Ⅰ 方程式什么意思呢
“方程”也叫做“方程式”或“方程组”,即含有未知数的等式。如:x-2=5,x+8=y-3。使等式成立的未知数的值称为方程的“解”或“根”。求方程的解的过程称为“解方程”。
方程分为很多类。代数学中,根据方程未知数的个数,可将其分为:一元方程,二元方程,三元方程等。根据方程未知项的最高次数,可将其分为:一次方程,二次方程,三次方程等。在近代数学中,还有微分方程、差分方程、积分方程等学科。此外,还可以将方程分为线性方程和非线性方程。
Ⅱ 什么是方程
可以先从方程的定义开始说:
方程式或简称方程,是含有未知数的等式。
所以,最简单地说,方程最为根本的一点,就是它是等式,也就是说,式子的等号“=”的左右两边在某个确定的条件下,是相等的。而这个定义的另一个关键,就是未知数了。
再来想想什么是未知数:
:这里的x是未知数,而这个未知数x表示的也正是某个数,为了使得这个等式成立,于是我们就有了这样的解:;
:这里有两个未知数,却无法获得确切的x、y的大小,但是,我们却可以得到x和y的关系,这也可以称为解,因为只要符合这个x、y关系的,就能成为前一个方程的解了;
:这里的未知数有两个,分别是x、y,但是,这样的一个等式是无法同时确定两个未知数的,于是,我们退而求其次,只要这两个未知数有关联,就可以,从而可以得到这样的一个解(下式为奇异解):。
可以看到,未知数和它们的解,形成了另一个等式,当然,因为解可能不唯一,这样的未知数与解的等式也不唯一。更进一步的说,我们可以这样理解未知数:未知数就是保证让它所在的方程成立的某些关系。
所以,如果方程的本质存在,必然也是与构成方程的这两个基本概念——“未知数”和“等式”——有关。等式的概念里面,同时也已经包含了某种关系在其中,同样,未知数也表征了一个关系。那么我们就可以这样抽象出方程的本质了:
方程(或者说方程式)就是,抽取某些特定关系的条件。
与方程比较接近的映射,则仅仅代表了某一个关系,或者说是规则。而方程,则是为了在无穷无尽的关系和规则中,抽取特定的几个规则、关系而存在。
要问方程反映了什么思维特点,这还真的蛮难说的……为了答题圆满点,我就为其添上个:条件思维的特点吧……
Ⅲ 什么是方程式
方程式或简称方程,是含有未知数的等式。即:⒈方程中一定有含一个或一个以上未知数的代数式;2.方程式是等式,但等式不一定是方程。
未知数:通常设x.y.z为未知数,也可以设别的字母,全部小写字母都可以。
“次”:方程中次的概念和整式的“次”的概念相似。指的是含有未知数的项中,未知数次数最高的项。而次数最高的项,就是方程的次数。
“解”:方程的解,指使,方程的根是方程两边相等的未知数的值,指一元方程的解,两者通常可以通用。
解方程:求出方程的解的过程,也可以说是求方程中未知数的值的过程,或说明方程无解的过程叫解方程。
方程中,恒等式叫做恒等方程,矛盾式叫做矛盾方程。在未知数等于某特定值时,恰能使等号两边的值相等者称为条件方程,例如,在时等号成立。使方程左右两边相等的未知数的值叫做方程的解。
同解方程:
如果两个方程的解相同,那么这两个方程叫做同解方程。
方程的同解原理:
⒈方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。
⒉方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。
整式方程:方程的两边都是关于未知数的整式的方程叫做整式方程。
分式方程:分母中含有未知数的方程叫做分式方程。
Ⅳ 方程式是什么意思
含有未知数的等式叫做方程式。
“方程”也叫做“方程式”或“方程组”,即含有未知数的等式。如:x-2=5,x+8=y-3。使等式成立的未知数的值称为方程的“解”或“根”。求方程的解的过程称为“解方程”。方程分为很多类。代数学中,根据方程未知数的个数。
可将其分为:一元方程,二元方程,三元方程等。根据方程未知项的最高次数,可将其分为:一次方程,二次方程,三次方程等。在近代数学中,还有微分方程、差分方程、积分方程等学科。此外,还可以将方程分为线性方程和非线性方程。
(4)数学中方程式是什么意思扩展阅读:
种类
1、微分方程
微分方程是将一些函数与其导数相关联的数学方程。在应用中,函数通常表示物理量,衍生物表示其变化率,方程定义了两者之间的关系。因为这种关系是非常常见的,微分方程在包括工程,物理,经济学和生物学在内的许多学科中起着突出的作用。
在纯数学中,微分方程从几个不同的角度进行研究,主要涉及到它们的解 - 满足方程的函数集。只有最简单的微分方程可以通过显式公式求解;然而,可以确定给定微分方程的解的一些性质而不找到其确切形式。
如果解决方案的自包含公式不可用,则可以使用计算机数值近似解决方案。动力系统理论强调了微分方程描述的系统的定性分析,而已经开发了许多数值方法来确定具有给定精确度的解决方案。
2、普通微分方程
普通微分方程或ODE是包含一个独立变量及其导数的函数的方程式。与“偏微分方程”相比,术语“普通”与对于多于一个的独立变量相关。
具有可以被加上和乘以系数的解的线性微分方程被明确定义和理解,并且获得精确的闭合形式的解。相比之下,缺乏添加剂解决方案的ODE是非线性的,解决它们是非常复杂的,因为很少以封闭形式的基本函数表示它们。
3、偏微分方程
偏微分方程(PDE)是包含未知多变量函数及其偏导数的微分方程。 (这与处理单个变量及其派生词的函数的普通微分方程相反)。PDE用于制定涉及几个变量的函数的问题,或者手动解决或用于创建相关的计算机模型。
Ⅳ 方程是什么意思
含有未知数的等式叫方程。等式的基本性质1:等式两边同时加[或减]同一个数或同一个代数式,所得的结果仍是等式。用字母表示为:若a=b,c为一个数或一个代数式。则:(1)a+c=b+c(2)a-c=b-c等式的基本性质2:等式的两边同时乘或除以同一个不为0的数所得的结果仍是等式。(3)若a=b,则b=a(等式的对称性)。(4)若a=b,b=c则a=c(等式的传递性)。【方程的一些概念】方程的解:使方程左右两边相等的未知数的值叫做方程的解。解方程:求方程的解的过程叫做解方程。移项:把方程中的某些项改变符号后,从方程的一边移到另一边,这种变形叫做移项,根据是等式的基本性质1。方程有整式方程和分式方程。
整式方程:方程的两边都是关于未知数的整式的方程叫做整式方程。分式方程:分母中含有未知数的方程叫做分式方程。[编辑本段]一元一次方程人教版5年级数学上册第四章会学到,冀教版7年级数学下册第七章会学到,苏教版5年级下第一章定义:只含有一个未知数,且未知数次数是一的整式方程叫一元一次方程。通常形式是kx+b=0(k,b为常数,且k≠0)。一般解法:⒈去分母
方程两边同时乘各分母的最小公倍数。⒉去括号
一般先去小括号,再去中括号,最后去大括号。但顺序有时可依据情况而定使计算简便。可根据乘法分配律。⒊移项
把方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项时别忘记了要变号。⒋合并同类项
将原方程化为ax=b(a≠0)的形式。⒌系数化一
方程两边同时除以未知数的系数。⒍得出方程的解。同解方程:如果两个方程的解相同,那么这两个方程叫做同解方程。方程的同解原理:⒈方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。⒉方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。做一元一次方程应用题的重要方法:⒈认真审题
⒉分析已知和未知的量⒊找一个等量关系⒋设未知数⒌列方程⒍解方程⒎检(jiao去声)验⒏写出答案
Ⅵ 数学方程式的含义是什么
方程是表示两个数学式之间相等关系的一种等式,通常在两者之间有一等号“=”。方程不用按逆向思维思考,可直接列出等式并含有未知数。它具有多种形式,如一元一次方程、二元一次方程等。定义 含有未知数的等式叫方程。 一元一次方程定义 只含有一个未知数,且未知数次数是一的整式方程叫一元一次方程。通常形式是kx+b=0(k,b为常数,且k≠0)。二元一次方程(组)二元一次方程定义:一个含有两个未知数,并且未知数的指数都是1的整式方程,叫二元一次方程。二元一次方程组定义:由两个二元一次方程组成的方程组,叫二元一次方程组。二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。 二元一次方程组的解:二元一次方程组的两个公共解,叫做二元一次方程组的解。
Ⅶ 数学方程式的含义是什么
方程是表示两个数学式之间相等关系的一种等式,通常在两者之间有一等号“=”.方程不用按逆向思维思考,可直接列出等式并含有未知数.它具有多种形式,如一元一次方程、二元一次方程等.定义 含有未知数的等式叫方程....
Ⅷ 数学方程式是什么
数学方程式,是指含有未知数(x)的等式或不等式组.根据含有未知数数目不同,分为一元方程式、二元方程式和多元方程式;根据含有未知数幂数不同,分为一元一次方程,一元二次方程,一元多次方程;根据含有未知数数目和幂数的不同,分为二元一次方程,二元二次方程,二元二次方程,二元多次方程,多元多次方程.