1. 做完数学题都总结什么
相信很多同学都有这种感觉,就是为什么我花了很多的时间、很多的精力,可是数学成绩就是上不去。都说做数学题做完之后,要学会 总结 一下,但是可究竟要怎么总结呢?下面给大家分享一些关于做完数学题都总结什么,希望对大家有所帮助。
一.做完数学题都总结什么
1、 反思 解题本身是否正确
由于在解题的过程中,可能会出现这样或那样的错误,因此在解完一道题后就很有必要进行审查自己的解题是否混淆了概念,是否忽视了隐含条件,是否特殊代替一般,是否忽视特例,逻辑上是否有问题,运算是否正确,题目本身是否有误等。这样做是为了保证解题无误,这是解题后最基本的要求,真正认实到解题后思考的重要性。
2、反思有无 其它 解题 方法
对于同一道题,从不同的角度去分析研究,可能会得到不同的启示,从而引出多种不同的解法,当然,我们的目的不在于去凑几种解法,而是通过不同的观察侧面,使我们的思维触角伸向不同的方向,不同层次,发展学生的 发散思维 能力。例如对函数Y=(X^2-1)/(X^2+1)求值域,那么我们做了判别式法后,想想还有哪些方法可以解决此问题呢比如反函数法,换元法,分离变量法.把这些方法想到了最后一步就是拿出你的数学财富本,把这几种方法总结一下,哪种数学模型的求值域可以用这种方法.
3、反思结论或性质在解题中的作用
有些题目本身可能很简单,但是它的结论或做完这道题目本身用到的性质却有广泛的应用,如果仅仅满足于解答题目的本身,而忽视对结论或性质应用的`思考、探索,那就可能会“拣到一粒芝麻,丢掉一个西瓜“。一道题中本身必然包含了具体的数学知识和方法,你要通过这道题把本题所蕴涵的知识和方法提炼出来,总结归纳.像函数,研究的不外乎是定义域,值域,单调性,最值等.每做一个题就可以把这些东西复习一下,这样才能对的起你做的题.
4、反思题目能否变换引申
改变题目的条件,会导出什么新结论;保留题目的条件结论能否进一步加强;条件作类似的变换,结论能扩大到一般等等。象这样富有创造性的全方位思考,常常是发现新知识、认识新知识的突破口。
5、反思解决问题的思维方法能否迁移
解完一道题目后,不妨深思一下解题程序,有时会突然发现:这种解决问题的思维模式竟然体现了一训重要的数学思想方法,它对于解决一类问题大有帮助。这样,有利于深化对数学知识和方法的认识,真正领悟到数学的思想和知识的结构,促进其创造性思维能力的发展,从而充分发挥自己的智能和潜能。
二. 数学学习建议有哪些
1.学数学要善于思考,自己想出来的答案远比别人讲出来的答案印象深刻。
2.课前要做好预习,这样上数学课时才能把不会的知识点更好的消化吸收掉。
3.数学公式一定要记熟,并且还要会推导,能举一反三。
4.学好数学最基础的就是把课本知识点及课后习题都掌握好。
5.数学80%的分数来源于基础知识,20%的分数属于难点,所以考120分并不难。
6.数学需要沉下心去做,浮躁的人很难学好数学,踏踏实实做题才是硬道理。
7.数学要想学好,不琢磨是行不通的,遇到难题不能躲,研究明白了才能罢休。
8.数学最主要的就是解题过程,懂得数学思维很关键,思路通了,数学自然就会了。
9.数学不是用来看的,而是用来算的,或许这一秒没思路,当你拿起笔开始计算的那一秒,就豁然开朗了。
10.数学题目不会做,原因之一就是例题没研究明白,所以数学书上的例题绝对不要放过。
做完数学题都总结什么相关 文章 :
★ 做完数学题之后的总结
★ 做完数学题目的总结
★ 做完数学题的总结
★ 做完数学作业的心得
★ 做数学题需要思路
★ 做六年级数学题的学习方法和做题方法
★ 数学学习方法总结
★ 数学选择题答题的十大方法
★ 做六年级数学题的学习和提分方法
2. 如何让学生学会总结数学题,举一反三,融会贯通
如何让学生学会总结数学题,举一反三,融会贯通?今天我们就针对这个问题来进行讨论,希望能够帮到有需要的朋友。
4.建立自己的思维导图
思维导图是一个非常好的学习方法,对于学数学的学生来说,建立属于自己的思维导图,将已经掌握的知识和将要学习的知识联系起来,建立思维导图,对于学习会有非常大的帮助。
5.将学会的知识讲给别人听
自认为已经学会了知识,结果讲给别人听的时候,却发现自己有许多不会的地方,这就是这种方法的好处,可以通过这种方法查漏补缺,另外在给别人讲授知识的时候,别人也会提出问题,针对这些问题进行回答,也是一个总结巩固的过程。
3. 数学总结怎么写呀
数学总结如下:
1、今天上数学课的时候,我们进行了数学测验,我只得了96分。回家后我认真的总结了我的错误。有一道题是因为我太粗心了,没有认真看清题目做完试卷后也没有认真的检查,丢了一分。还有一道题是做对了,但是我没有按照老师的要求把圆圈涂成阴影,所以也扣了我3分。
2、我觉得这道题丢分实在是太可惜了,以后我一定要改掉我粗心大意坏习惯,做题一定要按照试卷的要求和老师的要求去做,争取下次考试得100分,我有信心!
3、成绩并非想高就高,要靠努力,没有行动的理想是空想。就像尼采说的那样,一件东西的价值有时并不取决于人们的收益,而是取决于人们的付出,取决于你为它付出了多大的代价。
4、聪明才智不在于知识渊博。我们不可能什么都知道。聪明才智不在于知道尽量地多知道,而在于知道最必要的东西,知道哪些东西不需要知道哪些东西。
5、重不在于成绩,而在于掌握这句话我记住了。我一定要汲取每次丢分的教训,做错的题绝不再错第二次,争取在这次期末考试中考出优异的成绩!
6、主动积极与同备课老师交流,共同探究教育教学。积极参与学校公开周公开课教学。认真听取其他老师的每堂公开课,学习别人的优点,克服自己的不足,改进教学工作,提高教学水平。通过参加教研活动,丰富了自己的教学方法和教学技能,为进一步提高教学成绩打下了坚实的基矗。
4. 高中数学要怎么总结解题方法
高中数学解题思路与技巧总结
(1)函数
函数题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。
(2)方程或不等式
如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;
(3)初等函数
面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如所过的定点,二次函数的对称轴或是……;
(4)选择与填空中的不等式
选择与填空中出现不等式的题目,优选特殊值法;
(5)参数的取值范围
求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;
(6)恒成立问题
恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;
(7)圆锥曲线问题
圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;
(8)曲线方程
求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);
(9)离心率
求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;
(10)三角函数
三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;
(11)数列问题
数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;
(12)立体几何问题
立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2 ;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题;
(13)导数
导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;
(14)概率
概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径;
(15)换元法
遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成;
(16)二项分布
注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;
(17)绝对值问题
绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;
(18)平移
与平移有关的,注意口诀“左加右减,上加下减”只用于函数,沿向量平移一定要使用平移公式完成;
(19)中心对称
关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。
六种解题思路:
1.函数与方程思想
函数与方程的思想是中学数学最基本的思想。所谓函数的思想是指用运动变化的观点去分析和研究数学中的数量关系,建立函数关系或构造函数,再运用函数的图像与性质去分析、解决相关的问题。而所谓方程的思想是分析数学中的等量关系,去构建方程或方程组,通过求解或利用方程的性质去分析解决问题。
2.数形结合思想
数与形在一定的条件下可以转化。如某些代数问题、三角问题往往有几何背景,可以借助几何特征去解决相关的代数三角问题;而某些几何问题也往往可以通过数量的结构特征用代数的方法去解决。因此数形结合的思想对问题的解决有举足轻重的作用。
解题类型
(1)“由形化数”:就是借助所给的图形,仔细观察研究,提示出图形中蕴含的数量关系,反映几何图形内在的属性。
(2)“由数化形” :就是根据题设条件正确绘制相应的图形,使图形能充分反映出它们相应的数量关系,提示出数与式的本质特征。
(3)“数形转换” :就是根据“数”与“形”既对立,又统一的特征,观察图形的形状,分析数与式的结构,引起联想,适时将它们相互转换,化抽象为直观并提示隐含的数量关系。
3.分类讨论思想
分类讨论的思想之所以重要,原因一是因为它的逻辑性较强,原因二是因为它的知识点的涵盖比较广,原因三是因为它可培养学生的分析和解决问题的能力。原因四是实际问题中常常需要分类讨论各种可能性。
解决分类讨论问题的关键是化整为零,在局部讨论降低难度。
常见的类型
类型1:由数学概念引起的的讨论,如实数、有理数、绝对值、点(直线、圆)与圆的位置关系等概念的分类讨论;
类型2:由数学运算引起的讨论,如不等式两边同乘一个正数还是负数的问题;
类型3 :由性质、定理、公式的限制条件引起的讨论,如一元二次方程求根公式的应用引起的讨论;
类型4:由图形位置的不确定性引起的讨论,如直角、锐角、钝角三角形中的相关问题引起的讨论。
类型5:由某些字母系数对方程的影响造成的分类讨论,如二次函数中字母系数对图象的影响,二次项系数对图象开口方向的影响,一次项系数对顶点坐标的影响,常数项对截距的影响等。
分类讨论思想是对数学对象进行分类寻求解答的一种思想方法,其作用在于克服思维的片面性,全面考虑问题。分类的原则:分类不重不漏。
4.转化与化归思想
转化与化归是中学数学最基本的数学思想之一,是一切数学思想方法的核心。数形结合的思想体现了数与形的转化;函数与方程的思想体现了函数、方程、不等式之间的相互转化;分类讨论思想体现了局部与整体的相互转化,所以以上三种思想也是转化与化归思想的具体呈现。
转化包括等价转化和非等价转化,等价转化要求在转化的过程中前因和后果是充分的也是必要的;不等价转化就只有一种情况,因此结论要注意检验、调整和补充。转化的原则是将不熟悉和难解的问题转为熟知的、易解的和已经解决的问题,将抽象的问题转为具体的和直观的问题;将复杂的转为简单的问题;将一般的转为特殊的问题;将实际的问题转为数学的问题等等使问题易于解决。
常见的转化方法
(1)直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题;
(2)换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题;
(3)数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得转化途径;
(4)等价转化法:把原问题转化为一个易于解决的等价命题,达到化归的目的;
(5)特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的问题,使结论适合原问题;
(6)构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题;
(7)坐标法:以坐标系为工具,用计算方法解决几何问题也是转化方法的一个重要途径。
5.特殊与一般思想
用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样有用。
6.极限思想
极限思想解决问题的一般步骤为:
一、对于所求的未知量,先设法构思一个与它有关的变量
二、确认这变量通过无限过程的结果就是所求的未知量
三、构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。
掌握数学解题思想是解答数学题时不可缺少的一步,建议同学们在做题型训练之前先了解数学解题思想,掌握解题技巧,并将做过的题目加以归纳总结,以便在考试中游刃有余。
5. 如何把写过的数学题目总结分类有什么好的办法
按具体内容章节目录来归类,按知识要点来归类,把同样的题目类型,归纳到一起。题目是多种多样的,可是同一种种类的题目的解题思路是互通的。归纳到一起,举一反三,融会贯通!数学课公式推导题,定律推理的证明题,尤其是传统的几何模型题,分类梳理,几何模型娴熟,针对后边遇上稍难的平面几何而言,便会游刃有余很多。
相对而言,解题方法的总数应低于题目类型的总数,因此,我个人觉得可以以汇总方式为主导,题目类型做为协助表明。随后在这种前提下,自已汇总出一套切实可行的答题工作经验和招数,会慢慢发觉高考考试数学中的绝大部分难点的调查方法和考试点全是相对性固定不动的,将不一样的题目相匹配不一样的解题方法,可以较大水平上阶段学生们在考场上面对问题时的拮据,也让答题可以更为有针对性和专一性。
6. 做完数学题如何分析 做完数学题目之后怎么去分析错题,反思,思考,总结.
1、要知道自己之前的解题思路错在哪里
2、对照参考答案的接替思路再想一遍
3、对题目进行深化,先是改变题目中的数值,然后是条件和问题进行转变,想想如果是原题中的问题变成条件,原题的条件变成问题怎么做,这样就变成多道题目了
4、有时候一些同一个类型的题目归纳在一起就好了
7. 总结数学题目应该怎么样总结
准备一个笔记本“好题选萃”,主要用来登记一些有价值的题目。比如:一份试卷中,你容易出错的题目,技巧性较强的题目,有特色的题目,或你感觉有价值的题目,就要把它们记录到这个本上。还有你在一些课外读物上遇到的有价值的题目也给登记下来。在登记这些题的过程中,你会加深理解它们,从而记忆深刻。等过一段时间,你再看这些题时,可以检查你对它们所反映知识的掌握情况。一个学期下来,如果你记录的好题都会做,那么你的水平就不一般了。 要提高解题效率,就必须在“反思”上下功夫. 1.反思所涉及的知识点
高中数学的基本内容是有限的,课程标准规定的基础知识也是有限的,而题目却是灵活多变的.对同一个知识点,命题者可以从不同角度或以不同的层次和题型来考查.但很多同学在面对新题型时,往往觉得很难,其症结主要是找不到命题者的意图及考查的知识点.因此,每解答完一个题目后应反思题目所涉及的基础知识,使知识点和题目挂钩,不仅可以查漏补缺、夯实基础,还可优化知识结构,便于知识的消化、贮存、提取和应用.
2.反思解题规律
解完一道试题后,反思解题方法中有无规律可循?解题思路是否正确、严谨?解题方法是否灵活、有创意?通过几道题的求解,引出一类题的解法,可更有效地强化解题能力,提高解题效率.
通过反思,可使同学们学会在理解题意方面寻找规律,从而积累更多的解题经验,这也是元认知方面的训练,可大大提高解题效率.
3.反思解题中的失误
同学们在解题时可能会出现种种失误,这些失误既有知识上的缺陷和能力上的不足,也有非智力因素的影响.这些非智力因素主要表现在答题方法、书写规范、应试的心理调控、时间的合理安排等方面.因此,同学们应认真总结和反思解题中出现的失误,可进行如下反思:自己是否很好地理解了题意?在解题时曾走过哪些弯路?犯过哪些错误?综上所述,同学们若养成解题后的反思习惯,善于在反思上下功夫,既可牢固掌握“双基”,促进知识的有效迁移,同化和深化对问题的理解,又可提高解题效率和正确率,同时也是学好高中数学的有效方法,更是一种提升学习能力的好方法.
8. 数学如何学会总结
目前学校的教学方法,最主要的就是教会学生“总结”。而总结的核心,就是“分类”。目前的这种以分类为核心的总结方法,由于过于僵化,所以,随着分类不断细化,思维就必然越来越僵化。
比如某个学生本来又会做三角函数的题目,也会做一元二次方程的题目,也会用一元二次方程的方法解决很多三角函数的题目,而且做题速度很快。但老师教会他“总结”后,他把三角函数的题目分成好几类,每一类又分成了好几类,等等不断的细分下去。
然后,在分类过程中,进行说明,比如这类题目应该用一元二次方程,另外一类题目不该用一元二次方程,等等。经过这么细致的分类之后,他确实有能会做了一些新的类型的题目,但原来的快速解题能力明显的下降了。而且,以前做题的那种轻松、流畅的感觉,彻底消失了。
那么,如何解决“分类”与“灵活”的矛盾呢?
其实方法很简单,就是在“分类”的过程中,你的进一步的“分类”,不要受其他人的已有的分类的限制,也不要被自己的分类所限制,也不要被自己的总结的各种方法所限制。你可以横向分类、竖向分类、正向分类、反向分类,分类之后再分类,不同的分类之间进行分类,等等。
对于数学,还有一些方法:你总结出很多解题技巧之后,进行分类。例如你总结出某种解题技巧可解决哪些题型,而哪些题型可以变化成另外的题型,等等。总结这些东西到一定程度之后,你就尝试着“自己出题”,在自己出题的过程中,针对某一个题型,找“一题多解”类参考书,尤其是一种题型有几十种以上解题技巧的,专门找超出你分类范围之外的,这样,你的大脑和笔记本中的“解题技巧体系”就得到进一步扩充了。
从“原理”的角度,“分类”是“思维支脚”的形成和细化的一个重要方法这个过程中,你的大脑中的“思维海”被强行“犁”出了很多“思维缝隙”,这些“思维缝隙”有可能把原有的“思维钩子”给弄断掉了。所以,你需要重塑或者新建一些“思维钩子”(把断掉的“思维钩子”再连接起来,那是不可能的,“思维钩子”可不是现实生活中的绳子)。