导航:首页 > 数字科学 > 数学七个定律是什么

数学七个定律是什么

发布时间:2022-12-14 18:00:39

初中数学所有定理定律

几何是初中数学中重要的一部分内容,考试时一般会出现在大题里。学习几何,需要证明,这时定理就很重要!下面归纳了初中所有数学定理。

点的定理:

1、过两点有且只有一条直线

2、两点之间线段最短

角的定理:

1、同角或等角的补角相等

2、同角或等角的余角相等

直线定理:

1、过一点有且只有一条直线和已知直线垂直

2、直线外一点与直线上各点连接的所有线段中,垂线段最短

平行定理:经过直线外一点,有且只有一条直线与这条直线平行

推论:如果两条直线都和第三条直线平行,这两条直线也互相平行

证明两直线平行定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行

两直线平行推论:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补

定理:三角形两边的和大于第三边

推论:三角形两边的差小于第三边

三角形内角和定理:三角形三个内角的和等于180°

定理:全等三角形的对应边、对应角相等

边角边定理(SAS):有两边和它们的夹角对应相等的两个三角形全等

角边角定理(ASA):有两角和它们的夹边对应相等的两个三角形全等

推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等

边边边定理(SSS):有三边对应相等的两个三角形全等

斜边、直角边定理(HL):有斜边和一条直角边对应相等的两个直角三角形全等

定理1:在角的平分线上的点到这个角的两边的距离相等

定理2:到一个角的两边的距离相同的点,在这个角的平分线上角的平分线是到角的两边距离相等的所有点的集合

等腰三角形的性质定理:等腰三角形的两个底角相等(即等边对等角)

推论1:

等腰三角形顶角的平分线平分底边并且垂直于底边

等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

定理:线段垂直平分线上的点和这条线段两个端点的距离相等

逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

定理1:关于某条直线对称的两个图形是全等形

定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

定理:在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

判定定理:直角三角形斜边上的中线等于斜边上的一半

勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

勾股定理的逆定理:如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形

定理:四边形的内角和等于360°;四边形的外角和等于360°

多边形内角和定理:n边形的内角和等于(n-2)×180°

推论:任意多边的外角和等于360°

平行四边形性质定理:

1.平行四边形的对角相等

2.平行四边形的对边相等

3.平行四边形的对角线互相平分

推论:夹在两条平行线间的平行线段相等

平行四边形判定定理:

1.两组对角分别相等的四边形是平行四边形

2.两组对边分别相等的四边形是平行四边形

3.对角线互相平分的四边形是平行四边形

4.一组对边平行相等的四边形是平行四边形

矩形性质定理1:矩形的四个角都是直角

矩形性质定理2:矩形的对角线相等

矩形判定定理1:有三个角是直角的四边形是矩形

矩形判定定理2:对角线相等的平行四边形是矩形

菱形性质定理1:菱形的四条边都相等

菱形性质定理2:菱形的对角线互相垂直,并且每一条对角线平分一组对角

菱形面积=对角线乘积的一半,即S=(a×b)÷2

菱形判定定理1:四边都相等的四边形是菱形

菱形判定定理2:对角线互相垂直的平行四边形是菱形

正方形性质定理1:正方形的四个角都是直角,四条边都相等

正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

定理1:关于中心对称的两个图形是全等的

定理2:关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

等腰梯形性质定理:

1.等腰梯形在同一底上的两个角相等

2.等腰梯形的两条对角线相等

等腰梯形判定定理:

1.在同一底上的两个角相等的梯形是等腰梯形

2.对角线相等的梯形是等腰梯形

平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰

推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边

三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半

梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半:L=(a+b)÷2S=L×h

相似三角形定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

相似三角形判定定理:

1.两角对应相等,两三角形相似(ASA)

2.两边对应成比例且夹角相等,两三角形相似(SAS)

直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

判定定理3:三边对应成比例,两三角形相似(SSS)

相似直角三角形定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

性质定理:

1.相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

2.相似三角形周长的比等于相似比

3.相似三角形面积的比等于相似比的平方

任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值

任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值

定理:过不共线的三个点,可以作且只可以作一个圆

定理:垂直于弦的直径平分这条弦,并且评分弦所对的两条弧

推论1:平分弦(不是直径)的直径垂直于弦并且平分弦所对的两条弧

推论2:弦的垂直平分弦经过圆心,并且平分弦所对的两条弧

推论3:平分弦所对的一条弧的直径,垂直评分弦,并且平分弦所对的另一条弧

定理:

1.在同圆或等圆中,相等的弧所对的弦相等,所对的弦的弦心距相等

2.经过圆的半径外端点,并且垂直于这条半径的直线是这个圆的切线

3.圆的切线垂直经过切点的半径

4.三角形的三个内角平分线交于一点,这点是三角形的内心

5.从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

6.圆的外切四边形的两组对边的和相等

7.如果四边形两组对边的和相等,那么它必有内切圆

8.两圆的两条外公切线的长相等;两圆的两条内公切线的长也相等

比例的基本性质

如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d

合比性质

如果a/b=c/d,那么(a±b)/b=(c±d)/d

等比性质

如果a/b=c/d=…=m/n(b+d+…+n≠0),

那么(a+c+…+m)/(b+d+…+n)=a/b

⑵ 四年级数学第三单元运算定律是哪七种

运算定律名称 用字母表示
加法交换律 a+b=b+a
加法结合律 (a+b)+c=a+(b+c)
法交换律 a×b=b×a也可以写成:a·b=b·a还可以写成:ab=ba
乘法结合律 (a×b)×c=a×(b×c)也可以写成:(a·b)·c=a·(b·c)还可以写成:(ab)c=a(bc)
乘法分配律 (a+b)×c=a×c+b×c也可以写成:(a+b)·c=a·c+b·c还可以写成:(a+b)c=ac+bc
减法结合律a-b-c+=a-(b+c)

⑶ 初中数学公式定律

初中数学公式定律如下:

1、过两点有且只有一条直线;两点之间线段最短;同角或等角的补角相等;同角或等角的余角相等;过一点有且只有一条直线和已知直线垂直

2、直线外一点与直线上各点连接的所有线段中,垂线段最短;平行公理 经过直线外一点,有且只有一条直线与这条直线平行;如果两条直线都和第三条直线平行,这两条直线也互相平行;同位角相等,两直线平行;内错角相等,两直线平行

3、同旁内角互补,两直线平行;两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;定理 三角形两边的和大于第三边;推论 三角形两边的差小于第三边

4、三角形内角和定理 三角形三个内角的和等于180°;推论1 直角三角形的两个锐角互余;推论2 三角形的一个外角等于和它不相邻的两个内角的和;推论3 三角形的一个外角大于任何一个和它不相邻的内角

5、全等三角形的对应边、对应角相等;边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等;角边角公理(ASA) 有两角和它们的夹边对应相等的两个三角形全等;推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等

6、边边边公理(SSS) 有三边对应相等的两个三角形全等;斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等

17、定理 四边形的内角和等于360°;四边形的外角和等于360°;多边形内角和定理 n边形的内角的和等于(n-2)×180°

18、推论 任意多边的外角和等于360°;平行四边形性质定理1 平行四边形的对角相等;平行四边形性质定理2 平行四边形的对边相等;推论 夹在两条平行线间的平行线段相等;平行四边形性质定理3 平行四边形的对角线互相平分

19、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形;平行四边形判定定理2 两组对边分别相等的四边形是平行四边形;平行四边形判定定理3 对角线互相平分的四边形是平行四边形;平行四边形判定定理4 一组对边平行相等的四边形是平行四边形

20、矩形性质定理1 矩形的四个角都是直角;矩形性质定理2 矩形的对角线相等

21、矩形判定定理1 有三个角是直角的四边形是矩形;矩形判定定理2 对角线相等的平行四边形是矩形

22、菱形性质定理1 菱形的四条边都相等;菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形面积=对角线乘积的一半,即S=(a×b)+2

23、菱形判定定理1 四边都相等的四边形是菱形;菱形判定定理2 对角线互相垂直的平行四边形是菱形

24、正方形性质定理1 正方形的四个角都是直角,四条边都相等;正方形性质定理2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

25、定理1 关于中心对称的两个图形是全等的;定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

26、逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

27、等腰梯形性质定理 等腰梯形在同一底上的两个角相等;等腰梯形的两条对角线相等;等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形;对角线相等的梯形是等腰梯形

28、平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

29、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰;推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边

30、三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半

⑷ 七条运算律分别是什么律

1、加法交换律:a+b=b+a;

2、乘法交换律:a×b=b×a;

3、加法结合律:a+b+c=(a+b)+c=a+(b+c);

4、乘法结合律:(a×b)×c=a×(b×c);

5、乘法分配律:a×(b+c)=a×b+a×c;

6、左分配律:cx(a+b) = (cxa)+(cxb);

7、右分配律:(a+b)xc = (axc)+(bxc)。

在两个数的加法运算中,在从左往右计算的顺序,两个加数相加,交换加数的位置,和不变。例如:

字母: a+b=b+a a+c=c+a

数字: 1+2=2+1 16+30=30+16

(4)数学七个定律是什么扩展阅读:

交换律是二元运算的一个性质,意指在一个包含有二个以上的可交换运算子的表示式,只要算子没有改变,其运算的顺序就不会对运算出来的值有影响。

加法、减法、乘法、除法,统称为四则运算。其中,加法和减法叫做第一级运算;乘法和除法叫做第二级运算。

计算顺序:

(1)同级运算时,从左到右依次计算;

(2)两级运算时,先算乘除,后算加减。

(3)有括号时,先算括号里面的,再算括号外面的;

(4)有多层括号时,先算小括号里的,再算中括号里面的,最后算括号外面的。

(5)要是有乘方,最先算乘方。

(6)在混合运算中,先算括号内的数 ,括号从小到大,如有乘方先算乘方,然后从高级到低级。

在只有乘法的算式计算中,一般是按照从左到右的顺序进行计算。

⑸ 数学定理有哪些

1、三角形各边的垂直一平分线交于一点。

2、勾股定理(毕达哥拉斯定理)

勾股定理是一个基本的几何定理,直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。也就是说,设直角三角形两直角边为a和b,斜边为c,那么a²+b²=c² 。

3、从三角形的各顶点向其对边所作的三条垂线交于一点

4、射影定理(欧几里得定理)

5、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分

6、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足为M,则AH=2OM

7、三角形的外心,垂心,重心在同一条直线上。

8、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,

9、四边形两边中点的连线和两条对角线中点的连线交于一点

10、间隔的连接六边形的边的中点所作出的两个三角形的重心是重合的。

11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上

12、库立奇*大上定理:(圆内接四边形的九点圆)

圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。

13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:$r=sqrt{[(s-a)(s-b)(s-c)]/s}$s为三角形周长的一半

14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点

15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有$AB^2+AC^2=2(AP^2+BP^2)$

16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有$nxxAB^2+mxxAC^2=(m+n)AP^2+(mn)/(m+n)BC^2$

17、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD

18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上

19、托勒密定理:

圆的内接四边形中,两对角线所包矩形的面积等于 一组对边所包矩形的面积与另一组对边所包矩形的面积之和。 从这个定理可以推出正弦、余弦的和差公式及一系列的三角恒等式,托勒密定理实质上是关于共圆性的基本性质。

20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形

⑹ 实数系几大基本定理都有什么

实数系的基本定理也称实数系的完备性定理、实数系的连续性定理,这些定理分别是确界存在定理、单调有界定理、有限覆盖定理、聚点定理、致密性定理、闭区间套定理和柯西收敛准则,共7个定理,。

一、上(下)确界原理

非空有上(下)界数集必有上(下)确界。

二、单调有界定理

单调有界数列必有极限。具体来说:

单调增(减)有上(下)界数列必收敛。

三、闭区间套定理(柯西-康托尔定理)

对于任何闭区间套,必存在属于所有闭区间的公共点。若区间长度趋于零,则该点是唯一公共点。

四、有限覆盖定理(博雷尔-勒贝格定理,海涅-波雷尔定理)

闭区间上的任意开覆盖,必有有限子覆盖。或者说:闭区间上的任意一个开覆盖,必可从中取出有限个开区间来覆盖这个闭区间。

五、极限点定理(波尔查诺-魏尔斯特拉斯定理、聚点定理)

有界无限点集必有聚点。或者说:每个无穷有界集至少有一个极限点。

六、有界闭区间的序列紧性(致密性定理)

有界数列必有收敛子列。

七、完备性(柯西收敛准则)

数列收敛的充要条件是其为柯西列。或者说:柯西列必收敛,收敛数列必为柯西列。

(6)数学七个定律是什么扩展阅读

单调有界定理注意事项

1、单调有界定理只能用于证明数列极限的存在性,如何求极限需用其他方法;

2、数列从某一项开始单调有界的话,结论依然成立,这是因为增加或去掉数列有限项不改变数列的极限。

⑺ 小升初数学必考4类应用题类型与7个运算定律

小升初数学是让许多小学孩子头疼的科目,特别是应用题。经常有家长问,小升初数学会考什么内容?还应该注意各类题型的总结,特别是数学的应用题。我在这里整理了相关资料,希望能帮助到那您。

小升初数学必考4类应用题类型

经典例题1

一个集邮爱好者买了10分和20分的邮票共100张,总值18元8角。这个集邮爱好者买这两种邮票各多少张?

分析:

先假定买来的100张邮票全部是20分一张的,那么总值应是20×100=2000(分),比原来的总值多2000-1880=120(分)。而这个 多的120分,是把10分一张的看作是20分一张的,每张多算20-10=10(分),如此可以求出10分一张的有多少张。

列式:(2000-1880)÷(20-10) =120÷10 =12(张)→10分一张的张数

100-12=88(张)→20分一张的张数或是先求出20分一张的张数,再求出10分一张的张数,方法同上,注意总值比原来的总值少。

经典例题2

5辆玩具汽车与3架飞机玩具的价钱相等,每架飞机玩具比每辆玩具汽车贵8元。这两种玩具的单价各是多少元?

分析:

因为每架玩具飞机比每辆玩具汽车贵8元,所以,3架玩具飞机就比3辆玩具汽车贵8×3=24元。由于5辆玩具汽车与3架玩具飞机的价钱相等。

因此,这24相当于(5-3)辆玩具汽车的价钱,每辆玩具汽车是24÷2=12元,每架玩具飞机的价钱就是12+8=20元。

经典例题3

用2台水泵抽水,小水泵抽6小时,大水泵抽8小时,一共抽水312立方米。小水泵5小时的抽水量等于大水泵2小时的抽水量,两种水泵每小时各抽水多少立方米?

分析:

因为大水泵2小时的抽水量等小水泵5小时的抽水量,所以,大水泵8小时的抽水量应该等于小水泵8÷2×5=20小时的抽水量。

因此,312立方米的水就相当于小水泵(6+20)小时的抽水量了。小水泵每小时抽水是312÷(6+20)=12立方米,大水泵每小时抽水12×5÷2=30立方米。

经典例题4

一件工作,甲做5小时以后由乙来做,3小时可以完成;乙做9小时以后由甲来做,也是3小时可以完成。那么甲做1小时以后由乙来做几小时可以完成?

分析:

把题中两组已知条件进行对比,甲少做(5-3)小时,乙就要多做(9-3)小时,也就是甲2小时的工作量和乙6小时的工作量相等,甲1小时的工作量和乙3小时的工作量相等。

这件工作全部由甲做需要用5+3÷3=6小时,现在甲先做1小时,剩下5小时的工作量由乙来做,乙必须用5×3=15小时才能完成。

小学数学考试计算必备7个运算定律

一、加法交换律

两个数相加,交换两个加数的位置,和不变,叫做加法交换律。

a+b=b+a

二、加法结合律

三个数相加,先把前二个数相加,再加第三个数,或者,先把后二个数相加,再加上第一个数,其和不变。这叫做加法结合律。

a+b+c=(a+b)+c=a+(b+c)

三、减法性质

在减法中,被减数、减数同时加上或者减去一个数,差不变。

a-b=(a+c)-(b+c) ab=(a-c)-(b-c)

在减法中,被减数增加多少或者减少多少,减数不变,差随着增加或者减少多少。反之,减数增加多少或者减少多少,被减数不变,差随着减少或者增加多少。

在减法中,被减数减去若干个减数,可以把这些减数先加,差不变。

a –b - c = a - (b + c)

四、乘法交换律

个数相乘,交换两个因数的位置,积不变,叫做乘法的交换律。

a×b = b×a

五、乘法结合律

三个数相乘,先把前两个数相乘,再乘以第三个数,或者,先把后两个数相乘,再和第一个数相乘,积不变。这叫做乘法结合律。

a×b×c = a×(b×c)

六、乘法分配律

两个数的和(或差)与一个数相乘,等于把这两个数分别与这个数相乘,再把两个积相加(或相减)。这叫做乘法分配律。

(a + b) ×c= a×c + b×c (a - b)×c= a×c - b×c

乘法的其他运算性质

一个因数扩大若干倍,必须把另一个因数缩小相同的倍数,其积不变。

a×b = (a×c) ×( b÷c)

七、除法的运算性质

商不变性质,两个数相除,被除数和除数同时扩大或者缩小相同的一个数(0除外),商的大小不变。

a÷b=(a×c)÷(b×c) a÷b=(a÷c)÷(b÷c )

一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。

⑻ 数学的规律是什么

问这个问题前,先学习一下数学史。
数学是规律吗?
答案是是,因为数学最终可以衡量甚至预测所有的事情,现在不能只是因为我们不能,因为现在的数学还停留在“数”上。
但是我希望并认为不是,因为我不想否认人类在其中扮演的角色,不想否认生命的意义。
你知道宇宙?
你认为宇宙只是你肉眼看到的实质存在的事物吗?
由基本元素构成,可以在各种“方向”不断扩展,并最终会回归本源的我认为都可称为宇宙。我们的大脑就可以称为一个小宇宙,一花一草一木一世界。
我看过一些关于数学史的书之后,便发现现在的所有理论都是由最基本的公理逐步推出来的,只要我能够理解加减乘除的概念,我就可以理解绝大多数的数学理论,并应用;
你觉得你会用加减乘除吗?
在你每一次应用数学知识的时候,无论是在哪一个学科,你仔细回想你思考的过程,例如计算面积S=ab,假设a=2m,b=2m,我在计算的时候,都是先算2*2,然后加上单位,为什么要这样,因为我只会这样算,但是事实上,这里面有更高级的概念,因为如果仅仅有这种程度,先人是根本想不到用乘法的,至少如果我生活在一个只有整数的时代,我是无论如何也理解不了小数的存在。
面积的乘法便是2m*2m。
在解释之前,也说一下数的概念?1为什么是1,2为什么是2,1+1为什么等于2?
1是1 unit,一个标准。例如1个,1m,1kg;都是先定义了1 unit定义才有后面的扩展。而2,3……便是相对于1unit 的比例,如2m,便是相对于1m的2倍关系。1+1=2;比如你拿了一个石头,又拿了一个,手里共有两个,你为什么有二的概念,因为手里的数量是相对于1个比较出来的。没有了1,便没有了比较,后面无从谈起。
所以整数到小数的过度应该经历许多波折。
像这种比例得到的数的关系,是一维思维。
然后我说的乘法便是二维思维,现在我正在理解,说不清楚,现在你所学的乘法运用也仅仅是比较而已,得到的结果和1m^2进行比较得到4,便是4m^2; 但是可以不仅仅如此,可以直接在大脑运算2m*2m, 而不需要中间过渡计算,说不清楚,你自己体会。
数可以在“数”和“量”上衡量这个宇宙,也就是只要有了相应的概念,数学所表达的便是这个宇宙,是一种映射或称为变换最好,宇宙是由规律的,除非真有上帝存在.
所以数学也是有规律的;
然而这个宇宙有生命存在,可能我们的存在或许就是一堆外星人的数据,也可能地球只是猪圈,但是至少就算不是人类,只要有生命,这个宇宙便有了随机性,可能性。
至少我不希望自己的人生可以因为一堆数据而预测。
(以上纯属个人见解,就是因为像这种胡思乱想,我才变得废了,好好学习,思考是人类唯一的意义)

⑼ 小学4年级数学七个运算律分别是什么

加法交换律:a+b=b+a
加法结合律:(a+b)+c=a+(b+c)
乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b÷c)
连减性质:a-b-c=a-(b+c)
连除性质:a÷b÷c=a÷(b×c)
商不变性质:a÷b=(a×m)÷(b×m)=(a÷m)÷(b÷m) m≠0

⑽ 数学的运算定律公式是什么

数学的运算定律公式是如下:

1、加法交换律:一个加法算式中,两个和交换位置再相加,和不变,这就是加法的交换律。字母公式:a+b=b+a。

2、加法结合律:一个加法算式中,前两个数相加或者是后两个数相加和不变,这就是加法的结合律。

3、减法性质:一个数连续减去两个数,可以用这个数减去另外两个数的和。字母表示:a-b-c=a-(b+c)。

4、乘法交换律:在一个乘法算式中,两个因数交换位置在相乘,积不变,这就是乘法的交换律。字母表示:a*b=b*c。

5、乘法的结合律:一个乘法算式中,前两个数相乘或者是后两个数相乘积不变,这就是乘法的结合律。字母表示:a*b*c=a*(b*c)。

6、乘法的分配律:一个乘法算式中,一个数乘以两个数的和,可以分别相乘再相加,这就是乘法的分配律。字母表示:a*(b+c)=a*b+a*c。

7、乘法分配律的逆运算:一个数乘另一个数的积加它本身乘另一个数的积,可以把另外两个数加起来再乘这个数。字母表示:a*b+a*c=a*(b+c)。

8、商不变性质:被除数和除数同时乘或除以一个相同的数(0除外),商不变。分数的分子和分母同时乘或除以一个相同的数(0除外),分数的大小不变。字母表示:a÷b=(ac)÷(bc)=(a÷c)÷(b÷c) (c≠0 b≠0)。

阅读全文

与数学七个定律是什么相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:739
乙酸乙酯化学式怎么算 浏览:1404
沈阳初中的数学是什么版本的 浏览:1350
华为手机家人共享如何查看地理位置 浏览:1042
一氧化碳还原氧化铝化学方程式怎么配平 浏览:884
数学c什么意思是什么意思是什么 浏览:1408
中考初中地理如何补 浏览:1299
360浏览器历史在哪里下载迅雷下载 浏览:701
数学奥数卡怎么办 浏览:1387
如何回答地理是什么 浏览:1023
win7如何删除电脑文件浏览历史 浏览:1055
大学物理实验干什么用的到 浏览:1484
二年级上册数学框框怎么填 浏览:1699
西安瑞禧生物科技有限公司怎么样 浏览:971
武大的分析化学怎么样 浏览:1247
ige电化学发光偏高怎么办 浏览:1337
学而思初中英语和语文怎么样 浏览:1650
下列哪个水飞蓟素化学结构 浏览:1423
化学理学哪些专业好 浏览:1486
数学中的棱的意思是什么 浏览:1057