求解较难。我从数学思想方法的角度去引导学生将奁、右各种球一一对应进行比较:
得出:左右两图的足球、羽毛球的个数相等,乒乓球个数不等,右图的乒乓球个数比左图的多2个,引起右边重了6克,从而把问题化归为“两个乒乓球重6克,一个乒乓球重多少克?”这样一个非常简单的算术问题,学生很容易就解决了。
实践证明,在教学中,如果我们注意从数学思想方法的角度去启发、引导学生思考,就会使学生对新知识不但能快速学会,而且能加深理解、应用,从而提高解决问题的能力,发展学生的思维能力。

‘贰’ 比的基本性质教学涉及什么数学思想

比的基本性质:比的前项和后项同时乘或除以同一个不为0的数,比值不变, 此性质在数学时里就是两个数相除时,被除数与除数同时扩大或缩小相同倍数时其商不会发生改变的原理。
比的前项相当于被除数,后项相当于除数,比值就是除式中的商。

‘叁’ 《比例的意义和性质》中可以用到哪些数学思想方法

小学阶段最常用的化归的思想方法。利用化归法转化而得到的新问题与原问题相比较,为已解决的或较容易解决的。所以,化归的方向应该是化隐为显,化繁为简、化难为易和化未知为已知。应当指出,化归思想是把一个实际问题通过某种转化、归结为一个数学问题,把一个较复杂的问题转化、归结为一个较简单的问题。这种化归思想不同于一般所讲的“转化”、“转换”。

‘肆’ 小学数学思想方法梳理

小学阶段的数学思想方法

抽象、推理和模型是数学的基本思想方法,是最高层面的思想方法,在实践中又派生出很多与具体内容结合的思想方法。

在小学阶段,数学思想方法主要有符号化思想方法、类比思想方法、化归思想方法、分类思想方法、方程思想方法、函数思想方法、集合思想方法、对应思想方法、数形结合思想方法、数学建模思想方法、代换思想方法、优化的思想方法、假设的思想方法、极限思想方法、统计思想方法。

(一)符号化思想方法

用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想方法。在实际教学中,符号化的数学思想方法经常使用。如数学中各种数量关系(时间、速度和路程 :S=vt ;反比例关系:xy=k );还有量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。如定律(加法交换律: a + b =b + a ;乘法分配律 : a (b+c) = ab + ac )、公式(平行四边形面积:S = ah ;圆柱的体积: V= sh );以及用符号表示图形(如三角形ABC 有符号表示角:∠1、∠2、∠3;两线段平行:AB∥CD ) ;还有其他的符号化思想方法的具体应用。通过这样的教学,使学生感受到使用符号的简洁性,逐步形成符号思想方法。

(二)、类比思想方法

无论是学习新知识,还是利用已有知识解决新问题,如果能够把新知识和新问题与已有的相类似的知识进行类比,进而找到解决问题的方法,这样就实现了知识和方法的正迁移。因此,要引导学生在学习数学的过程中善于利用类比思想方法,提高解决问题的能力。例如在数与代数中,与整数的运算顺序和运算定律相类比,可以导出到小数、分数的运算顺序和运算定律;还有与分数的基本性质相类比,可以导出比也具有类似的性质,并且可以推出它和分数一样能够进行化简和运算。问题解决中数量关系相近的问题的类比(如修一座桥,已知工作总量和工作时间,求工作效率的问题。通过类比的方法,修一条公路、生产一批零件的问题等,用同样方法可以解决);使用此方法最记忆犹新的就是在推导三角形的面积时,就类比了平行四边形面积的推导方法,从而使得面积的推导更加轻松易懂,也让学生体会到类比方法的好处,从而形成类比思想方法。而这两种图形面积的推导方法就是接下来我们要说的转化的数学思想方法。

(三)、化归思想方法

化归思想方法就是转化的思想方法。转化思想方法是由一种形式变换成另一种形式的思想方法。在实际教学中,如几何的等面积变换(例如:五年级上册学习有关平行四边形面积的推导过程时,我们把未知的知识转化为已知的知识来进行探讨,就是把平行四边形的面积转化为长方形的面积,在这个转化的过程中,面积不变,只是形状发生了变化,继而通过长方形面积推导出平行四边形的面积);还有在解方程中(例如:解方程的过程,利用一些等式的性质、积与因数的关系等,实际就是不断把方程转化为未知数前边的系数是1的过程(x=a) );公式的变形中也常用到转化的思想方法(例如:小数乘法和小数除法就是转化为我们熟悉的整数乘法和整数除法来进行解答)。

(四)、分类思想方法

分类思想方法不是数学独有的方法,就是以一定标准对某一对象进行分类。对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构。在教学中,此思想方法经常用。如自然数的分类,若按能否被2整除分为奇数和偶数;若按约数的个数分为质数和合数。又例如我在教学《锐角和钝角》时,就采用了此方法,让学生给一堆凌乱的角进行分类,通过分类让学生总结锐角和钝角的特征;还比如,在教学《认识图形》时,通过让学生对实际物品进行分类,从而抽象出各种图形。

(五)、方程思想方法

方程思想方法的核心是将问题中未知量用数字以外的数学符号(常用x、y等字母)表示,根据数量关系之间的相等关系构建方程模型。方程思想方法体现了已知与未知数的对立统一。小学数学在学习方程之前的问题,都通过算术方法解决,在引入方程之后,小学数学中比较复杂的有关数量关系的问题,都可以通过方程解决,方程思想方法是小学思想方法的重要思想方法。例如用一元一次方程解决整数、小数、分数,百分数和比例等各种问题,还有用方程解决鸡兔同笼问题等。

(六)、函数思想方法

设集合ab是两个非空数集,如果按照某种确定的对立关系f,如果对于集合a中的任意一个数x,在集合b中都有唯一确定的数y和它的对应,那么就称y是x的函数,记作y=f(x)。其中x叫做自变量,x的取值范围a叫做函数的定义域;y叫做函数或因变量,与x相对应的y的值叫做函数值,y的取值范围b叫做值域。这是函数定义的。函数思想方法体现了运动变化的、普遍性的观点。虽然在小学数学里没有学习函数的概念,但是有函数思想方法的渗透。与函数最为接近的就是有积的变化规律(一个因数不变,积随着另一个因数的变化而变化, 表示为Y=KX. 渗透正比例函数关系)、商的变化规律(除数不变,商随着被除数的变化而变化,可表示为Y=XK,渗透正比例函数思想方法; 被除数不变, 商随着除数的变化而变化, 可表示为K=YX, 渗透反比例函数思想方法)、还有六年级有关的正比例关系和反比例关系这块内容就是函数思想方法最好的体现。

(七)、集合思想方法

把指定的具有某种性质的事物看作一个整体,就是一个集合(简称集),其中每个事物叫做该集合的元素(简称元)。集合思想方法就是运用集合的概念、逻辑语言、运算、图形等来解决数学问题或非纯数学问题的思想方法。例如在讲约数和倍数是渗透集合的思想方法,而且讲述公约数和公倍数时采用了交集的思想方法。还有关于四边形、梯形、长方形、正方形、平行四边形的分类也应用了集合的思想方法。

(八)、对应思想方法

对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此产生函数思想方法。如直线上的点<数轴>与表示具体的数量是一一对应的;还有在一年级上《比多少》的教学中就已经使用了一一对应的数学思想方法,将物品一一对应起来,进而更容易比出多少。通过此方法的应用,学生逐步感受到,将比较的东西一一对应起来会便于比较,解决问题比较方便。

(九)、数形结合思想方法

数和形是数学研究的两个主要对象,数不离形,形不离数,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化。另一方面复杂的形体可以用简单的数量关系表示。如教学《植树问题》时,就采用了数形结合的数学思想方法,通过“图”与“式”的结合继而找出他们之间的数量关系;除此之外,在解应用题中常常借助线段图的直观帮助分析数量关系(如六年级上册探究“一个数除以分数”的算理时,可以借助线段图的方法找出他们之间的联系,也是数形结合思想方法的应用)。

(十)、数学建模思想方法

数学中的各种概念、公式和理论都是由现实世界的原型抽象出来的,从这个意义上讲,所有的数学知识都是刻画现实世界的模型。数学建模就是建立数学模型来解决问题的思想方法。例如:小学数学五年级的出租车计费的问题。出租车起步价是8元,2千米以后按照每千米1.8元计算。小明去的地方离这里有6千米,需要多少出租车费?对待这个问题,学生难免会出现两种情况:一是直接用1.8乘6,忽略起步价;二是知道起步价之内公里数先减掉,最后忘记加上起步价。在教育教学中,教师最好用清晰的线段图示进行分析,让学生慢慢建立一个有关这类问题的一个模型,用起步价加上计价路程的费用,就是等于一共要付的出租车费用。当学生建立好这样的一个模型,对待类似有关问题,可以借助这类模型用同样的方法发散思维。如五年级上册小数乘法的一个课后题就是关于上网收费的问题就可以按照这个数学模型来解决。再说另外一个数学建模的例子,就是在六年级上册学习分数除法的有关知识时,通过学习分数除以整数的知识类比迁移到一个数除以分数的算理,然后再结合整数除法,进行一个有关除法运算的一个知识建构,建立一个针对这几个类型都能使用的数学模型就是: A ÷ B = A × 1/B (B ≠ 0 ),也就是建立有关这类除法运算的万能公式模型。

(十一)、代换思想方法

代换思想方法是方程解法的重要原理,解题时可将某个条件用别的条件进行代换。例如小明买了一套衣服,上衣和裤子总共504元,上衣价格是裤子价格的3倍,上衣和裤子的单价各是多少元?在解决问题中,用代换的思想方法,把上衣的价格用裤子的价格进行代换,这样把求两个未知量的问题转化成求一个未知量的问题,这样就简单化了,问题迎刃而解了。

(十二)、优化思想方法

“优化思想方法”是数学思想方法的重要组成部分,也是构成一个人数学综合素养的要素之一。优化思想方法就是在有限种或无限种可行方案(决策)中挑选最优的方案(决策)的思想方法,是一个很重要的数学思想方法。“优化思想方法”在小学数学教材中处处可见渗透痕迹,如计算教学中的“算法优化”。例:教学中出现如下计算题:27+31=?,让学生用自己喜欢的算法进行计算,学生学到的方法有:

(1)笔算法:7+1=8,20+30=50,8+50=58;

(2)凑整法:27+3+28=(27+3)+28=30+28=58;

(3)分解法:27+1+30=(27+1)+30=28+30=58;

(4)口算法一:20+30=50,7+1=8,50+8=58;

(5) 口算法二:27+30=57,57+1=58或31+20=51,51+7=58。

这些算法,只要引导学生通过比较,很容易得到最优化的方法或基本的算法,但许多教师在教学两位数加减两位数(口算)时,由于片面理解新课程理念倡导的“鼓励算法多样化”理念,认为只要学生喜欢的算法就应提倡,因而就忽视了算法最优化的过程。本题教学中,最优化的算法应该是口算法二,有些学生已经想到,但教师没有引导学生通过比较,得出这是最基本、最优化的算法。实际上,在这五种算法中,口算法二的算法,他的解题过程思考的步骤最少,只有两步,口算教学的基本原则是尽量减少口算过程暗记次数,学生通过比较是很容易得出这一最优化的算法的,同时,这一最优化的算法对于接着学习“两位数加两位数进位加法(口算)”有着重要的铺垫作用。因而数学计算教学鼓励学生算法多样化,必须以算法优化为基础,必须通过引导学生比较算法,从而优化算法,使学生形成基本算法,为今后学习和提高计算技能打下良好的基础。

还有解决问题教学中的“策略优化”。例如:解决“鸡兔同笼”的策略有很多,学生通过多种方法的探索,积累了解决问题的经验,掌握了解决问题的不同方法。但各种方法之间也要突出重点,不能每种方法都泛泛而谈。在众多方法中,列表法、画图法都具有各自的局限性,基于这部分内容安排在五年级,因此在教学中应突出体现一般方法——假设法和代数法的教学。由于代数法是四年级已接触学习过的方法,因此教学中教师以假设法为重中之重来体现,用列表法和图示法帮助学生理解假设法的算理。这样无形之中,体现了解决问题策略多样化、多样化中有优化的特点。

(十三)、假设思想方法

假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。假设思想方法最典型的应用就是《鸡兔同笼》问题了。学生学习完鸡兔同笼,无不对假设的数学思想方法使用的相当熟练。

例如有3个头,8只脚。

假设全是鸡

就有3*2=6只脚

但是还剩2支脚

兔比鸡多2只脚 就是有1个两只脚

所以有1只兔子2只鸡。

假设全是兔

就有3*4=12支脚

剩下4只

鸡比兔多2只脚 就是有2个两支脚

所以有2只鸡 一只兔子

(十四)、极限思想方法

极限是用以描述变量在一定的变化过程中的终极状态的概念。极限的思想方法为建立微积分学提供了严格的理论基础,极限的思想方法为数学的发展提供了有力的思想方法武器。极限思想方法是一种非常重要的思想方法,是形象思维向抽象思维转化的纽带。在小学阶段渗透极限思想方法,不仅可以提高学生的抽象思维能力,而且有利于掌握数学的思想方法和方法。在小学教学中的在公式推倒过程中渗透极限思想方法。例如在教学“圆面积公式的推导”一课时,教师是这样设计的。

师:我们过了一些图形的面积计算公式,今天我们来研究圆的面积公式。你们有什么办法吗?

生:可以把圆转化为我们学过的图形。

师:怎么转化?

生:分一分。

演示把圆平均分成了2分,把两个半圆地拚起来,结果还是一个圆。

生:多分几份试一试。

演示把一个圆分割为完全相同的小扇形,并试图拚成正方形。从平均分成4个、8个、到16个……

师:你们有什么发现?

生:分的份数越多,拼成的图形就越接近长方形。

课件继续演示把圆平均分成32个、64个……完全相同的小扇形。教师适时说“如果一直这样分下去,拼出的结果会怎样?

生:拼成的图形就真的变成了长方形,因为边越来越直了。

这个过程中从“分的份数越来越多”到“这样一直分下去”的过程就是“无限”的过程,“图形就真的变成了长方形”就是收敛的结果。学生经历了从无限到极限的过程,感悟了极限思想方法的具大价值。学生有了这个基础,到将来学习圆柱体积公式的推导时就会很自然地联想到这种办法,从而再一次加以利用解决问题,在不断的应用中学生的极限思想方法会潜移默化地形成。

以上计算公式的推导过程,采用了“变曲为直”、“化圆为方”极限分割思路。在通过有限想象无限,根据图形分割拼合的变化趋势,想象它们的最终结果。既使学生掌握了计算公式,又萌发了无限逼近的极限思想方法。

(十五)、统计思想方法

小学数学中的统计图表是一些基本的统计方法,例如:求平均数应用题是体现出数据处理的思想方法。(统计一个班的学生的身高、体重、年龄等这些参数,算出这些参数的平均数就是用统计的思想方法处理的。)

‘伍’ 比的应用是根据什么数学知识思考的

比是一种数量关系,相同于除法、分数,但除法是一种运算,分数是一个数,这就是它们的区别。比由两个数组成,第一个数叫前项,第二个数叫后项,中间用“:”连接,后项不能为0。 两个数相除又叫做两个数的比。“:”是比号。在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。比值通常用分数表示,也可以用小数或整数表示。比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

‘陆’ 如何在小学数学解题中运用抽象思维法

在小学数学解题方法中,运用概念、判断、推理来反映现实的思维过程,叫抽象思维,也叫逻辑思维。

抽象思维又分为:形式思维和辩证思维。客观现实有其相对稳定的一面,我们就可以采用形式思维的方式;客观存在也有其不断发展变化的一面,我们可以采用辩证思维的方式。形式思维是辩证思维的基础。

形式思维能力:分析、综合、比较、抽象、概括、判断、推理。

辩证思维能力:联系、发展变化、对立统一律、质量互变律、否定之否定律。

小学数学要培养学生初步的抽象思维能力,重点突出在:

(1)思维品质上,应该具备思维的敏捷性、灵活性、联系性和创造性。

(2)思维方法上,应该学会有条有理,有根有据地思考。

(3)思维要求上,思路清晰,因果分明,言必有据,推理严密。

(4)思维训练上,应该要求:正确地运用概念,恰当地下判断,合乎逻辑地推理。

1、对照法

如何正确地理解和运用数学概念?小学数学常用的方法就是对照法。根据数学题意,对照概念、性质、定律、法则、公式、名词、术语的含义和实质,依靠对数学知识的理解、记忆、辨识、再现、迁移来解题的方法叫做对照法。

这个方法的思维意义就在于,训练学生对数学知识的正确理解、牢固记忆、准确辨识。

例1:三个连续自然数的和是18,则这三个自然数从小到大分别是多少?

对照自然数的概念和连续自然数的性质可以知道:三个连续自然数和的平均数就是这三个连续自然数的中间那个数。

例2:判断题:能被2除尽的数一定是偶数。

这里要对照“除尽”和“偶数”这两个数学概念。只有这两个概念全理解了,才能做出正确判断。

2、公式法

运用定律、公式、规则、法则来解决问题的方法。它体现的是由一般到特殊的演绎思维。公式法简便、有效,也是小学生学习数学必须学会和掌握的一种方法。但一定要让学生对公式、定律、规则、法则有一个正确而深刻的理解,并能准确运用。

例3:计算59×37+12×59+59

59×37+12×59+59

=59×(37+12+1)…………运用乘法分配律

=59×50…………运用加法计算法则

=(60-1)×50…………运用数的组成规则

=60×50-1×50…………运用乘法分配律

=3000-50…………运用乘法计算法则

=2950…………运用减法计算法则

3、比较法

通过对比数学条件及问题的异同点,研究产生异同点的原因,从而发现解决问题的方法,叫比较法。

比较法要注意:

(1)找相同点必找相异点,找相异点必找相同点,不可或缺,也就是说,比较要完整。

(2)找联系与区别,这是比较的实质。

‘柒’ 现行小学数学教材中哪些章节中蕴含了哪些数学思想怎样把握数学思想来设计教学举

⑴ 符号思想
用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学的内容,这就是符号思想。符号思想是将所有的数据实例集为一体,把复杂的语言文字叙述用简洁明了的字母公式表示出来,便于记忆,便于运用。把客观存在的事物和现象及它们相互之间的关系抽象概括为数学符号和公式,有一个从具体到表象再抽象符号化的过程。用符号来体现的数学语言是世界性语言,是一个人数学素养的综合反映。
⑵ 化归思想
化归思想是数学中最普遍使用的一种思想方法,其基本思想是:把甲问题的求解,化归为乙问题的求解,然后通过乙问题的解反向去获得甲问题的解。一般是指不可逆向的“变换”。它的基本形式有:化难为易,化生为熟,化繁为简,化整为零,化曲为直等。如求组合图形的面积时先把组合图形割补成学过的简单图形,然后计算出各部分面积的和或差,均能使学生体会化归法的本质。
⑶ 分解思想
分解思想就是先把原问题分解为若干便于解决的子问题,分解出若干便于求解的范围,分解出若干便于层层推进的解题步骤,然后逐个加以解决并达到最后顺利解决原问题的目的的一种思想方法。如在五年级《解决问题的策略》教学中“倒退着想”的解题策略就体现了这种思想。
⑷ 转换思想
转换思想是一种解决数学问题的重要策略,是由一种形式变换成另一种形式的思想方法,这里的变换是可逆的双向变换。在解决数学问题时,转换是一种非常有用的策略。 对问题进行转换时,既可转换已知条件,也可转换问题的结论;转换可以是等价的,也可以是不等价的,用转换思想来解决数学问题,转换仅是第一步,第二步要对转换后的问题进行求解,第三步要将转换后问题的解答反演成问题的解答。如果采用等价关系作转换,可直接求出解而省略反演这一步。
⑸ 分类思想
分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。如自然数的分类,若按能否被2整除分奇数和偶数;按因数的个数分素数和合数。又如三角形可以按边分,也可以按角分。不同的分类标准就会有不同的分类结果,从而产生新的概念。对数学对象的正确、合理的分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构
⑹ 归纳思想
数学归纳法是一种数学证明方法,典型地用于确定一个表达式在所有自然数范围内是成立的或者用于确定一个其他的形式在一个无穷序列是成立的。有一种用于数理逻辑和计算机科学广义的形式的观点指出能被求出值的表达式是等价表达式,这就是着名的结构归纳法
⑺ 类比思想
数学上的类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想,它能够解决一些表面上看似复杂困难的问题。类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟得自然和简洁,从而可以激发起学生的创造力。
⑻ 假设思想
假设思想是一种常用的推测性的数学思考方法利用这种思想可以解一些填空题、判断题和应用题。有些题目数量关系比较隐蔽,难以建立数量之间的联系,或数量关系抽象,无从下手。可先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,最后找到正确答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可以使得要解决的问题更形象、具体,从而丰富解题思路。
⑼ 比较思想
人类对一切事物的认识,都是建筑在比较的基础上,或同中辨异,或异中求同。俄国教育家乌申斯基说过:“比较是一切理解和一切思维的基础。”小学生学习数学知识,也同样需要通过对数学材料的比较,理解新知的本质意义,掌握知识间的联系和区别。
在教学分数应用题中,教师要善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题的途径。
⑽ 极限思想
事物是从量变到质变,极限方法的实质正是通过量变的无限过程达到质变。现行小学教材中有许多处注意了极限思想的渗透。
⑾ 演绎思想
演绎也是理智的活动,但是和直观不同,它们不是理智的单纯活动,必须先假定了某些真理(或定义)之后,然后再凭借这些定义推出一些结论。
⑿ 模型思想
是指对于现实世界的某一特定对象,从它特定的生活原型出发,充分运用观察、实验、操作、比较、分析综合概括等所谓过程,得到简化和假设,它是生活中实际问题转化为数学问题模型的一种思想方法。
培养学生用数学的眼光认识和处理周围事物或数学问题乃数学的最高境界,也是学生高数学素养所追求的目标。
⒀ 对应思想
对应指的是一个系统中的某一项在性质、作用、位置上跟另一系统中的某一项相当。对应思想可理解为两个集合元素之间的联系的一种思想方法。在小学数学教学中渗透对应思想,有助于提高学生分析问题和解决问题的能力。
⒁ 集合思想
把若干确定的有区别的(不论是具体的或抽象的)事物合并起来,看作一个整体,就称为一个集合,其中各事物称为该集合的元素。通俗地说就是:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合。
⒂ 数形结合思想
就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义又揭示其几何意义,使问题的数量关系和空间形式巧妙、和谐地结合起来,通过数与形的相互转化来解决数学问题的思想。
⒃ 统计思想
在小学数学中增加统计与概率课程的意义在于形成合理解读数据的能力、提高科学认识客观世界的能力、发展在现实情境中解决实际问题的能力。
⒄ 系统思想
系统思想是由若干想到关联、想到作用的要素(或成分)构成具有特定功能的有机整体。系统思想的方法便是要求人们从系统要素相互关系的观点,从系统与要素之间、要素与要素之间,以及系统与外部环境之间的相互关联和相互作用中考察对象,以得出研究和解决问题的最佳方案。
3、界定“渗透”

‘捌’ 浅谈在数学教学中,怎样运用化归思想

数学思想方法是联系知识和能力的纽带,是数学科学的灵魂。为了提高教学质量,使学生更好地理解数学知识、获取解决问题的有效策略,我们必须重视数学思想方法的教学。
化归方法是数学中最基本的思想方法之一。它是指数学家们把待解决的问题通过某种转化过程,归结到一类已经解决或者比较容易解决的问题中,最终获得原问题的解答的一种手段和方法。在小学数学中蕴藏着各种可运用化归的方法进行解答的内容,我们在教学中可逐步渗透这种思想方法,让学生逐步领悟直至到高年级能进行简单的应用。
笔者现在担任教学的两个班是从二年级开始带起的,在这几年的教学过程中我进行了化归方法的渗透教学,到五年级时,我发现学生已能自然地想到使用它来解决数学问题了。我在教学中深刻体会到化归方法的是一种行之有效的思想方法,它有着较为广泛的用途,掌握了它将使我的学生们终身受益。以下是笔者的一些探索和心得:
一、寻找生长点,化未知为已知。
在学习新知时,我总是先启发学生从自己已有的知识中设法去寻找与新知识的相似之处,将新问题中陌生的形式或内容转化为比较熟悉的形式和内容。例如:数的大小比较学生从低年级起就学习了,随着对数的研究的不断深入,学生要进行两位数与三位数、万以内的数、多位数以及小数、百分数、分数的大小比较。刚开始学整数的大小比较时,我就让学生搞清:每个数位上的数字所表示的含义是不同的,因为计数单位不同。接着我再让他们理解整数的大小比较的基本方法:位数多的数比较大(计数单位大);相同位数的数,先从高位比起(计数单位最大的数位上的数比起),依次比较,直到比出大小来。有了这些基础知识的铺垫,学生在学习“万以内数的大小比较”一课时,已能通过老师的启发、同学的讨论和自己的思考来解决例题了。
学习“小数的大小比较”一课时,学生能借助于自己的旧知解决整数部分的大小比较,小数部分的大小比较学生又有小数的意义为支点,理解了小数与整数大小比较的方法的相似性以及旧知识的铺垫,学生自然地将“小数的大小比较”化归为类似“整数的大小比较”问题,这一内容很快在学生的思考与讨论中解决了。
小学数学教材中经常有类似的内容出现,找出新知识与旧知识的相似之处,找准知识的生长点,就能将未知的内容化归为我们熟悉的内容,学生在化归方法的渗透过程中也渐渐地学会了思考问题的方法。
二、掌握规律,化繁为简。
随着年级的升高,对数学知识的不断深入,在学习过程中学生们所遇到的问题也越来越复杂。而化归方法却可使比较复杂的形式、关系结构变为比较简单的形式和关系结构,这种方法的有效性在中、高年级时表现的更为突出。
在中年级时,学生就开始接触到一些平面图形的面积问题。学生在学习了长方形面积公式之后,通过剪、拼、割、补等方法相继得到了平行四边形、三角形以及梯形的面积公式,这时学生对化归方法已有了朦胧的认识。有了这样的学习经验的,接下去在高年级求组合图形面积或较复杂的图形面积时,学生自然地想到了通过分割或拼接的方式也将它们化归为已学过的图形,然后得到其面积的方法。
三、拓展思路,化难为易。
高年级学生学过的数学知识逐渐丰富起来,在我的不断鼓励之下,学生们遇到问题总是喜欢做一做、想一想、议一议,然后在自己的独立思考过程之后大胆提出看法。随着化归思想方法的不断渗透,学生们认识到几乎所有的难题经过老师的启发或同学之间的讨论,看清其实质,总能化归为比较简单的问题来解决。这种思想方法也就在他们解题时经常被想到。
《新课程标准》要求教师鼓励学生独立思考,引导学生自主探究、合作交流。在实际教学中我正是这么做的。学生对数学的学习越深入,对于问题的理解和思考方法也越来越多样化。在课堂上,许多同学都争先恐后地发表自己的意见,还能对自己的观点进行合理地解释。例如:在学习了相关的内容之后,教材中出现了1/5<( )<1/4,要求填写出合适的分数。我知道这是一道很有挑战性的习题,答案不是唯一的,学生们如果能灵活应用已有的知识就可以轻松得到答案。于是,我就将这道题交给学生,让他们自己想办法来解决。学生们刚开始面对它时紧锁眉头,接着他们或低头沉思,或埋头计算,或小声议论,经过了一段时间的思考、酝酿,他们都自信满满地举起了手。学生们根据自己对题意的理解将它化归为以下题目:①同分母分数的大小比较。8/40<(9/40)<10/40 ②异分母分数的大小比较。2/10<(2/9)<2/8 ③两位小数的大小比较。0.2<0.24(6/25)<0.25 ④大数(小数)接近法。1/5<(23/100)<25/100或<5/25<(6/25)<1/4。
对于学生们获得的这些答案,我感到非常满意,不仅因为他们都按自己的思路大胆地去尝试获得了成功,而且他们都想到了利用化归的思想方法将难题转化为较简单的问题,然后合理利用旧知来灵活解决。说明几年潜移默化的教学已经深入人心,他们开始自觉地想到和应用它了,这正是我的教学目标之一。
波利亚说:“完善的思想方法,犹如北极星,许多人通过它而找到了正确的道路。”化归思想方法在新知识学习、问题解决和知识结构梳理等方面都有重要的应用。它能帮助学生化未知为已知,化难为易,化繁为简,化曲为直。这种思想方法的渗透和简单应用的教学不仅对学生现在的学习具有辅助和促进作用,我想在他们未来的工作和学习将有更加广泛的应用。
我在将来的教学过程中将一如既往地进行其他数学思想方法的渗透和简单应用,把它们与数学知识有机结合起来,帮助学生学好知识,进而优化他们的知识结构,提高学生的数学素养。

‘玖’ 小学奥数 的 解题思想 及方法 要总的概括哦

首先声明是网上找的,不过找了我半天

数学思想方法是人们对数学知识内容的本质认识和对所使用的方法和规律的理性认识。小学数学解题中会涉及到许多数学思想方法,重视对这些数学思想方法的渗透和运用,能增加学生的学习兴趣,启迪学生的思维,发展学生的数学智能,培养学生的创新意识和实践能力;有利于学生领悟数学的真谛,学会数学地思考问题,掌握解决数学问题的途径、手段和策略,提高学生的数学素养及分析问题和解决问题的能力。
一、转化的思想方法

转化是解决数学问题常用的思想方法。转化就是将有待解决或未解决的问题,通过某种转化手段,归结为另一个相对比较容易解决的或者已经有解决程序的问题,以求得问题的解答。小学数学解题中,遇到一些数量关系复杂、隐蔽而难以解决的问题时,可通过转化,使生疏的问题熟悉化、抽象的问题具体化、复杂的问题简单化,从而顺利解决问题。

例1:甲、乙两校共有学生2100人,甲校人数的 等于乙校人数的 。甲、乙两校各有学生多少人?

分析与解:题中甲校学生总数和乙校学生总数的关系比较隐蔽复杂,可以把已知条件“甲校人数的 等于乙校人数的
”转化为“甲校人数与乙校人数的比是25∶17(甲× =乙× ,甲∶乙= ∶ =25∶17)”,本是复杂的问题就变得十分简单了。由此可求出甲校学生人数=2100×
=1250(人),乙校学生人数=2100× =850(人)。

例2: 上学期六(1)班的男生是女生的 ,这学期六(1)班又转来了2名女同学,现在六(1)班的男生是女生的
。上学期六(1)班有男生和女生共多少人?

分析与解:题中先后出现两个分率,都是以女生人数为单位“1”,但恰恰是女生的人数发生了变化,让人难以下手解答。可以把题中条件“上学期六(1)班的男生是女生的
”转化成“上学期六(1)班的女生是男生的 ”,再把“现在六(1)班的男生是女生的 ”转化成“现在六(1)班的女生是男生的
”。这样,通过转化就把男生转化成了单位“1”,由于男生人数没有发生变化,很容易找到“转来2名女同学”的对应分率 - = 。由此可求出上学期六(1)班有男生2÷
=30(人),有女生30× =18(人),所以,上学期六(1)班有男生和女生共30+18=48(人)。

二、数形结合的思想方法

数形结合思想方法,就是把问题的数量关系和空间形式结合起来去分析问题、解决问题,其实质是将抽象的数学语言与直观的图形结合起来,使得抽象的数学概念或复杂的数量关系直观化、形象化、简单化。小学数学解题中,有些问题数量关系复杂,用一般的思考方法难以发现解题线索,可以把题中的条件和问题用图形直观形象地表示出来,然后“按图索骥”,便能很快发现解题的线索,使问题迅速得到解决。

例3:水果店有一批水果,运出总数的 后,又运进700千克,现在水果店里的水果正好是原来的
。原来水果店的水果是多少千克?

分析与解:读题后,画出线段图:

原来?千克

运出总数的

运进700千克

现在正好是原来的

借助线段图,很清楚地看出700千克与 和 的相互重叠处相对应,由此可以得到以下几种解法:

解法1:从左往右看,700千克是 与1- 的差,解法为:700÷[ -(1- )]。

解法2:从右往左看,700千克是 与1- 的差,解法为:700÷[ -(1- )]。

解法3:从两端往中间看,700千克是夹在1- 与1- 中间的一段,解法为:700÷[1-(1- )-(1- )]。

解法4:从整体上看,700千克是 与 的重叠部分,解法为:700÷( + -1)

例4:全班同学去划船,如果减少一条船,每条船正好坐9个同学;如果增加一条船,每条船正好坐6个同学。这个班有多少个同学?

H F

D S1 C

G K J

S2

A E B L

分析与解:如图,用长方形的长表示船的条数,宽表示每条船坐的学生数,用长方形的面积表示这个班的学生数。“如果减少一条船,每条船正好坐9个同学。”即长方形的长减少1,宽增加到9;“如果增加一条船,每条船正好坐6个同学”
即长方形的长增加1,宽减少到到6。由于这个班的学生数不变,也就是长方形的面积不变,所以图中S1(长方形ELJK)=S2(长方形GKFH),从而长方形AEFH=6×2÷(9-6)×9=36,即这个班有36个同学。

三、假设的思想方法

假设是一种常用的推测性的数学思想方法。小学数学解题中,有些问题数量关系比较隐蔽,难以建立数量之间的联系,或数量关系抽象,无从下手。可以根据问题的具体情况合理假设,由此得出一些关系和结论,产生差异与矛盾,通过分析与思考,找出差异的原因,使复杂问题简单化,数量关系明朗化,从而达到解决问题的目的。

例5:甲乙两人同时从相距36千米的A地向B地行驶,甲骑自行车每小时行12千米,乙步行每小时行4千米。甲到B地后休息2小时返回A地,中途与乙相遇,相遇时乙行了多少千米?

分析与解:假设甲到B地后没有休息,继续行驶,那么相遇时甲乙两人共行的路程是:36×2+12×2=96(千米)。由此可求出两人经过多长时间相遇,也就是乙行驶的时间是96÷(12+4)=6(小时),所以相遇时乙行了4×6=24(千米)。

例6:养鸡场分三次把一批肉鸡投放市场,第一次买出的比总数的 多100只,第二次买出的比总数的
少120只,第三次买出320只。这批鸡共有多少只?

分析与解:本题的特点是分率后面还有个具体数量,给思考带来麻烦。可以假设没有后面的具体数量,去零为整,这样便于思考。假设第一次正好买出总数的
,把多的100只放在第三次买出,即第三次要多买出100只;假设第二次正好买出总数的
,那么少的120只需要从第三次取来,即第三次要少买出120只。这样,第三次多买出的只数是320+100-120=300(只)。由此可求出这批鸡共有300÷(1-
- )=1800(只)。

四、整体的思想方法

整体的思想方法就是从整体观点出发,有意识地放大思考问题的“视角”,
纵观全局,通过研究问题的整体形式、整体结构、整体特征,并对其进行调节和转化,从而使问题得到解决。小学数学解题中,有些问题从每个部分或条件去思考不易解决时,可以把问题的各个部分或条件作为一个整体,全面考虑,往往能收到意想不到的效果,使繁难的问题得到迅速巧妙的解决。

例7:如下图,在三角形内以分别三个顶点为圆心,画三个半径3厘米的扇形,这三个扇形面积的和是多少平方厘米?

分析与解:按常规解法,求三个扇形面积的和是多少平方厘米,只要分别找到三个扇形的半径和圆心角的度数,求出每个扇形的面积,再把结果相加就很容易求出答案,但题中无法找到这三个扇形的圆心角的度数。由题中条件可知这三个扇形的圆心角刚好是三角形的三个内角,从整体考虑,这三个扇形圆心角的度数和刚好是三角形的内角和1800。如果把这三个扇形合并起来正好是一个半径为3厘米的半圆,所以这三个扇形面积的和是3.14×32÷2=14.13(平方厘米)。

例8:甲、乙、丙三人合修一段公路,甲修的路是乙丙所修路的 ,乙修的路是甲丙所修路的
,丙修了1350米。这段公路长多少米?

分析与解:从“甲修的路是乙丙所修路的 ”和“乙修的路是甲丙所修路的
”去思考,问题难于解答,主要原因是单位“1”在不断变化。不妨从整体上分析:以这段公路的全长为单位“1”,那么甲修的路是这段公路的 ,乙修的路是这段公路的
。这样,丙就修了这条路的1- - = 。所以这段公路长1350÷ =3600(米)

五、比较的思想方法

教育家乌申斯基说过:“比较是一切理解和思维的基础,我们正是通过比较来了解世界上的一切。”显然乌申斯基所强调的是一种思想方法,即比较的思想方法。比较的思想方法就是通过对问题的相同点、不同点的对比,全面而深刻地认识问题的本质。小学数学解题中,可以对题中的条件或问题进行比较,找出它们之间存在的差异,分析存在差异的原因,从而找到解决问题的方法。

例9:小强买2枝真彩水笔和3块橡皮,用去2.2元,小华买同样的真彩水笔4枝和3块橡皮,用去3.8元。求每枝真彩水笔和每块橡皮售价各多少元?

分析与解:摘录题中条件,列表如下:

真彩水笔(枝)

橡皮(块)

用钱(元)

小强

2

3

2.2

小华

4

3

3.8

比较“小强”、“小华”两组数量会发现,两人所买橡皮的块数相同,小华比小强多买了(4-2)枝真彩水笔,多用了(3.8-2.2)元。所以每枝真彩水笔售价是(3.8-2.2)÷(4-2)=0.8(元),而每块橡皮售价是(2.2-0.8×2)÷3=0.2(元)。

例10:某班男生人数的 与女生人数的 共有20人,而男生人数的 与女生人数的 共有26人。

分析与解:将题中条件列表如下:

条件

人数

第一种情况

男生的 +女生的

20人

第二种情况

男生的 与女生的

26人

直接比较有困难,可以将第一种情况的条件扩大2倍,人数也相应扩大2倍,则第一种情况变为:男生人数的 与女生人数的 ×2(
)共有40人。这时比较第一、第二两种情况可以发现女生的 比 多(40-26)人。从而可求出:女生人数是(40-26)÷( -
)=24(人),男生人数是(26-24× )÷ =20(人),或(20-24× )÷ =20(人)。

六、分类的思想方法

有些数学问题,由于条件与问题之间的联系不是单一的,情况比较复杂,为了解决问题的方便,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类的思想方法。它是一种重要的数学思想方法,应用分类的思想方法要做到分类恰当,不重复不遗漏。

例11:给一本书编页码,一共用去732个数字,这本书一共有多少页?

分析与解:按照每个页码所用数字的个数分类:①只用一个数字的有1~9页,共用了9个数字;②用二个数字的有10~99页,共用了2×(99-9)=180(个)数字;③余下的(732-180-9)个数字用来编三位数的页码,可以编(732-180-9)÷3=181(个)页码。于是可以求出这本书一共有9+90+181=280(页)。

例12:一段长方体木料,长、宽、高分别是10厘米
、8厘米和6厘米。现在把它加工成一个最大的圆柱体模型,加工成的最大圆柱体模型的体积是多少?

分析与解:用这段长方体木料加工一个最大的圆柱体模型,可以有三种不同的加工方法,加工的圆柱体模型体积也不同,因此不能直接求解,可运用分类的思想方法求解。

①以长方体木料上下面为底,以长方体木料高为圆柱体高,由此圆柱体底面直径为8厘米。这样加工成的圆柱体模型体积是3.14×(8÷2)2×6=301.44(立方厘米);

②以长方体木料左右侧面为底,以长方体木料长为圆柱体高,由此圆柱体底面直径为6厘米。这样加工成的圆柱体模型体积是3.14×(6÷2)2×10=282.6(立方厘米);

③以长方体木料前后面为底,以长方体木料宽为圆柱体高,由此圆柱体底面直径为8厘米。这样加工成的圆柱体模型体积是3.14×(8÷2)2×6=226.08(立方厘米)。

由此求得加工成的最大圆柱体模型的体积是301.44立方厘米。

阅读全文

与小学数学比的解决问题应用了什么思想相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:739
乙酸乙酯化学式怎么算 浏览:1404
沈阳初中的数学是什么版本的 浏览:1350
华为手机家人共享如何查看地理位置 浏览:1042
一氧化碳还原氧化铝化学方程式怎么配平 浏览:884
数学c什么意思是什么意思是什么 浏览:1408
中考初中地理如何补 浏览:1299
360浏览器历史在哪里下载迅雷下载 浏览:701
数学奥数卡怎么办 浏览:1387
如何回答地理是什么 浏览:1023
win7如何删除电脑文件浏览历史 浏览:1055
大学物理实验干什么用的到 浏览:1484
二年级上册数学框框怎么填 浏览:1699
西安瑞禧生物科技有限公司怎么样 浏览:973
武大的分析化学怎么样 浏览:1247
ige电化学发光偏高怎么办 浏览:1337
学而思初中英语和语文怎么样 浏览:1650
下列哪个水飞蓟素化学结构 浏览:1423
化学理学哪些专业好 浏览:1486
数学中的棱的意思是什么 浏览:1057