A. 数学中的对称有哪几种其定义是什么
1轴对称:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.;这时,我们也说这两个图形关于这条直线对称.比如说圆、正方形等.
2.中心对称:②中心对称:如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称.例矩形,菱形,正方形,圆等
注意:轴对称和中心对称是指一个图形(图形特性),而成轴对称和成中心对称是指两个图形(位置关系)
B. 数学中,对称点=对称中点=对称中心吗如果有区别,请说出来废话不多说,懒得说别说
不等。对称点说的是某两点关于某直线对称,对称中心是某一对称图形才这么称呼的如正方形对称中心是两对角线的交点。对称中点应该是线段的中点之类的
C. 原点对称是什么
一、原点对称是数学中的一种几何现象,原点是X轴与Y轴的交点。奇函数的任何一个点都有对称点,直角坐标系上一点(x,y)关于原点对称的点为(-x,-y)。
如果一个函数 f(x) 的定义域内的任何一个 x 和值域内的任何一个 y,都有 f(- x) = - f(x) ,且定义域也关于原点对称的话就说 f(x) 为奇函数(就是说这个函数 f(x) 的任何一个点(X,Y)都有对称点的话就称其为奇函数。
二、对称的定义:
定义一:对称,指物体或图形在某种变换条件(例如绕直线的旋转、对于平面的反映,等等)下,其相同部分间有规律重复的现象,亦即在一定变换条件下的不变现象。
定义二:作为哲学范畴的对称是指宇宙的根本规律对立统一规律。同一性是宇宙的本质属性,也是对立统一规律的本质属性,所以作为哲学“对称”的对立统一规律不同于斗争性占主导、作为“矛盾”的对立统一规律。
D. 数学对称的定义是什么
对称:对称是指图形或物体对某一点、某条直线或某个平面的反射运动,在形状、大小、长短和排列等方面都相等或相当,具有一一对应的关系。
概念解读:
数学上是先定义一个点对一条直线(对称轴)的对称点,再定义一个图形对一条直线(对称轴)的对称图形,最后才透过如果一个图形对直线L(对称轴)的对称图形是自己本身的特殊情况,引入对称图形及对称轴的意义。
我们可以把对称理解为:图形或物体对某一点、直线或平面而言,在大小、形状和排列上具有一一对应的关系。
对称的狭义定义为:
一个物体包含若干等同部分,对应部分相等。不改变物体内部任何两点间的距离而使物体复原的操作,称为对称性操作,物理学中也称反演操作。
对称性操作主要有:旋转、反映、反演、象转、反转。旋转和反映是基本对称操作。完成对称性操作的几何元素称为对称元素,包括:旋转轴、镜面、对称中心、映轴、反轴。对称轴和对称面是基本的对称元素。
E. 何谓对称 数学中关于某点对称 某条直线对称
关与某点对称就是:将某一个点或者将某一个图形沿该点旋转180度之后,所得图形就与原图关于该点对称,这就是中心对称,关于某点对称的两个图形对应点连线必经过中心对称点.
关于某条直线对称就是:将某一个点或者某一个图形沿该直线做空间上的180翻折,简单来说就是镜子原理.关于某直线对称的两个图形对应点连线垂直于这条直线.