1. 函数零点怎么求
对于在区间[a,b]上连续不断、且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值。
步骤
(1)确定区间[a,b],验证f(a)f(b)<0,给定精确度ε;
(2)求区间(a,b)的中点x1;
(3)计算f(x1);
1)若f(x1)=0,则x1就是函数的零点;
2)若f(a)·f(x1)<0,则令b=x1(此时零点x0∈(a,x1));
3)若f(b)·f(x1)<0,则令a=x1(此时零点x0∈(x1,b))。
(4)判断是否达到精确度ε:即若|a-b|<ε,则得到零点的近似值a(或b);否则重复2~4。
2. 零点怎么求啊
求导,再令它等于0求出未知数的值即为零点.例:f(x)=x^2+2x+3.求导f(x)的导数=2x+2,令它=0.得x=-1.所以-1就是他的零点.只要晓得求导,则求零点很简单
3. 函数的零点个数怎么求
f(x)=0求零点个数
方法一
令y=f(x),对其求导,得出函数在各区间的单调性。
通过观察定义域左右端的极限,非连续点的左右极限以及各驻点的函数值,配合单调性就能得出零点个数。
比如lnx–1/(x–1)=0零点个数
令f(x)=lnx–1/(x–1)
函数在x=1处不连续
f'(x)=1/x+1/(x–1)²>0
所以函数在(0,1)单调递增,(1,+∞)单调递增
lim(x→0) f(x)=–∞
lim(x→1–) f(x)=+∞
lim(x→1+) f(x)=–∞
lim(x→+∞) f(x)=+∞
根据单调性,函数f(x)在(0,1)上必存在一个零点,(1,+∞)上必存在一个零点
所以f(x)=0有两个零点
方法二
就是数形结合将零点问题转化为两个函数的交点问题,通过研究两个函数性质画出图像得出交点个数。
比如lnx–1/(x–1)=0
lnx=1/(x–1)
就可以转化为f(x)=lnx与g(x)=1/(x–1)的交点问题
画出图像可得出有两个交点,即原方程有两个零点。
4. 如何求函数的零点
求函数的零点有以下三种方法
以适当的方式对函数加以变形(形如x2+5x+4)。高次项(如x2)在前、低次项在后逐一从左向右降次排列,直到常数项(形如8或4)。在最后一项后面加上等于号和数字0。
排列正确的多项式:
x2 + 5x + 6 = 0
x2 - 2x – 3 = 0
排列错误的多项式:
5x + 6 = -x2
x2 = 2x + 3
用a, b, c等字母表示方程系数。这一步不需要数学知识,仅通过一定的表达方式为后续的因式分解降低难度。你尝试解决的方程拥有一般形式。对于以上方程,一般形式为ax2 ± bx ± c = 0。只需要在你排列完毕的方程里找到对应三个字母的数字(系数)即可。例如:
x2 + 5x + 6 = 0
a = 1 (no number in front of "x" = 1, as there is still one "x")
b = 5
c = 6
x2 - 2x – 3 = 0
a = 1 (no number in front of "x" = 1, as there is still one "x")
b = -2
c = -3
写下常数项c的所有因数对。某数的因数对指相乘结果等于该数的两个数。写因数对时特别注意负数,两个负数相乘等于正数。因数对中两个数的顺序没有严格要求(即1×4与4×1等价)。
例:方程 x2 + 5x + 6 = 0中常数项6的因数对有:
1 x 6 = 6
-1 x -6 = 6
2 x 3 = 6
-2 x -3 = 6
5. 数学中用二分法求函数零点怎么求
就是求2个点的中点的值。
比如f(x)中f(a)>0,f(b)<0,那就求f((a+b)/2)的值。
如果f((a+b)/2)>0把f((a+b)/2)赋值给f(a),f(b)不变,继续重复上面的过程。
如果f((a+b)/2)<0把f((a+b)/2)赋值给f(b),f(a)不变,继续重复上面的过程。
直到|f(a)-f(b)|小于你给定的一个很小的数,就可以得到近似解了。
(5)数学怎么求零点扩展阅读:
若函数y=f(x)在闭区间[a,b]上的图像是连续曲线,并且在区间端点的函数值符号不同,即f(a)·f(b)≤0,则在区间[a,b]内,函数y=f(x)至少有一个零点,即相应的方程f(x)=0在区间[a,b]内至少有一个实数解。
一般结论:函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图像与x轴(直线y=0)交点的横坐标,所以方程f(x)=0有实数根,推出函数y=f(x)的图像与x轴有交点,推出函数y=f(x)有零点。
更一般的结论:函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的实数根,也就是函数y=f(x)的图像与函数y=g(x)的图像交点的横坐标,这个结论很有用。